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Micromachined High® Inductors
In a 0.18xm Copper Interconnect
Low-K Dielectric CMOS Process

Hasnain Lakdawala, Xu Zhu, Hao Luo, Suresh Santhanam, L. Richard Cleleyw, IEEE and Gary K. Fedder

Abstract—On-chip spiral micromachined inductors fabricated Inductors are intended to store magnetic energy, however, the
in a 0.18m digital CMOS process with 6-level copper intercon- finjte coil resistance and the substrate losses in silicon contribute
nectand low-K dielectric are described. A post-CMOS maskless mi- to energy losses and hence reduce the quality fagtdnergy

cromachining process compatible with the CMOS materials and de- h o
sign rules has been developed to create inductors suspended abovc]aosseS in the silicon substrate result frd#z losses due to the

the substrate with the inter-turn dielectric removed. Suchinductors ~ currents flowing through the metal to substrate capacitance and

have higher quality factors as substrate losses are eliminated by sil- those generated due to magnetic field induced by the inductor.

icon removal and increased self-resonant frequency due to reduc- These losses can be eliminated by either shorting the substrate
tion of inter-turn and substrate parasitic capacitances. Quality fac- or making it open.

tors up to 12 were obtained for a 3.2-nH micromachined inductor at . . .
7.5 GHz. Improvements of up to 180% in maximum quality factor, Solid ground shields that help to reduce the substrate resis-

along with 40%—-70% increase in self-resonant frequency were seen tance induce opposite flowing loop currents due to Lenz's law.
over conventional inductors. The effects of micromachining on in- These currents produce a negative mutual coupling that reduces
ductor performance was modeled using a physics-based model with the magnetic field and decreases the overall inductance. One ap-
pre_dlctlve capability. The model was verlfle_d by measurements at proach suggested by Yue and Wong [5] is the use of patterned
various stages of the post-CMOS processing. Micromachined in- - . .
ground shield that reduces the induced loop current by inser-

ductor quality factor is limited by series resistance up to a pre- < . ; . . .
dicted metal thickness of between 6-1@m. tion of slots in the shield. The main drawback of this technique

Index Terms—CMOS micromachining, modeling, monolithic is that the parasitic capacitancg to substrate i; significantly in-
inductors, quality factor, RFIC, self-resonance, silicon integrated Creased. Patterned ground shields are effective for lower fre-
circuit technology, substrate loss. guency applications where the parasitic capacitance can be ab-
sorbed in the C tank. Increasing the substrate resistance is an-
other approach that is useful for reducing substrate losses. The
use of high resistivity silicon [6] and sapphire substrates have

DVANCES in silicon technology, with decreasing featur@een used by researchers to demonstrate @Qigianar induc-

sizes and application of novel materials, are pushing circtdlrs, achieving quality factors of 40 at 5.8 GHz for an 1.4-nH
performance to higher frequencies. The new digital Q:i8in-  inductor [7]. However, the use of high resistivity material is not
terconnect CMOS process with hightransistors is highly at- common in a digital logic CMOS process, and many submicron
tractive for RF design for mass produced wireless communia@MOS technologies use epitaxial silicon wafers. Substrate re-
tion products [1]. Interconnect resistance traditionally has not itoval is a method of choice for large area inductors in which
ceived attention in adigital CMOS process, but as modern digitedprovement in self-resonant frequency extends the usable fre-
designs have begun to be limited by interconnect delays, moredgrency range. Charej al.[8] proposed elimination of substrate
teresthas been seen [2]. Copper interconnecthas beenintroduessks in large area inductors by removing the underlying silicon
to lower the interconnect resistance to reduce interconnect delaing front-side etching of silicon in a post-processing step. The
This is an advantageous trend for RF circuit designers as befiest-processing step either removed the silicon by wet etching
quality on-chip passives [3] can be designed with lower series t#-by using gaseous dry etching [9]. These techniques have in-
sistance. Highg) inductors can lead to improved power or figuréherent limitations as to how far circuits can be placed from the
of merit in low noise amplifiers (LNA), lower insertion loss ininductor, introducing? R losses in the interconnect resistance.
bandpass filters, and better phase noise and power in voltage distance of the transistors from the inductor is determined
controlled oscillators (VCO) [4]. by the dimensions of the inductor and the time of the etch. Other

