
Damping in CMOS-MEMS Resonators

by

Jay Brotz

Master’s Project Report

in

Electrical & Computer Engineering

at

Carnegie Mellon University

Advisor: Professor Gary Fedder

Second Reader: Dr. Tamal Mukherjee

June, 2004



Abstract
This research examines the energy loss in micromechanical resonators fabricated in a 

CMOS-MEMS process. Characterization and understanding of energy loss is a first 

step to optimal design in MEMS mixer and filter applications. The known energy loss 

mechanisms for micromechanical resonators - air damping, acoustic anchor loss, ther-

moelastic damping, and internal friction - are discussed. Theory is given to support 

expected levels of damping for air damping and thermoelastic damping; design meth-

ods to reduce energy loss are discussed for acoustic anchor loss. Squeeze-film and 

Stoke’s damping in electrostatic gap resonators are analyzed over varying pressure. A 

tuning fork method and a quarter-wavelength method for reducing acoustic anchor 

loss are given. Cantilever and fixed-fixed resonator topologies are designed in order 

to test for air damping and acoustic anchor loss. Air damping theory matches the mea-

sured data from 10 µTorr to atmospheric pressure with 25%-69% error. The quality 

factor becomes fixed in value for pressures below about 500 mTorr. The cantilever 

tuning fork shows a decrease in damping by 67% over a single cantilever and the 

fixed-fixed tuning fork by 73% over a single fixed-fixed beam. The free-free beam 

provided a minimal decrease in damping. Thermoelastic damping is theoretically 

shown to be negligible for beam widths smaller than 5 µm, and internal friction is 

believed to be negligible as well, although it has not been quantifiable to this point. 
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Current RF receiver systems, such as in cellular phones, use large, off-chip capacitors, 

inductors, and crystal or SAW oscillators to filter incoming signals. These compo-

nents limit the miniaturization of portable devices and increase the cost of manufac-

turing due to parts assembly and packaging. Complimentary metal-oxide-silicon 

microelectromechanical systems (CMOS-MEMS) have the opportunity to create the 

next generation in miniaturized, inexpensive integrated RF filters. A CMOS-MEMS 

bandpass filter, based on micromechanical resonators that are on the same substrate as 

the receiver circuitry, is much smaller and more easily integrable, allowing cheaper, 

smaller portable wireless devices. 

Micromechanical resonators can be used as a filtering element in electronics because 

of their vibrational transfer function. When a vibrating beam is underdamped, it will 

displace much more at its natural frequency than at any other frequency, giving rise to 

a resonant peak. The resonant peak in the transfer function of a microresonator leads 

to its use as a filter or a mixer-filter [1-2] in-line with electronics for electrostatic 

actuation and capacitive sensing. To be a part of an effective filter in an electronic 

1 Introduction



 

system, microresonators must display certain features such as high out-of-band rejec-

tion and steep rolloff, which depend on cyclic energy loss. A useful metric of this 

energy loss is quality factor, which is the stored energy of a resonator divided by the 

energy loss per cycle. A high quality factor will not only reduce the attenuation but 

also improve the shape of the filter’s transfer function. This thesis explores quality 

factor for microresonators made in the CMOS-MEMS process.

A bandpass filter of variable width is created by cascading multiple resonators with 

“soft” coupling springs. These can be mechanical [3] or electrostatic springs [4]. The 

rolloff of the bandpass filter increases with the number of cascaded resonators, and 

the stopband rejection increases with resonator quality factor. Thus, studying the 

quality factor of microresonators helps in understanding how to design good bandpass 

filters and identifying the limits of performance for a given process technology. 

The known sources of energy loss in micromechanical beam resonators are air damp-

ing, acoustic loss through the anchor, thermoelastic damping, and internal friction. 

Each loss mechanism is independent of the others and may contain several terms due 

to distinct underlying physical mechanisms. This study compares and contrasts a core 

set of resonator designs fabricated in the CMOS-MEMS process to devices previ-

ously discussed in the literature.

Any communications system that combines MEMS with electronics must connect the 

two. A single chip containing both is the least expensive and smallest solution. Not 
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only is the need to wirebond two chips avoided, parasitics are reduced and the ability 

to array mechanical components with circuitry is created. The CMOS-MEMS process 

developed at Carnegie Mellon’s MEMS Laboratory is an approach that combines cir-

cuit integration with simple microstructural fabrication steps [5]. The mechanical 

components and circuitry are designed within the CMOS layers. The MEMS compo-

nents are made from the metal interconnect layers and the oxide dielectric layers. The 

top interconnect metal layer is used as an etch stop to protect the circuitry as well as a 

top ground plane, which shields the circuitry from radiative interference. After the 

chips are received from the foundry, release of the moving parts results in the cross-

section shown in Figure 1.1. The dielectric is left exposed in places where a gap is 

intended. A vertical oxide etch removes the overglass and exposed dielectric, expos-

ing the silicon to be etched. A deep reactive ion etch (DRIE) followed by an isotropic 

silicon etch is then performed to undercut structures surrounded by exposed silicon. 

This process has some drawbacks. CMOS processes use stacks of aluminum and sili-

con dioxide, and so will have greater internal losses than polysilicon or single-crystal 

silicon. CMOS design rules prevent designing widths and gaps below about 0.5 µm. 

Full custom processes for RF MEMS passive devices have achieved 100 nm gaps [6]. 

Yet CMOS-MEMS also has serious advantages in the ability to easily integrate 

MEMS with circuitry and route interconnects within the mechanical structures. For 
3



 

filtering applications, the advantages may outweigh the drawbacks, and so it is being 

explored for that application.

Electromechanical filters have existed in some capacity since the 1940s [7]. These fil-

ters were constructed of metal plates or cylinders several centimeters in size and were 

coupled with wires. Variations of this have been used up to the present for filtering in 

the acoustic range and for telephone system single-channel filtering [8]. When analog 

integrated circuits became sophisticated enough, low-frequency filtering shifted to 

chips due to size advantage, reliability, and power consumption. Mechanical filters 

were still used for higher frequency applications and when a very narrow bandwidth 

and excellent aging properties were necessary. One of the first attempts to fabricate a 

FIGURE 1.1  CMOS-MEMS process
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thin-film mechanical resonator resulted in the resonant gate transistor pioneered by 

Westinghouse Research and Development Center in 1967 [9]. Due to poor perfor-

mance, the resonant gate transistor was not developed further, but in the 1980s, with 

significant advances in thin-film materials and micromachining techniques, microres-

onator research began its modern era [10-14]. 

This thesis is organized by first presenting the theory of energy loss mechanisms and 

resonator design in Chapter 2. Chapter 3 provides details about the experimental test-

bed and measured results. The comparisons between theory and results are discussed 

and other conclusions are made in Chapter 4.
5



 

Each of the known energy loss mechanisms - air damping, acoustic anchor loss, ther-

moelastic damping, and internal friction - are discussed in this chapter. Analysis of 

the energy loss mechanisms facilitates design decisions for high-Q resonators. Ana-

lytical expressions for the quality factor due to squeeze-film damping, Stoke’s damp-

ing, and thermoelastic damping are given. Methods to reduce acoustic anchor loss are 

discussed, and internal friction is discussed. The next chapter describes the design of 

resonators created to test these energy loss sources.

Quality factor is an expression of the cyclic energy loss in an oscillating system. In 

terms of energy, it is expressed as the total energy stored the system divided by the 

energy loss per cycle,

. (2.1)

The investigation of resonator quality factor begins with the analysis of a mass-

spring-damper system. In the simplest form, the force balance equation is

(2.2)

2 Theory of Energy
Loss

Q
Utotal

∆Uloss
----------------=

mx·· bx· kx+ + F=



 

where m is mass, b is damping coefficient, k is stiffness, x is displacement, and F is an 

applied external force. When analyzing free resonance, F is set equal to zero. By nor-

malizing the equation by m, (2.2) can also be written as 

(2.3)

where 

(2.4)

and

. (2.5)

ζ is the damping factor and ω0 is the resonant frequency. The m used in (2.2) through 

(2.5) is a lumped paramter, and in order to use these equations with a continuous 

beam, effective mass, meff, must be used (see Appendix A). When ζ is less than one, 

the system is underdamped and the damping factor is approximately related to the 

quality factor by

(2.6)

An underdamped system will have a resonant peak in its transfer function that 

increases in amplitude with greater quality factor and smaller damping factor. The 

quality factor is measured experimentally by the approximation 

x·· 2ζω0x· ω0
2x+ + F

m
----=

ζ b
2mω0
--------------=

ω0
k
m
----=

Q 1
2ζ
------=
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, (2.7)

where fc is the center frequency of the peak, usually referred to as the damped reso-

nant frequency, and BW3dB is the half-power, or 3dB, bandwidth of the measured 

peak.