approaches to eliminate silicon from below the inductor have
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Fig. 2. Scanning electron micrograph of a single side anchored micro-
machined inductor.
anchored
(© neath the inductor. The details of the process are described in
[15] and [16].
Circuits can be placed about 36n away from the edge of
the silicon pit, and this design rule is independent of the depth
_ oo e fabricat of the silicon pit. The circuits are protected by the top metal of
e oo e e e s el CMOS process This i acisadvantage as top metal cannot be
oxide. (c) After silicon substrate removal due and anisotropic and an isotropl§€d for arbitrary interconnect and is grounded. The maximum
etch. width of a metal-masked feature is abouta®. The smallest
width is limited by the processing conditions to about irb.
and the inter-turn sidewall oxide helps reduce the substrateThe electrical performance of the circuits is not affected by
losses that dominate at higher frequencies, increase the self-the-etching steps. Inverter test structures were tested before and
onant frequency, and also reduce substrate noise couplafter the micromachining process. A 2.2-GHz sing(@ tank
into the inductor. This technique leverages the ever-increasioggillator was tested to verify the operation of the transistors
number of interconnect layers used in modern processes &ftier the post-process step. The oscillator used a 3-nH single sus-
passive designs [14] for lower series resistance without seveended inductor. The circuit consumed 10.2 mA with a supply
high-frequency performance penalties. Section Il describes thwtage of 1.7 V.
processing steps and their impact on circuit design and layout.
The mechanical stability of a suspended inductor to exterrf&l Inductor Structure
shock and temperature changes has been investigated using scanning electron microscope image of a suspended
finite element modeling. Section Il describes a physical modglguctor with single sided connection is shown in Fig. 2. The
of the inductors that was developed to understand the perfgigyctor coil is designed with four 2m-wide turns using
mance gains due to micromachining. Measurement resyl{gia|-5 and metal-6 layers, which are the thickest (@)
compare the performance of the micromachined inductor [iQers available in the process. The two layers are shunted
conventional on-chip inductors, with and without the sidewalhgether to reduce the series resistance of the coil. The return
oxide. Section IV presents a discussion of the results aE‘S%ductor consists of the metal 4,3,2,1 layers shunted together.
Section V draws some conclusions based on this work. Inductor geometries were optimized using FASTHENRY [17]
with a parametric inductor layout and input deck generator.

II. DESIGN CONSIDERATIONS

A 0.18-m minimum feature size CMOS process with coppds- Mechanical Stability of the Suspended Inductor

interconnect and low-K dielectrics was used to fabricate theOne concern in design of mechanical suspended inductors
inductors. The process flow, shown in Fig. 1, enables fabricia-that external shocks and mechanical deformations of the in-
tion of micromachined structures in CMOS. The conventionductor structure change the inductance and hence affect the cir-
CMOS processing [Fig. 1(a)] is followed by anisotropic reacuit performance. Residual stress differences in various films
tive ion etching (RIE) with CHE and G to remove oxide not used in the interconnect fabrication cause the inductors to curl
covered by any of the metal layers, resulting in high-aspedtut of plane, such that the highest point of the inductor is above
ratio vertical sidewalls [Fig. 1(b)]. The following anisotropicthe plane of the chip. This out-of-plane curl is a function of the
and isotropic silicon etch [Fig. 1(c)] removes the underlying silimensions of the inductor and temperature. The variation of
icon to release the microstructure. The anisotropic etch is useductor performance with temperature has been studied by re-
to obtain the desired spacing between the inductor and the ssbarchers [18] for conventional on-chip inductors. Additional
strate. The subsequent isotropic etch undercuts the silicon beechanical effects occur in suspended inductors that should be
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TABLE |
SUMMARY OF MECHANICAL EFFECTS INSUSPENDEDINDUCTORS

Simulation result Single anchored inductor Double anchored inductor
Nominal Inductance (nH) 4.824 4918
Inductor dimensions 400um by 400pum 400um by 400um
Maximum out of plane curl (um) 25.10 15.94
% Inductance change due to curl -0.0070 -0.1036
1st Mechanical mode (kHz) 8.71 9.31
2nd Mechanical mode (kHz) 16.27 21.71
3rd Mechanical mode (kHz) 22.07 22.22
Temperature coefficient of inductance (ppm/°C) 0.757 11.139
% Inductance change due to 100G shock -0.0162 -0.0173
Maximum deflection due to 100G shock (um) 0.5011 0.4543
taken into account. Finite element simulations were carried ¢ Cfls Cﬁz Cfl
. . o . 1
to verify the mechanical stability of the suspended inductors a i i i
curling due to residual stress and temperature. To the first orca 0000 AN 10900 AAAL0000 AN —T
the change of out-of-plane cuebg) of such structures is pro- ¢, = Lo¢ Rums| Loy Rpa| Lo Rmp| Lt Rmi | Coq
portional to the temperature increas®®(), cube of the total ¢, L|[%=|_ 4 Cair I Cox

thickness of the interconnect stadk)( and square of the dis- Cov 0
tance from the anchof)( The proportionality constarit is a
function of material properties of the interconnect stack [19]. &< &
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t; Fig. 3. Lumped parameter equivalent circuit for the inductor, which includes
parasitic sidewall capacitance and substrate loss.

Two square (40@:m by 400.:m) inductors with single-sided
and double-sided suspension and five turns were analyzed.
Thermomechanical simulations [20] were followed by FAS-
THENRY [17] simulations to compute the inductance after To understand the improvement due to substrate and the side-
deformation. External shock to the inductor was simulatgdall oxide removal, an equivalent circuit model based on phys-
by subjecting the inductor structure to a static acceleratiggal principles is proposed. The schematic of the model for a
of 9810 m/$ (100 G) and calculating the inductance changgour-turn inductor is shown in Fig. 3 and is an extension of
Motion due to external shock is very smat-Q.5 um) due models proposed earlier in the literature [21]. Each turn of the
to the extremely small mass of the inductor, on the order pfductor has been modeled as a sepak@® segment to ac-

1 pg. The natural mechanical frequencies, which potentialpbunt for the contribution of inter-turn capacitances to the res-
can amplify the displacement from a shock, and can frequengyant frequency. Contribution of the inter-turn capacitance has

modulate the center frequency of a VCO, were simulated. Thgen considered insignificant in the modeling of nonmicroma-
first three mechanical vibration modes of the device are l0¥ined inductors.

frequency (8—-23 kHz), and the effect of these modes can be
compensated in the design of the phase-locked loop (PLL) BY Inductor Model

a_Ia_lrge loop gain. The higher fn_equency mechanical modes_ arel_o accommodate the effects of inter-turn capacitance, the
difficult to excite in a packaged inductor due to the mechanical

damping of the package. These resonances can be mo'\r/]éjé‘CtanceLm") and the seriesfn,,) resistance due to each
rn are modeled separately [22] and are expressed as

to higher frequencies by increasing the number of ancho"g
Table | summarizes the results of the mechanical simulation.

Ill. DEVICE MODELING AND CHARACTERIZATION

The suspended inductors have a low mechanical dependence Ly = Lm<l—">

on inductance with temperature change because the relative lm

displacement between adjacent turns is very small compared Rown(f) = R (f)<l_n> @)
to the dimensions of the structure. The relative displacement e ” I

between the turns is smaller in a single-suspended cantilever

inductor, compared to the double-suspended inductor, ewghere L,,,, is the inductance of theth turn of the inductor,

though the former has larger overall curl. This results in a lowér,, is the total inductancé,,, is the total length of conductors,
inductance reduction for the single-sided inductor after releasgg.is the length of thenth turn, andR,.(f) is the series
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resistance of the inductor. The total inductance value we:
estimated from finite element simulations using FASTHENRY :
A constant inductance per unit length was assumed for all tr
spirals. .
At dc, the resistance can be computed from the dimensions :
the coil and conductivity of the interconnect material. However ;&
at higher frequencies the series resistance of the inductor is ¢: :
pendent on frequency due to skin effects, and current crowdirif :
issues due to magnetic effects [23]. The situation is further con:if:e
plicated by the use of two parallel conductors that are eIectrE‘E:Z
cally shunted together to form the inductor spiral. The applice:}f
tion of analytical expressions derived in [21] and [24], and ha:|f

been used to model the series resistance. The series resiste' P

of each segment is modeled as :L;,MM;;M fereasasrieisiaicaiiiaas
t_c Fig. 4. Microphotograph of a micromachined inductor test structure showing
R R I ) the mask metal layer surrounding the double-side anchored inductor along with
m(f) de l 1 _ o—(te/5) two-port test pads. The dimensions of the cavity are 460by 450 m.
1/ fi ductor turn width and the gap between the turns and can be ex-
C

l
=Ry | > )| ——— 3 ressed as [26
()| @ p 26

Cpn = Upln + Cp?n
where f. models the frequency at which skin effect begins t (g1 1) [ egapt 4 Eap | w o 2 )
P—w 27 . P—w

dominate in copper for the thickness of the conductor used in the&™ — 2
design,t. is the combined thickness of the copper conductors (1+(w/(P—w)))
. . . e . P—w
used in the spiral, and is the resistivity of copper. The skin ,<1 + 2( )) (7)
depthé at any frequency [25] and the critical frequengtyare w
given by

wheree,;, is the electrical permittivity of the medium between

s— [P @) the turns (air or dielectric), and is the pitch of the spiral.
wuf The fringing capacitance due to the sidewalls can only be ne-
9 glected for narrow conductors with large spacing between them.
fo= p2 5 (5) The fringe term expression assumes that the conductors are in
w2t a medium with the same dielectric constant. The effect of the

i'gcon under the coil has been neglected.