This analysis assumes the damping coefficient, b, being proportional to velocity. This 

is not necessarily the case with all damping mechanisms, as b can be a nonlinear func-

tion of velocity in the large-displacement case. The analysis of damping mechanisms 

in this thesis will assume small displacement. 

Energy loss in resonators occurs in the form of many distinct mechanisms. The 

known sources of dynamic damping in CMOS-MEMS resonators are air damping, 

acoustic damping through the anchor, internal friction, thermoelastic damping, and 

coupling between vibrational modes. The first four will be discussed in this thesis. 

Since energy loss sources add directly for total energy loss, individual quality factors 

add reciprocally for total quality factor, i.e.,

. (2.8)

Q
fc

BW3dB
----------------≈

1
Qtot
--------- 1

Q1
------ 1

Q2
------ … 1

Qn
------+ + +=
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2.1 Air damping
2.1  Air damping
Air damping has a few manifestations. A body that travels through a fluid collides 

with the molecules of that fluid and transmits some of its energy to those molecules. 

This impingement causes viscous damping by displacing some of the fluid around the 

body, commonly referred to as viscous drag, and acoustic radiation by exciting the 

fluid in a perpendicular direction to the motion. The fluid adjacent to a surface paral-

lel to the direction of motion can cause energy loss by Stoke’s damping. One common 

situation in micromechanical systems is a body moving near a stationary body or sur-

face. A parallel motion of this body produces Couette damping by the fluid in the gap, 

and a perpendicular motion of this body produces squeeze-film damping. The energy 

loss due to squeeze-film damping dominates when it exists, as in the case of capaci-

tively driven and sensed MEMS [15-19]. 

As a plate moves perpendicularly toward a parallel plate a small distance away, it 

forces air to be pushed out of the gap, causing a damping force, and compresses the 

air in the gap, causing a spring force. Both forces are calculated by solving the Rey-

nolds equation with a number of assumptions and boundary conditions [20]. 

The Reynolds equation,

, (2.9)12η Ph( )∂
t∂

-------------- h3P P∇( )∇•=
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2.1 Air damping
relates time-dependent pressure, P, to the viscosity of the fluid, η, and the distance, h, 

between the plates for the squeeze-film case. This equation is valid as long as some 

assumptions are made: the gap, h, is much smaller than the width or length of the 

plates, there is no pressure gradient from plate to plate, the gas is ideal, and the system 

is isothermal. In addition, (2.9) assumes the Reynolds number,

, (2.10)

is much less than 1, where ρ and η are the density and viscosity of the fluid, respec-

tively, U is a characteristic velocity, and D is a characteristic length. The characteristic 

length and velocity in the case of squeeze-film damping correspond to the velocity of 

the plate and the length of the gap. 

If it is further assumed that the gap is uniform over its entire area and the motion of 

the plate is small compared to the gap, (2.9) can be simplified to

. (2.11)

The pressure function is found by linearizing around an operating point h0 and P0, so 

that 

(2.12)

and

(2.13)

RED
ρUD

η
------------=

Ph( )∂
t∂

-------------- h3

12η
--------- 1

2
--- P2∇2

 
 =

h h0 δh+=

P P0 δP+=
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2.1 Air damping
where δh and δP are much smaller than h and P, respectively. Setting one edge at zero 

on the y-axis, as in Figure 2.1, where W is the smaller dimension and L is the larger 

dimension, the linearized equation is 

(2.14)

where

(2.15)

and

. (2.16)

The solution, utilizing eigenfunctions, to an impulse is

FIGURE 2.1  Squeeze-film dimensions

p̂∂
t∂

-----
h0

2P0

12ηW2-----------------∂2p̂
ξ2∂

-------- h·

h0
-----–=

p̂ δP
P0
------=

ξ y
W
-----=
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2.1 Air damping
. (2.17)

The time-dependent force due to the squeeze-film damping is

(2.18)

which yields

. (2.19)

If the impulse source, z0, is generalized, the Laplace transform yields the transfer 

function form of the force,

, (2.20)

at which point the impulse source can be replaced by a sinusoidal source to produce

. (2.21)

The summation terms diminish rapidly due to the n4 and all but the first term can be 

ignored, yielding

(2.22)

in which the damping constant

p̂
z0

h0
----- 4

nπ
------ nπξsin( )e αnt–

n odd
∑–=

F t( ) P0WL p̂ ξ t,( ) ξd
0

L

∫=

F t( ) P0WL
z0

h0
----- 8

n2π2-----------e αnt–

n odd
∑–=

F s( ) 96ηLW3

π4h0
3---------------------z0

1
n4----- 1

1 s
αn
------+

---------------
n odd
∑=

F s( ) 96ηLW3

π4h0
3---------------------z0

1
n4----- 1

1 s
αn
------+

---------------
n odd
∑ sz s( )=

F s( ) b

1 s
ωc
------+

---------------sz s( )≅
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2.1 Air damping
(2.23)

and the cutoff frequency

. (2.24)

As is shown, the damping force is proportional to the damping constant and the veloc-

ity of motion. A spring force also results from the motion of the plate due to the com-

pression of the gas in the gap. The cutoff frequency specifies the size of the squeeze-

film spring constant as 

(2.25)

and depicts the relative importance of the spring force to the damping force. When the 

frequency of motion is above the cutoff frequency, the spring force will be larger. A 

typical value for the cutoff frequency is 300 MHz. 

At pressures near atmosphere, the viscosity η is not a function of pressure, but when 

the mean-free path of the air is comparable to the size of the squeeze-film gap, a 

dependence is seen [21]. A good and simple approximation of this function is

(2.26)

where 

(2.27)

b 96ηLW3

π4h0
3---------------------=

ωc
π2h0

2P0

12ηW2------------------=

C 1
bωc
---------=

η
ηatm

1 9.638Kn
1.159+

-------------------------------------=

Kn
λ
h0
-----

Pnλn

P0h0
-----------= =
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2.1 Air damping
and λ is the mean-free path of air at the operating pressure, λn is the mean-free path of 

air at a known pressure Pn, and P0, as before, is the operating pressure.

This analysis is accurate for plates that are much larger than the gap. In order to alle-

viate inaccuracies due to a small plate, such as in the resonators described in Chapter 

3, a correction factor produces effective width and length [22]

(2.28)

and

. (2.29)

By combining (2.4) and (2.6) with (2.23), (2.26), and (2.27), we arrive at the equation 

for the quality factor due to squeeze-film damping:

. (2.30)

The quality factor of the TSMC cantilever (see Chapter 3) due to squeeze-film damp-

ing as a function of air pressure is shown as the dotted curve in Figure 2.2. All rele-

vant geometrical values are in Table 3.3.

The surfaces of the resonator that are parallel to the direction of motion also experi-

ence viscous damping in the form of Stoke’s flow [15]. The damping coefficient of 

the drag force caused by the lateral motion is 

, (2.31)

Weff W g 0.8792 0.01w+( )+=

Leff L g 0.8792 0.01L+( )+=

Qsq
1 9.638Kn

1.159+( )π4h0
3meffω0

96ηatmLeffWeff
3----------------------------------------------------------------------=

b A
ω0ρηatm

2
---------------------=
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2.1 Air damping
where A is the area of the top and bottom surfaces of the resonator and ρ is the density 

of air, which is a function of pressure:

, (2.32)

where M is the molar mass of air (28.96 g/mol), R is the ideal gas constant (8.3145 J/

mol-K), and T is the operating temperature. 

Since Stoke’s damping occurs along the entire length of the beam, and the velocity 

varies from the anchor to the end, an effective damping coefficient is needed for the 

FIGURE 2.2  Simulated air damping quality factor for the TSMC cantilever; dotted 
line: contribution from squeeze-film damping, dashed line: contribution from Stoke’s 
damping, solid line: total air damping quality factor

ρ P0
M
RT
-------=
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2.1 Air damping
lumped modeling. In a similar calculation to effective mass (see Appendix A), effec-

tive Stoke’s damping is

(2.33)

and α is defined in (A.14). Combining (2.33) with (2.4) and (2.6), with both effective 

mass and effective damping for m and b, respectively, shows that α cancels out and

. (2.34)

The Stoke’s damping quality factor is then

. (2.35)

The quality factor due to Stoke’s damping is shown in Figure 2.2 along with the 

squeeze-film quality factor and the total air damping quality factor, 

(2.36)

obtained with (2.8). As illustrated by Figure 2.2 and (2.36), Stoke’s damping for the 

TSMC cantilever is small compared to squeeze-film damping for pressures above 100 

Pa.

beff 2αb=

Q
ω0m
2b

-----------=

Qst
m
A
----

ω0RT
2PMηatm
-----------------------=

Qair
1

1
1 9.638Kn

1.159+( )π4h0
3meffω0

96ηatmLW3----------------------------------------------------------------------
---------------------------------------------------------------------- 1

m
A
----

ω0RT
2PMηatm
-----------------------

--------------------------------+
--------------------------------------------------------------------------------------------------------------=
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2.2 Acoustic anchor loss
2.2  Acoustic anchor loss
The second dominant energy loss mechanism is acoustic anchor loss. Every resonator 

is somehow attached to the rest of the chip, and that attachment creates a path for 

radiation of acoustic energy away from the resonator. Sound waves are created when 

the anchor moves, sending an internal pressure wave out to the bulk. These acoustic 

waves can be longitudinal or transverse, depending on the vibrational mode of the 

resonator and anchor attachment. 

Clever design allows the removal of the coupling between the resonator and its 

anchor to reduce this energy loss by reducing anchor motion [3,23-25]. This design is 

exemplified by the keys of a xylophone. When the free bar flexes in the fundamental 

mode, there are two places that have no translational motion – otherwise known as the 

node points. The vibrating elements are suspended not at the ends, but at these node 

points. By simply supporting the bar at those points, motional coupling is minimized; 

thus acoustic radiation is minimized. In addition, higher order modes will have node 

points at different places, which means the supports will dampen out those modes 

quickly. This allows the xylophone to have a sustained, pure tonal sound. A similar 

design can minimize energy loss due to acoustic radiation through the anchor in 

microresonators, although creating a simple support for a micromechanical beam is 

difficult. A perfect simple support has infinitesimally small width and exact position 

at the nodes. With very narrow resonators, it is difficult to make the support beams 
17



2.2 Acoustic anchor loss
much smaller, and the position will have error due to mask bloat, mask misalignment, 

and lithography limits.

A study of acoustic radiation in terms of transmission phenomena also leads to energy 

loss minimization. When the acoustic waves created by the vibration of the resonator 

have a wavelength comparable or smaller than the anchor, the anchor can be modeled 

as an acoustic transmission line [3]. Just as in an electrical system, the acoustic 

impedance of a transmission line can be matched to its load to maximize energy trans-

fer. It can also be designed to minimize energy transfer, as in an open or short circuit 

in the electrical analog. 

A vibrating beam can be modeled as a mechanical transmission line. Whereas in the 

electrical domain, impedance is voltage divided by current, in the mechanical domain 

impedance is defined as force divided by velocity. By deriving the relationship 

between force and velocity of a beam, impedance analysis can be done, as in 

Figure 2.3 for the transverse vibration of a cantilever [26]. By designing the imped-

ance seen looking into the port in Figure 2.3(c) as zero at resonance, the beam’s free 

end has no relationship with the anchor. In other words, assuming the velocity at the 

anchor is zero, no energy loss will occur due to anchor coupling. The impedances in 

Figure 2.3(c) for a cantilever beam are

, (2.37)Za C
αH6 H1+

H3
----------------------- 

 =
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2.2 Acoustic anchor loss
, (2.38)

and

, (2.39)

where

, (2.40)

FIGURE 2.3  Equivalent circuit for bending vibration, (a.) cantilever beam, (b.) two-
port model, (c.) mechanical impedance model

Zb C
αH1 H5–

αH3
----------------------- 

 =

Zc C
H1

H3
------– 

 =

H1 α( ) α( )sinsinh=
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2.2 Acoustic anchor loss
, (2.41)

, (2.42)

, (2.43)

, (2.44)

and

, (2.45)

where L is beam length, ρ is mass density, E is Young’s modulus, w is beam width, h 

is beam thickness, I is the moment of inertia, and ω0 is the angular resonant frequency 

of the resonator.

Substituting (2.40), (2.41), (2.42), (2.43), and (2.44) into (2.37), (2.38), and(2.39), 

and solving for 

(2.46)

the resulting constraint is

. (2.47)

Numerically solving (2.47) for α yields 1.875, corresponding to the fundamental, 

4.694, corresponding to the second mode, and so on. Using the fundamental value 

will allow the shortest coupling beam. Substituting that value into (2.45), along with 

the geometrical and material parameters, yields the beam length required to decouple 

the anchor. A typical laterally-moving beam with width 1 µm, thickness 3.4 µm, 

H3 α( ) α( )coscosh 1–=

H5 α( ) α( )cossinh α( ) α( )sincosh–=

H6 α( ) α( )cossinh α( ) α( )sincosh+=

C j
L
--- ρwhEI=

α4 ρwh
EI

-----------ω0
2L4=

Za Zb Zc||+ 0=

α( ) α( )coscosh 1+ 0=
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2.3 Thermoelastic damping
Young’s modulus 60 GPa, mass density 2400 kg/m3, and supporting a resonator with 

resonant frequency of 1 MHz is designed to be 28.4 µm long to minimize anchor cou-

pling for the cantilever tuning fork topology. This value is commonly referred to as 

the quarter-wavelength due to the fact that it is one-quarter of the wavelength of the 

vibration. 

This vibrational impedance method is generalized to include all end conditions and 

locations of force application for a transversely vibrating bar in [26].

2.3  Thermoelastic damping
When a beam bends, it produces a stress gradient in the direction of the bending, 

which is accompanied by a strain gradient. One side of the beam will be in compres-

sion and the other in tension. Volume changes will exist that are opposite on each side 

of the beam. This volume change will create a difference in temperature. When this 

temperature gradient is created, the body will move back to thermal equilibrium, and 

dissipative heat flow will ensue [27-30]. 

The cyclic energy loss caused by thermoelastic heat flow is a function of the fre-

quency of motion and is avoidable as a dominant contributor to quality factor. The 

thermoelastic damping factor, 

, (2.48)ζ Γ T( )Ω ω( )=
21



2.3 Thermoelastic damping
is broken into two parts: a temperature-dependent part 

(2.49)

and a frequency-dependent part.

(2.50)

where α is the thermal expansion coefficient, E is Young’s modulus, ρ is the density 

of the material, CP is the heat capacity of the material at constant pressure, and ω0 is 

the characteristic thermoelastic damping frequency,

, (2.51)

where κ is thermal conductivity and w is the width of the beam. 

Combining (2.48), (2.49), (2.50), and (2.51) with (2.6), we find the quality factor due 

to thermoelastic damping to be 

. (2.52)

Using the material property values in Table 2.1 [31], the thermoelastic quality factor 

is plotted for constant width and for constant frequency in Figure 2.4 and Figure 2.5 

respectively. Since CMOS-MEMS beams are composed of stacks of aluminum and 

silicon dioxide [5], there will be separate contributions to thermoelastic damping 
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2.3 Thermoelastic damping
from each material. As Figure 2.4 shows, there is a characteristic frequency for ther-

moelastic damping, at which quality factor is at the minimum level. The characteristic 

frequency corresponds to the inverse of the time necessary for an induced thermal 

TABLE 2.1  Thermal and mechanical properties of aluminum and silicon dioxide

Property Al SiO2

α (m/m-K) 24 x 10-6 .4 x 10-6

E (GPa) 68 70

ρ (kg/m3) 2700 2200

CP (J/g-K) .9 .7

κ (W/m-K) 210 1.4

FIGURE 2.4  Thermoelastic quality factor as a function of frequency (w=1µm); solid 
line: silicon dioxide, dashed line: aluminum
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2.3 Thermoelastic damping
gradient to go to equilibrium within the beam. The goal in designing to minimize 

thermoelastic damping is to design away from that characteristic frequency, mainly 

by adjusting the width of the beam. This is easy with small beams in the CMOS-

MEMS process, as the characteristic frequencies for aluminum and silicon dioxide are 

much higher than resonant frequencies that can be designed. Figure 2.5 shows that a 

beam would have to be wider than a few microns for thermoelastic damping to be 

dominant.

The characteristic frequencies for both aluminum and silicon dioxide are much higher 

than the resonant frequencies of the beam resonators studied here. The resulting qual-

FIGURE 2.5  Thermoelastic quality factor as a function of beam width (f=1 MHz); 
solid line: silicon dioxide, dashed line: aluminum
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2.4 Internal losses
ity factors due to thermoelastic damping are much higher than those due to air damp-

ing and anchor acoutic loss in the entire design space of this work, and can be 

neglected.

2.4  Internal losses
The least dominant but ever-present source of energy loss in microresonators is inter-

nal friction [32-36]. This source is the hardest to quantify, since it is dependent on the 

imperfections in the structures of the materials used and is highly dependent on fabri-

cation methods. Internal friction is the dissipation in the form of heat occuring when 

chemical bonds are made and broken. In a single-crystal beam, point defects and dis-

locations are the cause of internal friction. The energy loss due to a single defect or 

dislocation can be modeled and a number of each can be estimated using probabilities 

to compute the overall internal friction. In a polycrystalline material, the dominant 

cause of internal friction is grain boundaries. In an amorphous material, the friction is 

a bulk property, and is greater than the other two cases. In addition, the surface state 

of a material can cause energy loss due to the fact that there are dangling bonds at the 

edge of a crystal . Composite materials also have energy loss at the boundary between 

two layers. 
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This chapter describes the devices created to experimentally verify energy loss mech-

anisms. Resonators are designed to test the air damping theory from the previous 

chapter, and to demonstrate a reduction in anchor loss by tuning fork and quarter-

wavelength anchor design methods. The next chapter discusses the system and meth-

ods of testing, as well as the results obtained.