The above expression indicates that the use of thicker met%\f_l_he substrate losses are modeled using the model proposed
h [will he f hich skin eff
In the spiral will reduce the frequency at which skin effects begm n [21] and [6]. The capacitance between the inductor and the

to dominate. Improvements i@ factor at higher frequenmes
o . - substrate(’.,, is expressed as
reduce with increasing coil thickness.
The capacitance due to the crossover of the return conductor 1 1 1 2dey  2deias
under the coil is denoted bg,,,,.. This is computed as the o AT R (8)
. . ox oxd air EqWihm EoWim
parallel plate capacitance between the spiral and the return
conductor. whereC,,q is the capacitance between the bottom metal of the
eqw? spiral and the silicon substrate, that is separated by a distance
Cpov = = (6)  d.,, Cayr is the capacitance between the bottom of the oxide
3 to the etched silicond,:, is the etch depth of the silicon pit.
wheree is the permittivity of the low-K dielectric materiakis  The value ofd., for the inductor in this process is 3;am.
the width of the inductor turn, andl, is the dielectric thickness The slight asymmetry between the two ports due to the presence
between the spiral and the return path. of the return conductor has been neglected. The expression has
The sidewall inter-turn capacitor has been neglected in tb@en corrected for fringing using the expression in [27]
modeling of non-micromachined inductors. The inclusion of The dissipative mechanisms in the inductor include losses in
this term is important to understand the effects of sidewall oxidige silicon substrate below the inductor and in the surrounding
removal on the performance of the micromachined inductorsetal frame. Due to processing constraints, the top metal layer is
The sidewall term consists of two parts, namely the parallebed as amask anditdefinesthe etch pitaround the inductor. Afill
plate component{,, ) directly between the conductors and th@attern is also introduced by the foundry to control metal density
fringing fields between the two conductorS,,). The fringing  for more uniform thickness during the chemical mechanical pol-
field between the inductor turns is a function of the ratio of inshing of the metal. The empty area in the hollow and around the
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Fig.5. (a)—(d) Comparison of the measured quality factor of the inductors from Set A (conventional), Set B (oxide removal), and Set C (micromeakirred)
by conventional @) andLC tank definitions (1. ) of @ for inductors L1-L4.

inductor and inthe lower unused metal layer is an exception to theT his model accounts for the changes in inductor performance
metal fill rule. The eddy currents produced in the silicon domdue to the post process. The effects of oxide removal can be ex-
nate the substrate losses in the non-micromachined inductor caégined by reduction of the’,, term to increase the self-res-
However, the effects from the surrounding metal frame dominateant frequency of the inductor. The increaselip,, due to

the losses in the micromachined inductor. A lumpgdC, sub- silicon etch lowers the substrate capacitafigg, thus reducing
strate model accounts for these dissipative mechanisms.  substrate losses.

C, = w;m Cout ) B. Definition of Quality Factor
9 Several definitions of) have been used to define the quality
R = (10) factor of inductors in the literature [14], [5], [28], depending

Whn Gy on their intended applications. The quality factor defined for
whereC,y, is the capacitance an@.,, is the conductance perinductors used in on-chip planar inductor applications and in
unit area of the substrate. The values#®f,;, andC,,;, are ex- this paper is defined as

tracted from measured results and are function of the inductor Xon(f)

geometry. The etch depth of the silicon directly below is a func- Q) = 5%
tion of the metal mask geometry due to a mass-flow limited etch Ron(f)

process. Small openings in the metal mask experience etch lag;or application of the inductor in ahC tank circuit, the

deten, IS thus a function of the geometry and the layout. Considuality factor definition at the resonant frequency is important.
ering these difficulties]..y, is extracted from experimental dataThe @@ at resonance of ahC tank (@r¢) is calculated by

(11)
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TABLE I
SUMMARY OF INDUCTOR MEASUREMENT DATA

L1 L2 L3 L4
Property

setA | setB | setC | setA | setB | setC | setA | setB | setC | setA | setB | setC