The resonators studied are simple beams with electrostatic actuation and capacitive 

sensing. The input and output electrodes are approximated by parallel plate capaci-

tors, for which the capacitance is accurate for motion that is small relative to the gap 

size. Several resonators, with different topologies and sizes, are designed on a test 

chips with interfacing circuitry and wire-bond pads. The basic topologies are the can-

tilever, or fixed-free beam, and the fixed-fixed beam. In the design for better quality 

factor, the tuning fork and the free-free beam are explored. Further design discussion 

focuses on gain, which is related to capacitive sensitivity. 

3 Resonator Design



3.1 Chip Design
3.1  Chip Design
The CMOS-MEMS process used here allows the layout of many devices on a single 

chip. Most of the devices on any chip that is entirely composed of test resonators do 

not work for many design and fabrication reasons. But a low yield on a chip with 

many devices still produces a few testable resonators, which are described in this 

chapter. 

The two chips studied here were fabricated in the TSMC 0.35 µm 4-metal process 

[37] and the Jazz SiGe 0.35 µm 4-metal process [38]. The chips are shown in Figures 

3.1 and 3.2. Both chips include differential pairs of resonators with differential ampli-

fiers, which are discussed in Chapter 4. 

The TSMC chip has a single row of resonators with bond pads for drive signal, differ-

ential DC biases, a local oscillator for devices with split-electrode beams, a power 

supply and current bias for the amplifier, and two differential outputs. All pads except 

the outputs are in groups and connect to three differential resonator pairs. Table 3.1 

lists the resonators on the TSMC chip. Only one device, a cantilever (number 6) is 
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3.1 Chip Design
studied here. The square mentioned in the table is used to reduce direct feedthrough 

and will be explained later. 

The Jazz chip has two rows of resonators, each with two output pads. All other pads 

are connected to each of the resonator pairs on the chip. Table 3.2 lists the resonators 

on the Jazz chip. Five devices on this chip are studied: the cantilever (number 13), the 

FIGURE 3.1  TSMC test chip “actuators77a” (a.) layout (b.) optical microscope image

(a.)

(b.)
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3.1 Chip Design
FIGURE 3.2  Jazz test chip “jz60_002” (a.) layout (b.) optical microscope image

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23

(a.)

(b.)
Edge of taped region
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3.1 Chip Design
TABLE 3.1  Resonators on the TSMC chip (numbers are shown in Figure 3.1)

# Length Width Resonator Description Number 
of Metal 
Layers

1 119 µm 1 µm fixed-fixed beam, no square 2
2 119 µm 1 µm fixed-fixed beam, no square 3
3 129 µm 1 µm cantilever with square 2
4 122 µm 1 µm fixed-fixed beam with square 2
5 122 µm 1 µm fixed-fixed beam with square 3
6 32.3 µm 1 µm cantilever with square 2
7 59.3 µm 0.5 µm fixed-fixed beam, no square 1
8 64.9 µm 0.6 µm fixed-fixed beam, no square 3
9 64.9 µm 0.6 µm fixed-fixed beam with square 2
10 64.9 µm 0.6 µm fixed-fixed beam with square 3
11 105.5 µm 0.6 µm cantilever with square 2
12 55.6 µm 0.6 µm fixed-fixed tuning fork, no square 2
13 20.95 µm 0.5 µm fixed-fixed beam, no square 1
14 22.95 µm 0.6 µm fixed-fixed beam, no square 3
15 29 µm 0.6 µm fixed-fixed beam with square 2
16 19 µm 0.6 µm fixed-fixed tuning fork, no square 2
17 55.6 µm 0.6 µm two electrostatically coupled fixed-

fixed tuning forks, no square
2

18 23 µm 0.6 µm two electrostatically coupled fixed-
fixed tuning forks, no square

2
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3.1 Chip Design
fixed-fixed beam (number 1), the cantilever tuning fork (number 18), the fixed fixed 

tuning fork (number 6), and the free-free beam (number 12). The light part in the mid-

dle of the chip has been etched, and the dark part on the outside has not. The chip was 

covered with Kapton tape to mask the parts that did not need to be etched. Having less 

exposed metal may have helped the etching in the small gaps. 

TABLE 3.2  Resonators on the Jazz chip (numbers are shown in Figure 3.2)

# Length Width Resonator Description Number 
of Metal 
Layers

1 27.4 µm 1 µm fixed-fixed beam with square 3
2 27.4 µm 1 µm fixed-fixed beam with square, 

anchor fillets
3

3 - 5 29.4 µm 1 µm fixed-fixed beam on snap-in 
platform (varying final gap 
sizes)

3

6 - 11 27.4 µm 1 µm fixed-fixed tuning fork with 
square (varying anchor 
widths)

3

12 36.6 µm 1.5 µm free-free beam, no square 3
13 11.4 µm 1 µm cantilever with square 3
14 11.4 µm 1 µm cantilever with square, anchor 

fillets
3

15 - 17 29.4 µm 1 µm fixed-fixed beam on snap-in 
platform (varying final gap 
sizes)

3

18 - 20 11.4 µm 1 µm cantilever tuning forks with 
square, quarter-wavelength 
anchor

3

21 - 23 11.4 µm 1 µm cantilever tuning forks with 
square, half-wavelength anchor

3
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3.2 Basic Topologies
3.2  Basic Topologies

3.2.1  Cantilever
The cantilever topology is the simplest in terms of calculation of resonant frequency. 

The first cantilever fabricated, in the TSMC process, is described in Table 3.3 and 

shown in Figure 3.3. The left side gap is for the electrostatic drive and the right side 

gap is for the capacitive motion sensing. 

The square head on the end of the cantilever is designed to reduce direct feedthrough. 

Direct feedthrough (more fully explained in Chapter 4) is created by a capacitive path 

from the input drive electrode to the output sense electrode, and produces a current in 

parallel with the resonator’s motional current. This capacitor, like all others, is large 

when the electrodes are closer together. Therefore, in design it is desirable to separate 

the drive electrode from the sense electrode. The square is a frame rather than a solid 

so that there is a smaller additional mass and the resonant frequency is reduced less. 

The second cantilever, in the Jazz process, is described in Table 3.4 and shown in 

Figure 3.4. The Jazz resonators have stepped sidewalls (see Section 3.5), so that metal 
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3.2 Basic Topologies
3 is 0.4 µm wider than metal 2, which is 0.4 µm wider than metal 1. This “stepping” is 

also done on the static side of the gap. All beam and gap widths given for the Jazz res-

onators are averages of all widths. The gap capacitance is calculated without consid-

ering fringing fields. The derivation of resonant frequency given in the table is in 

Appendix A. 

The TSMC cantilever has a single-conductor beam, which means the DC bias on both 

the input and output gaps are controlled by one source. All Jazz resonators are split-

conductor beams, allowing independent control of the input and output biases. A 

TABLE 3.3  Intended and measured properties of TSMC cantilever

Property Layout Measured Calculated 
from 

Measurements
length 32.3 µm 32.1 µm
width 1 µm 1.35 µm
head length 7 µm 7.36 µm
head width 7 µm 7.36 µm
head beam width 1 µm 1.28 µm
thickness 3.4 µm 3.28 µm
drive gap width 1.5 µm 1.41 µm
sense gap width 1.55 µm 1.19 µm
drive capacitance 53.9 aF 58.7 aF
sense capacitance 52.2 aF 69.5 aF
effective mass 244 pg 306 pg
spring constant 1.11 N/m 2.64 N/m
resonant fre-
quency

340 kHz 510 kHz 467 kHz
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3.2 Basic Topologies
split-conductor beam also improves mixing, as the input side of the beam can have 

only a local oscillator (LO) signal and the output side of the beam can have only a DC 

bias. This situation reduces unwanted frequency components in the output due to 

interactions of the LO on the output gap. 

Due to residual stress gradients in the deposited thin films, released cantilevers will 

curl up. The curl decreases with thickness. The 2 metal layer TSMC cantilever dis-

places about .6 µm at the end, and the 3 metal layer Jazz cantilever displaces about .4 

µm at the end. The stress gradient, and thus the curl, can be reversed or eliminated by 

using different materials, but the CMOS processes discussed here are not flexible. If a 

cantilever resonator is designed with stator electrodes that are not released, the elec-

trodes will not line up vertically, and the capacitance will be severely decreased. To 

FIGURE 3.3  TSMC cantilever (a.) diagram (b.) scanning-electron micrograph

(a.) (b.)
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3.2 Basic Topologies
TABLE 3.4  Intended and measured properties of Jazz cantilever

Property Layout Measured Calculated 
from 

Measurements
length (not 
including head)

11.4 µm 10 µm

width 1 µm 1.3 µm
head length 7 µm 7.4 µm
head width 7 µm 7.3 µm
head beam width 1 µm 1.3 µm
thickness 5.03 µm 4.99 µm
drive gap width 1.2 µm 1.2 µm
sense gap width 1.2 µm 1.2 µm
drive capacitance 118 aF 103 aF
sense capacitance 118 aF 103 aF
effective mass 326 pg 432 pg
spring constant 22.8 N/m 64.0 N/m
resonant fre-
quency

1.33 MHz 2.29 MHz 1.94 MHz

FIGURE 3.4  Jazz cantilever (a.) diagram (b.) scanning-electron micrograph

(a.) (b.)
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3.2 Basic Topologies
fix this problem, curl-matched electrodes, such as in Figures 3.3 and 3.4, are designed 

to curl the same amount as the beam. The amount of curl is a weak function of width, 

so the curl-matched electrodes are composed of several beams of the same width as 

the resonator connected with a few perpendicular beams to make them stiff. Making 

the released electrodes much stiffer than the cantilever is essential to avoid vibration 

of the electrode.

3.2.2  Fixed-fixed beam
The fixed-fixed, or clamped-clamped, beam is stiffer than the cantilever due to 

anchors at both ends. It can be used to make a resonator with a higher resonant fre-

quency without making features too small to be fabricated. The fixed-fixed beam in 

the Jazz process is described in Table 3.5 and shown in Figure 3.5.
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3.2 Basic Topologies
CMOS processes leave residual stress in the metal and oxide layers which must be 

relieved in order to avoid a frequency shift. A cantilever relieves that stress as soon as 

it is released by extending and curling. A fixed-fixed beam can not relieve the stress 

in the same way, so it is designed into a platform, which allows stress relief in the 

direction of the beam length, as shown in Figure 3.5(b). 

TABLE 3.5  Intended and measured properties of Jazz fixed-fixed beam

Property Layout Measured Calculated 
from 

measurements
length (including 
head)

27.4 µm 25.7 µm

width 1 µm 1.3 µm
head length 7 µm 7.6 µm
head width 7 µm 7.6 µm
head beam width 1 µm 1.3 µm
thickness 5.03 µm 4.99 µm
drive gap width 1.2 µm 1 µm
sense gap width 1.2 µm 1 µm
drive capacitance 118 aF 127 aF
sense capacitance 118 aF 127 aF
effective mass 347 pg 468 pg
spring constant 235 N/m 285 N/m
resonant fre-
quency

4.13 MHz 1.57 MHz 6.19 MHz
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3.3 Design for Resonant Frequency
3.3  Design for Resonant Frequency
From (2.3) and (2.4), the resonant frequency for a second-order mechanical system is

, (3.1)

where k is mechanical stiffness and m is mass. A stiffer beam will have a higher reso-

nant frequency, and a more massive beam will have a lower resonant frequency. Usu-

ally, k and m are dependent on some of the same geometric variables, so this ratio 

simplifies. For instance, in the case of a laterally-moving cantilever, 

(3.2)

FIGURE 3.5  Jazz fixed-fixed beam (a.) diagram (b.) scanning-electron micrograph

(a.) (b.)
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3.4 Design for Better Quality Factor
and

, (3.3)

where E is Young’s modulus, h is thickness, w is width, L is length, ρ is mass density, 

and α is an effective mass factor (see Appendix A). The scaling of resonant frequency 

is

. (3.4)

Young’s modulus and density are functions of the materials used and not alterable in 

the CMOS-MEMS process. Thus, in this example, resonant frequency is directly pro-

portional to width and inversely proportional to the square of the length. As shown in 

Appendix A, the only geometrical variable that α is dependent on is L. The design of 

resonant frequency, after the process is set, comes down to two geometric variables. 

3.4  Design for Better Quality Factor

3.4.1  Minimization of anchor loss
As stated in Chapter 2, loss through the anchor is due to vibrational coupling from the 

resonator to the bulk to which it is attached. To reduce this coupling, a tuning fork 

topology can be used to separate the resonator from the anchor by a coupling beam 

m αρwhL=

fr
1

2π
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4αρ
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3.4 Design for Better Quality Factor
which does not vibrate. In addition, a quarter-wavelength coupling beam can reflect 

the energy back into the resonator. 

Tuning fork.  A tuning fork resonator is composed of two identical resonator beams 

connected at their bases by a cross-beam which is connected to the substrate by an 

anchor beam. Figures 3.6 and 3.7 show cantilever and fixed-fixed tuning forks, 

respectively, with the dimensions given in Table 3.4 and Table 3.5. The tuning fork is 

driven antisymmetrically, which ideally causes the motion at the base to cancel out. 

Since the anchor beam is attached at the base, it will not move, thus there is no anchor 

coupling. However, any mass imbalance caused by imperfect fabrication will cause 

coupling. 

FIGURE 3.6  Jazz cantilever tuning fork (a.) diagram (b.) scanning-electron 
micrograph

(a.) (b.)
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3.4 Design for Better Quality Factor
The tuning fork structure is essentially two symmetrical crab-leg resonators, which 

has a different resonant frequency than the single cantilever. The spring constant for a 

crab-leg resonator with a cantilevered end, kcl, is [39]

, (3.5)

where La, Lb, wa, and wb are indicated in Figure 3.6(a). The effective mass (see 

Appendix A) is

, (3.6)

where ma and mb are the mass of the section of length La and Lb, respectively. The res-

onant frequency, utilizing (2.5), is therefore

. (3.7)

FIGURE 3.7  Jazz fixed-fixed tuning fork
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3.4 Design for Better Quality Factor
The effect of the width of the cross-beam is seen when the actual dimensions of the 

cantilever tuning fork are substituted in (3.7) and wb is varied. Using the dimensions 

of Table 3.4 for La, wa, and thickness for the masses, and 5.7 µm for the designed 

dimension of Lb, the resonant frequency as a function of wb is shown in Figure 3.8. 

Note that in the figure, as the width approaches the size of the length of the cross-

beam, the curve starts to descend slightly. This is because the beam theory used is no 

longer valid. The exact curve asymptotically reaches the value of the frequency of a 

single cantilever as the cross-beam approaches the shape of the bulk. The designed 

FIGURE 3.8  Resonant frequency of cantilever tuning fork with respect to width of the 
cross-beam
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3.4 Design for Better Quality Factor
cross-beam width of 1 µm produces a resonant frequency of 859 kHz. Designing it 

wider would increase the frequency close to that of a single cantilever. 

Quarter-wavelength anchor beam.  As derived in Chapter 2, a coupling beam whose 

length is one quarter of the wavelength of vibration provides zero reaction force at 

resonance. This effectively isolates the resonator from the substrate. The cantilever 

tuning fork in Figure 3.6 incorporates a quarter-wavelength coupling beam, which is 

23.8 µm long and designed for a resonant frequency of 1.43 MHz. This is a design 

error, as the calculated resonant frequency with designed geometrical parameters of 

the Jazz cantilever is 1.33 MHz (Table 3.4).

Free-free beam.  If a simple beam could be suspended in space without tethers, it 

would have no anchor coupling, and therefore no energy loss due to an anchor. While 

this can not be done, it can be approximated closely with a free-free beam. The funda-

mental mode shape of an untethered beam has two points that do not displace from 

the original position. Coupling beams that are attached at these points hold the reso-

nator in place, while minimizing anchor coupling. These beams will still rotate at the 

point of attachment to the resonator so some coupling will still occur, which can itself 

be minimized with the quarter-wavelength method, producing an achor beam that is 

28.3 µm long. A free-free beam in the Jazz process is described in Table 3.6 and 

shown in Figure 3.9.
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3.5 Design for Gain and Fabrication Issues
The measured resonant frequency of the free-free beam is much lower than the 

expected frequency. This could be due to compressive stress caused by the anchor 

beams. 