Ly, (nH) 316 | 332 | 3.19 | 3.89 | 395 | 391 | 4.12 4.20 4.15 4.61 4.71 4.69

Q max conv. 439 | 532 | 125 | 402 | 460 | 112 | 3.76 425 | 1046 | 3.64 | 409 | 7.61

@ f(GHz) 175 | 225 | 775 | 145 | 1.85 | 6.50 1.35 1.75 5.72 1.25 175 | 475

R4 (ohms) 345 | 327 | 332 | 426 | 439 | 416 | 470 4.89 4.65 528 | 552 | 521

Q max LC 443 | 5.28 | 25.7 | 3.87 | 452 | 17.0 | 352 4.19 16.0 3.50 | 4.04 10.3

@ f (GHz) 205 | 265 | 137 | 2.15 | 225 | 8.62 1.55 2.15 7.65 1.45 2.15 6.80

fres (GHz) 101 | 11.5 | 140 | 835 | 985 | 129 | 7.15 9.45 12.0 6.65 8.85 | 11.38

diameter(im) 300 336 350 365
width(um) 20 20 20 20
turns 4 4 4 4
pitch (um) 30 30 30 30

assuming that the capacitive contribution to the impedanceneasurements on dummy open and short test structures con-

equal to the inductive contribution and is expressed as nected to test pad structures.
The performance of four inductors L1-4 was compared with
Qre = L i (X(f) measurements made on three chips. The three sets of measure-
2Ry ([) df F="Fres ments are as follows.
fres = flx,.=0 (12) » Set A: Conventional inductors without micromachining

. . were obtained from the foundry.
wheref isthe frequency oftheCtank, andt,,, () isthe real part ¢ Set B: Low-K sidewall oxide removed in areas not covered
andX,,(f)istheimaginary part of the inductor impedance. This metal. [Fig. 1(b)].

expression is evaluated at the resonant frequency &fGhank,
fres» Which is defined as the frequency at which the imaginary
part of the impedance is zero. This method defidext only the metal.
resonantfrequency. Niknejadal.[28] proposed & calculation A comparison of the) of the micromachined inductors calcu-
at any frequency by addition of a perfect capacitor to bring thgieq py the conventional method and by ti@tank definition
resonance to that frequency. This definitioni@measurement i shown in Fig. 5. Table Il summarizes the measurement results
leads to much higher values for micromachined inductors.  gptained from the inductors. All the values@fwere measured
by grounding port 2. The change in quality factor after the side-
wall oxide removal is not significant, however, an increase of
Four octagonalinductors with different sizes, L1-4, and valué4%—-33% in the self-resonant frequency can be seen. The re-
ranging from 3.0to4.5nHwere designed. The metal mask arouthaction of the sidewall oxide capacitance is larger for the bigger
the inductor was 40pm x 450m. Inductor L1 along with the inductor, causing a greater increase in self-resonant frequency.
two-port probe pads are shown in Fig. 4. The surrounding ma&ksmall increase in the maximui was also observed due to
metal has been grounded and is tied to the substrate. To inve$ig increase in the self-resonance frequency.
gate the effect of the micromachining on the performance of theThe silicon removal process step increases the maxium
inductors, measurements were made on unprocessed inductoysabout 100%—-180%. A smaller increase is observed in L4,
after the first step of sidewall oxide removal and after the corthe largest inductor, due to the smaller distance of the inductor
plete processing. All these chips were from the same wafer bafobm the surrounding mask and the fill metal. This suggests that
and were post-processed at the same time. This set of meastiveseparation distance from the sidewall to the inductor should
ment helps to quantify the improvement due to micromachininige made large enough to minimize eddy current losses in the
including oxide removal and silicon etching. mask metal. The self-resonance frequency increased by about
The inductors were measured by making two-port measuf28%—70% over set A, depending on the size of the inductor.
ments by on-chip probing using 106w pitch ground—signal— The larger inductors have a larger increase due to a greater
ground (GSG) microwave probes connected to an HP851@&luction in capacitance to substrate.f). The frequency at
network analyzer with frequencies ranging from 50 MHz tavhich maximunty occurs is moved to the 5-8-GHz range from
20 GHz. Probe calibration was done using a Cascade CS-5 ctile 1-2 GHz range in the case of set A inductors, an increase
bration substrate. The probe pads were de-embedded by makihg80%—350%. Inductor L1 in set C achieves a maximigm