3.5  Design for Gain and Fabrication Issues
The gain of the filter incorporating resonators is

TABLE 3.6  Intended and measured properties of Jazz free-free beam

Property Layout Measured Calculated 
from 

measurements
length 36.6 µm 37.8 µm
width 1.5 µm 1.8 µm
thickness 5.03 µm 4.99 µm
coupling beam 
length

12.2 µm 11.5 µm

coupling beam 
width

1.3 µm 1.4 µm

coupling beam 
position from end 
of resonator (to 
center)

8.2 µm 8.6 µm

drive gap width 1.2 µm .9 µm
sense gap width 1.2 µm .8 µm
drive capacitance 118 aF 130 aF
sense capacitance 118 aF 146 aF
resonant fre-
quency

5.76 MHz 870 kHz 6.47 MHz
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3.5 Design for Gain and Fabrication Issues
, (3.8)

where A is the voltage gain of the external amplifier, H is the transresistance gain of 

the on-chip amplifier, which is inversely proportional to frequency, Q is the quality 

factor, VDCdrive and VDCsense are the DC biases applied to the drive and sense gaps, 

respectively, k is spring constant, and dC/dx is the capacitive sensitivity. (3.8) 

assumes that the drive and sense gaps are the same size. When the capacitor com-

prised of the beam and the stator electrode is approximated as parallel-plate, the 

capacitive sensitivity is 

(3.9)

which, in the small-motion approximation, is

FIGURE 3.9  Jazz free-free beam (a.) diagram (b.) scanning-electron micrograph

(a.) (b.)
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3.5 Design for Gain and Fabrication Issues
, (3.10)

where ε is the dielectric constant of air, A is the area of the capacitor, and g is the size 

of the gap. The two ways to increase capacitive sensitivity are increasing the capaci-

tive area, and decreasing the size of the gap. For laterally-moving beams, increasing 

the area means making a thicker beam, which is limited in the CMOS-MEMS process 

to a few discrete levels, or increasing the length of the electrode, which is limited by 

the size of the beam. Decreasing the gap is limited by design rules of the CMOS pro-

cess, and futher by the limits of the post-process etches. In practice, a minimum etch-

able gap size is found and that value is used in all designs, though decreasing the gap 

remains an area of research. The smallest gap that has been successfully etched 

repeatably is 1 µm with straight sidewalls, though a 0.8 µm gap at metal 1, which 

increases by 0.4 µm for metal 2 and again for metal 3 (the gaps for the Jazz resona-

tors, see Figure 3.10), has etched successfully in some instances. Influences in etch-

ing success may include amount of the top metal exposed on the chip being etched 

and the proximity of the top metal to the gap. 

To alleviate fabrication problems for small gaps, two methods have been devised: 

stepping metal layers on sidewalls and creating a actuated snap-in electrode. Stepping 

back each higher metal layer on a gap edge potentially makes it easier for a vertically 

anisotropic etch to proceed (Figure 3.10(c.)). The reverse pyramid shape may provide 

better delivery of reactant species and removal of waste species during the etch. In 

∂C
∂x
------- εA

g2------=
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3.5 Design for Gain and Fabrication Issues
addition, this configuration diminishes the effect of misalignment, as shown in 

Figure 3.10. Shown is a lateral misalignment of 10% of the width of the beam of the 

top two metal layers, in opposite directions. The straight-sidewall beam increases in 

mass by 13% and the center of mass shifts by 5%. The stepped-sidewall beam 

increases only 2.8% in mass and the center of mass moves by only 1.4%. 

The snap-in electrode allows an initially large gap to be etched easily. Then when the 

beam’s DC bias is applied, the platform that the beam is attached to snaps to a posi-

tion that leaves a small gap [40]. The platform containing the beam is spring-

mounted, and the snap-in force is increased by long plates that increase the area of the 

snap-in capacitor. Figure 3.11 shows the snap-in resonator. 

FIGURE 3.10  Effect of mask misalignment on CMOS-MEMS beam: (a.) designed 
straight-sidewall beam; (b.) mask misalignment of (a.); (c.) designed stepped-
sidewall beam; (d.) misalignment of (c.)

(a.) (b.) (c.) (d.)
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3.5 Design for Gain and Fabrication Issues
Some beams have been impossible to release due to overly optimistic designed gap 

sizes and top metal too close to the gap. The silicon dioxide etch coats the sidewalls 

with a polymer to facilitate vertical etching. If this polymer is too thick, it coats the 

entire gap and etching stops. To test these beams, the gap was etched out using a 

focused ion beam (FIB). Before and after SEMs of this microsurgery process are 

shown in Figure 3.12. 

FIGURE 3.11  Fixed-fixed beam with snap-in electrode 
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FIGURE 3.12  Microsurgery gap clearing (a.) Before FIB (b.) After FIB

(a.) (b.)
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4.1 On-Chip Amplifier Design
 

In order to test the theories of energy loss, the resonators described in Chapter 3 were 

placed in a vacuum testing system. The on-chip amplifier output was routed to an off-

chip interface circuit and the resulting signals were sent to a network analyzer. This 

chapter describes the system that was devised to test the resonators and details the 

results from those tests.

4.1  On-Chip Amplifier Design
An interface circuit is designed on the same chip as the microresonators. The primary 

advantage of the CMOS-MEMS process is this ability to integrate MEMS with inter-

face circuitry. All of the described devices use the same circuit topology, although the 

TSMC and the Jazz amplifiers have different transistor sizes and different gains. 

The fully differential amplifier, shown in Figure 4.1, includes a transistor connecting 

the gate to the drain of each input transistor, which is normally biased in the cutoff 

4 Testing and Results
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4.1 On-Chip Amplifier Design
region [41]. This transistor sets the input voltage bias, which is necessary as the inputs 

are connected only to the high-impedance capactive sense nodes. The amplifier is 

used to convert a motional current to a voltage. This design uses the parasitic capaci-

tance to ground, Cp, to convert the current to voltage, which is then amplified 

(Figure 4.2).

Table  shows the characteristics of the TSMC and Jazz amplifiers determined with 

Spectre simulations. Table 4.2 lists the transistor sizes of both amplifiers. The TSMC 

FIGURE 4.1  Fully differential on-chip amplifier
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4.1 On-Chip Amplifier Design
and Jazz amplifiers have the same topology, but the Jazz amplifier has been sized for 

higher gain. 

FIGURE 4.2  Differential test system

TABLE 4.1  Characteristics of the TSMC and Jazz on-chip amplifiers

Characteristic TSMC Amplifier Jazz Amplifier
voltage supply 5 V to GND 3.3 V to GND
voltage gain (vout1-
vout2)/(vx1-vx2)

73.4 137

voltage bandwidth 2.1 MHz 10.5 MHz
transimpedance 
gain (vout1-vout2)/
(iin1-iin2) @ 500 kHz

38.0 MΩ 386 MΩ

transimpedance 
bandwidth

21 MHz 10.5 MHz
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4.1 On-Chip Amplifier Design
Each device is designed as an identical pair of resonators as shown in Figure 4.2. By 

applying the same signal, vRF, to the drive electrode, the same feedthrough current 

appears at the input of the differential amplifier as common-mode and is rejected. 

Driving each resonator with the same drive signal and using opposite DC biases on 

the beam creates differential motional currents. However, it is impossible to fabricate 

two resonators with exactly the same resonant frequency, and the difference causes 

TABLE 4.2  Transistor sizes for the TSMC and Jazz amplifiers (sizes are given as 
transistor width / transistor length, in µm)

Transistor Type TSMC Jazz
M1 N 18/.9 400/.8
M2 N 18/.9 400/.8
M3 N 36/.9 240/.8
M4 N 36/.9 240/.8
M5 N 24/.9 64/.8
M6 N 3/2.7 3/2.7
M7 N 3/2.7 3/2.7
M8 N 40/1.2 16/.8
M9 N 36/.9 32/.8
M10 N 40/1.2 16/.8
M11 N 36/.9 32/.8
M12 P 15/1.2 144/1
M13 P 15/1.2 144/1
M14 N 24/.9 24/.8
M15 N 24/.9 16/.8
M16 N 18/.9 16/.8
M17 N 36/.9 32/.8
M18 P 30/1.2 64/1
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4.2 Testbed
two peaks that blend together rather than a well-defined single peak. In order to accu-

rately measure quality factor, only one resonator is biased, with VDC, and the other 

grounded. This produces half the output amplitude from the amplifier, but allows a 

single well-defined peak. 

4.2  Testbed
In order to test the resonators for frequency response, a system was built which 

includes the released chip along with an external amplifier, interfaces to the instru-

Characteristics of the TSMC and Jazz on-chip amplifiers

Characteristic TSMC Amplifier Jazz Amplifier
voltage supply 5 V to GND 3.3 V to GND
voltage gain (vout1-
vout2)/(vx1-vx2)

73.4 137

voltage bandwidth 2.1 MHz 10.5 MHz
transimpedance 
gain (vout1-vout2)/
(iin1-iin2) @ 500 kHz

38.0 MΩ 386 MΩ

transimpedance 
bandwidth

21 MHz 10.5 MHz
52



4.2 Testbed
mentation, and a vacuum system which provides not only controlled air pressure, but 

also a shield from interference. A diagram of the system is shown in Figure 4.3. 

Initial tests were done by wirebonding the chip in a 40-pin dual in-line package (DIP) 

placed on a breadboard. Due to large amounts of feedthrough caused by the capaci-

tance between leads on the breadboard, a printed circuit board (PCB) was designed 

(Figure 4.4). Each MEMS chip tested was secured with double-sided tape and wireb-

onded on a dedicated board. This board connected to other boards and equipment 

FIGURE 4.3  Diagram of test system
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4.2 Testbed
with coaxial cable BNC jacks for the signal lines and a DB25 connector for the DC 

lines. It also included a resistor between the VDD power supply line and the IBIAS line 

to set the current bias into the amplifier. This resistor is 15 kΩ for the TSMC chip, 

which supplies about 333 µA. The amplifiers on the Jazz chip are all connected to one 

IBIAS pad, so the resistor chosen was 625 Ω, which supplies 220 µA to each of 24 cir-

cuits. In addition, 10 µF bypass capacitors from the VDD and IBIAS lines to ground 

shunt high-frequency noise. 

An external amplifier, Figure 4.5, is used to amplify the signal further for testing. This 

large-bandwidth, low-noise amplifier is a LMH6624 from National Semiconductor. It 

is surface-mount soldered on a custom-made printed circuit board along with the 

FIGURE 4.4  Photograph of MEMS PCB

Power supply
vRF VDC

vOUT1 vOUT2
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4.2 Testbed
input and feedback resistors, as well as BNC connectors for the signal lines and a 

DB9 for the power supply lines. R1 and R2 are 10 kΩ, R3 and R4 are 240 kΩ, C1 and 

C2 are 1 nF, C20 and C21 are 1 µF, C3 is left open and C4 is shorted.

FIGURE 4.5  External amplifier PCB (a.) schematic (b.) photograph

(a.)

(b.)

Power 

Supply

vOUT1

vOUT2

vOUT
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4.3 Measured Transfer Functions
The vacuum system, Figure 4.6(a), is a custom-made metal box connected to a rough-

ing pump. It has coaxial cable throughputs for interfacing signal lines and a DB25 

cable throughput for interfacing DC and low-frequency signal lines. The cables from 

the vacuum system go directly to the network analyzer, DC bias source, and power 

supply source (Figure 4.6(b)). 

4.3  Measured Transfer Functions
The network analyzer is used to obtain a dataset in a small range of frequencies 

around the visible peak. The direct feedthrough is measured by setting the DC bias on 

the output side of the beam to be the same as the bias on the input node to the circuit. 

FIGURE 4.6  Testing system (a.) vacuum chamber (b.) test equipment

(a.) (b.)
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4.3 Measured Transfer Functions
57

This will produce a voltage of zero across the gap and no motional current will be 

detected by the circuit. This voltage has been experimentally found to be about 1.3 V 

for the Jazz amplifier. In a spreadsheet program, the feedthrough is subtracted from 

the raw data, yielding a curve corresponding to the motional signal, and the center fre-

quency and 3 dB points are found. The quality factor of each resonator is then calcu-

lated from (2.7). For cases in which the motional signal and the feedthrough signal are 

similar in magnitude, the sum does not produce a symmetrical peak, due to phase 

interactions. The complex magnitude of both the raw data and the feedthrough are 

saved as in Figure 4.7. Subtracting the feedthrough from the raw data as complex 

numbers yields the symmetrical peak seen when the magnitudes of the two signals are 

significantly different from each other. This procedure was necessary for the fixed-

fixed tuning fork and the free-free beam. 

Table 4.2 shows the quality factors measured from the six devices described in Chap-

ter 3. The air pressure for all measurements was near 100 mTorr, but vDC was changed 

for different devices as described. For stiffer beams, it was necessary to increase the 

DC bias so that the output signal was more visible and farther above the noise. The 

magnitude of the input signal was 17 mV for the TSMC cantilever and 224 mV for 

the Jazz resonators, which are stiffer. Increasing the input signal increases the signal-

to-noise ratio, producing a cleaner curve. Yet if the visible peak is non-symmetrical, it 

indicates that the resonator is being driven into the non-linear region. Decreasing the 



4.3 Measured Transfer Functions
input signal moves it back into the linear region without sacrificing gain (since the 

network analyzer measures the ratio of the power out of the system, vOUT, to the 

power into the system, vRF). The measured resonance frequencies and amplitudes at 

resonance are compared with the expected frequencies and amplitudes in Table 4.3. 

The calculated amplitude at resonance, x, is

, (4.1)

FIGURE 4.7  Raw data for fixed-fixed tuning fork: Real and Imag -- with DC bias; F 
Real and F Imag -- with DC bias = 0 on output gap (feedthrough)
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4.3 Measured Transfer Functions
where F is the input force with the input signal amplitude used in testing, Q is the 

quality factor and k is the spring constant.

TABLE 4.3  Measured quality factors of each resonator @ 100 mTorr

Resonator DC Bias Quality Factor Resonant 
Frequency

TSMC cantilever +15 V 1480 510 kHz
Jazz cantilever +12 V 1620 2.29 MHz
Jazz fixed-fixed +19 V 1046 1.57 MHz
Jazz cantilever tun-
ing fork

+12 V 2010 914 kHz

Jazz fixed-fixed 
tuning fork

+10 V 2750 1.10 MHz

Jazz free-free +10 V 1850 870 kHz

TABLE 4.4  Measured and expected resonant frequency and amplitude at resonance

Resonator Measured 
Resonant 
Frequency

Calculated 
Resonant 
Frequency

Measured 
Amplitude 

at 
Resonance

Calculated 
Amplitude 

at 
Resonance

TSMC cantile-
ver

510 kHz 467 kHz 1.48 µm 4.17 nm

Jazz cantilever 2.29 MHz 1.94 MHz 3.23 nm 2.92 nm
Jazz fixed-fixed 
beam

1.57 MHz 6.19 MHz .208 nm 1.37 nm

Jazz cantilever 
tuning fork

914 kHz 859 kHz 6.22 nm 7.24 nm

Jazz fixed-fixed 
tuning fork

1.10 MHz 6.19 MHz .208 nm 1.37 nm

Jazz free-free 
beam

870 kHz 6.47 MHz .103 nm .977 nm
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4.3 Measured Transfer Functions
The resonant frequencies of the TMSC and Jazz cantilevers and the Jazz cantilever 

tuning fork were greater than expected. This is due to either a wider or shorter beam 

than expected, or mass loading from a polymer byproduct from the RIE etches. The 

Jazz fixed-fixed beam and the Jazz fixed-fixed tuning fork had a much lower resonant 

frequency than expected due to compressive stress. These, along with the lowered fre-

quency of the free-free beam, are discussed in Section 4.4.2. The resonant peaks of 

the six described devices, with feedthrough subtracted, are shown in Figure 4.8. The 

Jazz fixed-fixed beam graph shows two peaks. Both beams in the differential pair 

were released and both were biased. The quality factor is measured with the higher 
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4.3 Measured Transfer Functions
frequency peak and may have an artificially lowered quality factor due to peak 

spreading.

FIGURE 4.8  Resonant peaks of each resonator @ 100 mTorr
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4.4 Data Analysis
4.4  Data Analysis

4.4.1  Pressure Dependence of Quality Factor
The quality factor dependence on pressure is plotted in Figure 4.9 for the TSMC and 

Jazz cantilevers, along with the simulated curve based on the analysis in Chapter 2. 

To give a more helpful representation of the theoretical squeeze-film quality factor, it 

is calculated assuming the other damping mechanisms are constant with respect to 
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4.4 Data Analysis
pressure and at the same level as the measured data. This leads to two simulated 

curves: one for the TSMC cantilever and one for the Jazz cantilever.

Both measured curves have the same shape as the simulated curves, though the 

TSMC has more of an offset in pressure than the Jazz curve. 

FIGURE 4.9  Quality factor of the TSMC and Jazz cantilevers as a function of air 
pressure 
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4.4 Data Analysis
4.4.2  Anchor Design Dependence of Quality Factor
As discussed in Section 2.2, a perfect tuning fork design reduces the energy loss due 

to anchor dissipation to zero. The energy loss seen, then, is due to the imperfection of 

the fabricated device in the form of mask misalignment, mask bloat, and lithography 

imprecision. In addition, a slight mass imbalance is caused by a designed notch in the 

cross-beam of both the cantilever and fixed-fixed tuning forks near the anchor beam 

attachment, which is a high-stress point (Figure 3.6). The notch exists to electrically 

isolate the top metal in each beam. The quarter-wavelength anchor beams should 

futher reduce the energy loss. The tests of the tuning fork topology showed an 

decrease in damping due to anchor loss. The frequency of the cantilever tuning fork 

was 914 kHz, which is lower than the single cantilever, at 2.4 MHz. Since they have 

different resonant frequencies, the energy loss of the two must be compared with the 

damping coefficient, b, rather than the quality factor. Extracting b from (2.6) and (2.4) 

shows that b is 3.84 x 109 for the single cantilever and 1.27 x 109 for the tuning fork 

cantilever.