« Set C: The inductors were processed as in Set B followed
by silicon removal [Fig. 1(c)] in all regions not covered by

C. Experiment Design and Measurements
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Fig. 6. (a)—(d) Comparison of the measured quality factor of the inductors from Set A (conventional), Set B (oxide removal), and Set C (micromitichined)
the model predictions for inductors L1-L4.

of 12.5 at 7.8 GHz, a 14-fold increase compared to set A. AtPost-CMOS micromachining represents a solution that re-
5.5 GHz, a five-fold improvement can be seen. duces both the capacitance to substrate and the inter-turn ca-
The measured quality factors are compared to the model, gecitance. The addition of closely spaced copper layers with in-
scribed previously, in Fig. 6. The differences in set A and settBrleaved low-K dielectric offers a high mutual inductance be-
result from a reduction in the sidewall capacitance and a slighieen the parallel layers [29]. This means that use of multilevel
increase G, due to the overetching of the silicon during théayers with CMOS micromachining will reduce series resistance

etching of the oxide. The model for set C is accounted for lyithout significant reduction in inductance, improving overall
the increase in the effective etch depth.,, and the increased performance.

substrate conductivitgrs,. Design of high-quality passives for circuits in the 5-6 GHz
band [30] is possible with micromachining on a standard
CMOS process. The model developed for micromachined
At lower frequencies, the quality factor of the inductors is ndfductor can be used to evaluate the improvemer ifactor

significantly improved by micromachining, as the series resigbtained by increasing the metal thickness. For example, Fig. 7
tance losses dominate the energy loss mechanism. Howeveshaws the improvement i) by increasing metal thickness
higher frequencies, substrate losses begin to dominate anduth and without micromachining for the L1 inductor. Without
improvement in@ is observed. The inductor design was madaicromachining, the change is significant at 1 GHz, but
in the standard digital logic process and the total thicknessatf 5.5 GHz no improvement is gained, as substrate losses
the inductor metal was Am, and yet quality factors of greaterdominate the@ degradation. However, with the additional
than 10 have been achieved. micromachining, the&? does improve at both frequencies. The

IV. DISCUSSION
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Fig. 7. Percentage improvement@hfactor with increase in metal thickness

at 1 GHz and 5.5 GHz for inductor L1, with and without post-process micro-
machining.

(1]
improvement in@) at 5.5 GHz is lower than that at 1 GHz, as
the skin depth limits the improvement 6} with increasing
frequency. The quality factor of the micromachined inductor
is predicted to be limited by the dc series resistance for metal3]
thicknesses below gm. Above this thickness, the inductance

. X ) [4]
change with thickness must be included for best accuracy.
Qualitatively, for thicker metal layers, the series resistance
becomes limited by skin effects, the inter-turn capacitance[
increases and the self-resonance is lowered. All of these effects
conspire to limit theQ. From Fig. 7, the thickness limit is [6]
estimated at about 160m, and conservatively at sm.

Substrate coupling is an important consideration in design
of RF analog circuits placed close to digital circuits. Design of [7]
deep trenches in the silicon separating the analog block from
the digital block is an interesting application of this technology
to reduce substrate coupling. This is easily implemented by[8]
designing a moat around critical circuit blocks. The removal
of substrate also improves the performance of metal—insu{9]
lator-metal (MIM) capacitors as the parasitic capacitance to
substrate is reduced. The use of multiple metal layers shuntegb;
together can help reduce the resistance of the MIM structure.

The use of top metal as a mask is not very convenient a8
this layer cannot be used freely for circuit interconnect. The top
metal also introduces increased interconnect parasitics. An extra
noncritical masking step to protect the circuits from post-CMOS§ 5
micromachining can be included to free the top metal for inter-
connects, however, this step was not feasible to implement on
the die-level prototype. [13]

(2]

V. CONCLUSIONS

Post-CMOS micromachining improves the performance[l‘”
of CMOS inductors, as validated through experimental mea-
surements. A physics-based model based on earlier literatul®]
predicts the improvement in performance obtained by micro-
machining. The&? factor of conventional on-chip inductors at
higher frequencies is limited by substrate losses and remové&i6l
of silicon reduces these losses by 100% to 180%. Reduction
of the inter-turn capacitance through dielectric removal and of
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the capacitance to substrate through silicon undercut increases
the self-resonance by 40%-70%. Micromachined indu€or

| is limited by series resistance up to thicknesses of abguh 6
Post-CMOS micromachining is an option to leverage the ever-in-
1 creasing performance of active components with high-quality
passives in higher frequency wireless communications.
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