The fixed-fixed tuning fork demonstrated a decrease in damping over the single 

fixed-fixed beam. The frequency of the fixed-fixed beam is decreased by compressive 

stress, from the expected 6.19 MHz to 1.57 MHz, and the fixed-fixed tuning fork is 

decreased from 6.19 MHz to 1.10 MHz. Residual stress lowers the effective stiffness 

of the beam and therefore lowers the resonant frequency [20]. The single fixed-fixed 
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4.4 Data Analysis
beam is on the stress-relief platform discussed in Chapter 3, but the tuning-fork is not. 

The stress-relief platform relieves some of the stress, but not all of it. A calculation 

indicates that the average residual stress in the 3-metal stack of the beam is 308 MPa. 

Despite the difference in resonant frequency, the measurements show a marked 

increase in the quality factor, and this is attributable to the reduction of anchor loss. 

The damping coefficient, b, for the single fixed-fixed beam is 4.41 x 109 and b is 1.18 

x 109 for the fixed-fixed tuning fork.

The free-free resonator reduces anchor loss by tethering the vibrating beam at the 

node points, which do not translate. These points do rotate, so some energy will be 

lost even in a perfect resonator. The free-free beam showed only a moderate increase 

in quality factor over the Jazz cantilever, and a resonant frequency that is much lower 

than expected. The anchor loss-reducing design of the free-free beam demands that 

the tethers be placed at precise points along the beam. Fabrication error such as mask 

misalignment or mask bloat, which causes a metal layer to increase feature sizes, 

causes the tethers to shift from the intended node points. Even a slight shift is 

believed to cause a reduction in quality factor. The designed tethers, due to design 

rule contraints, are nearly the same width as the beam. This means that the tether 

attaches to the beam in a relatively large area around the node point, which may cause 

increased motional coupling to the tether and more damping than intended.
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The experiments described in Chapter 4 successfully demonstrate that the dominant 

energy loss mechanism in CMOS-MEMS resonators at atmospheric pressure is air 

damping, and that the second dominant mechanism is acoustic anchor loss. The the-

ory in Chapter 2 indicates that thermoelastic damping is negligible in the resonators 

studied here. The other known loss mechanism, internal friction, could be quantified 

if the acoustic anchor loss is reduced below this mechanism. 

The squeeze-film damping theory closely matched the measured data for both the 

TSMC cantilever and the Jazz cantilever. The Jazz cantilever had an error in the 

squeeze-film quality factor of about 25%, and the TSMC cantilever had an error of 

about 69%. One of the assumptions in the theory is that the width and length of the 

plate are much greater in size than the gap. This work demonstrates that the theory 

holds reasonably well when relaxing that assumption. 

The tests of the tuning fork topology showed an decrease in damping due to anchor 

loss. The 67% reduction in damping shown in Section 4.4.2 demonstrates that the tun-

ing fork lowers energy loss. To design a more reliable test of the tuning fork, the sin-

5 Conclusions



 

gle cantilever to which it is compared should be a crab-leg cantilever anchored at the 

connection point of the anchor beam on the tuning fork. In essence, the tuning fork 

should be compared to half of the tuning fork, which would have the same resonant 

frequency but not the symmetry. This revised test would change only one feature, thus 

eliminating the effect of changing other aspects of the design. In addition, the notch in 

the top metal layer near the center of beam connecting the two resonators creates a 

mass imbalance in the area of maximum stress on the connecting beam and may cause 

additional internal friction or acoustic damping. This error should be eliminated by 

switching the nodes that are created by metal 2 and metal 3 on the beam. To test the 

effectiveness of the quarter-wavelength anchor beams, the tuning fork design should 

be repeated with varying lengths of the anchor beam, including the calculated quarter- 

and half-wavelengths. 

The fixed-fixed tuning fork provided a 73% decrease in damping over the single 

fixed-fixed beam. Since this reduction was seen, it demonstrates that anchor loss is 

more dominant than internal friction. A more decisive test could be gained by rede-

signing the tuning fork resonators to have the same resonant frequency as their single-

resonator counterparts. 

The free-free beam showed only a moderate increase in quality factor over the Jazz 

cantilever, as discussed in Section 4.4.2. To decrease the energy loss of the design, it 

should be made wider and longer so that the tether beams have a smaller attachment 
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area relative to the size of the beam. This can be done so that the resonant frequency 

of the beam remains the same. This design will also reduce the effect of mask mis-

alignment, mask bloat, and lithography errors. 

Switching from a DIP in a breadboard to a PCB lowered the direct feedthrough by as 

much as 50 dB. This, together with the fact that the free-free beam had approximately 

the same level of feedthrough as the other devices, leads to the conclusion that direct 

feedthrough is dominated by other capacitances on the chip, and that the square heads 

separating the drive and sense capacitors in the resonators are not necessary. This con-

clusion leads to greater design flexibility and the ability to design electrodes along the 

entire length of some resonators, increasing capacitive sensitivity. Some designs, such 

as the Jazz fixed-fixed beam, have much higher feedthrough due to routed signals that 

cross. Future designs should shield all signal lines as well as possible and avoid cross-

ing sensitive lines. 
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Appendix A: Calculation of Resonant Frequency

A.1  Static Method
The static method of calculating resonant frequency involves lumped modeling 

involving spring constant, k, and effective mass, meff. It is an approximation, but is 

usually faster to compute. 

. (A.1)

For a point load, the spring constant is calculated by finding the deflection at the point 

of force application, and dividing the force by it. The deflection is found by the mode 

shape of the beam. The general solution of static mode shape is [42]

. (A.2)

Boundary conditions are then applied to find the specific solution. For a free end, two 

natural boundary conditions apply:

(A.3)

and

, (A.4)

where M is moment, V is shear force, and F is a concentrated load at that end. If the 

concentrated load is at a different point, that is where the boundary condition would 

ωr 2πfr
k

meff
---------= =
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A.1 Static Method
occur, and at the free end, V would be zero. At a fixed end, two applied boundary con-

ditions occur

(A.5)

and

. (A.6)

For a cantilever [42]:

. (A.7)

For a fixed-fixed beam:

. (A.8)

F is the applied concentrated load, E is Young’s modulus, x, a, and L are given in 

Figure A.1, I is the moment of inertia,

, (A.9)

h is thickness and w is width. <x-a>3 is equal to 0 if x < a, and (x-a)3 if x > a.

By substituting a for x in the beam shape equation, the deflection at the point of force 

application is found. The stiffness is then the force, F, divided by the deflection. The 

F will cancel out. For a cantilever with force at x=0, 

. (A.10)
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A.1 Static Method
For a fixed-fixed beam with force at x=L/2,

. (A.11)

Effective mass is a concept that allows the use of lumped modeling. It is derived from 

conservation of energy. Since maximum potential energy is equal to maximum kinetic 

energy in a vibrating system, 

, (A.12)

where yF is the maximum deflection at the point of force application, mL is the mass 

per unit length, and ω is the angular velocity of vibration. Solving for ω,

, (A.13)

and combining (A.13) with (A.1) the effective mass is

. (A.14)

The effective mass is equal to the actual mass multiplied by a factor, α, that is differ-

ent for every beam. 

(A.15)

Combining (A.10) and (A.11) with (A.14) in (A.1) produces
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A.1 Static Method
(A.16)

for the cantilever, where αc is the effective mass factor for a cantilever, given in 

(A.15), and

(A.17)

for the fixed-fixed beam, where αf is the effective mass factor for the fixed-fixed 

beam.

A free-free beam does not have a static bending shape, as there are no anchors to con-

strain it. Dynamic analysis must be used to calculate the resonant frequency of a free-

free beam. 

FIGURE A.1  Diagrams of a.) cantilever and b.) fixed-fixed beams
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A.2 Dynamic Method
A.2  Dynamic Method
The general eigenfunction for a uniform beam in bending vibration is [43]

. (A.18)

The difference between the initial differential equation for finding the beam shape 

function in the static case and the dynamic case is the inertial term, the right-hand side 

of (A.18). The general solution is

, (A.19)

where β is 

(A.20)

and mL is the mass per unit length, and the same boundary conditions are applied as in 

the static solution. This time, the boundary conditions are used to find the values of β 

that are valid, which lead to the values of ω that correspond to the resonant frequen-

cies of each mode of vibration. For a cantilever, the boundary conditions lead to

, (A.21)
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A.2 Dynamic Method
which, when solved numerically, yields the values of βL: 1.875 for the fundamental 

mode, 4.694 for the second mode, 7.855 for the third mode, and so on. Substituting 

these values in to (A.20) allows the solution of the fundamental resonant frequency:

(A.22)

For a fixed-fixed beam, the boundary conditions lead to

, (A.23)

which yield βL values of 4.730 for the fundamental mode, 7.853 for the second mode, 

10.996 for the third mode, and so on. For a free-free beam, the boundary conditions 

yield the same βL values as for the fixed-fixed beam. The fundamental frequency is

. (A.24)
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