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Abstract

This thesis extends and updates the Nodal Design of Actuators and Sensors (NODAS) 

library previously developed at Carnegie Mellon University. NODAS is a library of atomic element 

lumped parameter behavioral models written in Verilog-A, an analog hardware description lan-

guage (AHDL). It is used for the simulation of MEMS devices in a SPICE-like circuit simulator. 

Physics modeling, accuracy verification, and application examples are presented. The modeling of 

2D beams and 2D electrostatic gaps for MEMS devices is presented in this thesis, however, the 

physics can be extended to 3D.

The NODAS beam model was updated and new physical effects were added. The inconsis-

tent use of a user parameter which caused the length of the beam to be miscalculated was corrected. 

A new variable was created to address this problem and verification of the NODAS beam model 

compared with analytic equations. When compared to analytic equations for a fixed-fixed beam 

under a uniform distributed load and a fixed-guided beam with axial compressive stress under a uni-

form distributed load, the NODAS beam model was shown to be accurate to within 6.1x10-6 percent 

and 15x10-3 percent respectively when using multiple NODAS beam segments. The moment gen-

erated by the differences between the thermal coefficients of expansion in a multi-layer CMOS-

MEMS beam was implemented. A multi-layer CMOS-MEMS beam under an applied temperature 

was simulated in NODAS and ANSYS. The NODAS simulation reported in-plane tip deflections 

to within 2% of the ANSYS simulation for different metal layer combinations and offsets. A ther-

mal conduction model was added to account for the effects of electrothermal heating. The electro-

mechanical gap model was updated and an electric-only gap model was created. A electrostatically 

actuated fixed-fixed beam simulation using electromechanical gap models was shown to produce 

beam deflections to within 2.2% of an ANSYS simulation when 128 NODAS beam/gap segments 

were used. The electric-only gap model was created to reduce the simulation time of large models 

such as an RF MEMS varactor. A thermal actuator, a varactor, and a mixer application example are 

given to demonstrate composability and hierarchical design. Finally, future areas of research are 

discussed. 
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1 Introduction

Microelectromechanical system (MEMS) design presents a unique engineering challenge. 

In addition to knowledge of both mechanical and electrical design, a MEMS engineer must have 

computer aided design (CAD) tools to design products. The design process begins with hand anal-

ysis of the mechanical structure under investigation. Analytic equations give the engineer an esti-

mate of the performance of the structure. In the traditional MEMS design flow, the engineer will 

proceed with a finite element or boundary element simulation using software such as Coventor’s 

ANALYZER [1], ANSYS [2], or FEMLAB [3]. The hand calculated design is verified and refined 

using these packages until the structure meets the engineer’s specifications. A macromodel of the 

structure can then be created that will reproduce the behavior of the structure based on external 

stimuli. A macromodel is useful when a simple yet accurate model of the system is desired. Mac-

romodels can be created for use in system level simulators such as Matlab [4] or in circuit simulators 

such as SPICE [5]. If used in a electrical circuit simulator such as SPICE, an electrical equivalent 

of the macromodel can be generated to model the mechanical behavior [6] [7] [8]. This macromodel 

can then be used with electrical devices to simulate the system behavior. 

Although both structural and electronic halves of the MEMS design can be completed sep-

arately, it is often necessary to simulate the system as a whole in order to verify the functionality of 

the signal paths from the mechanical structures to the electrical circuits. Creating a macromodel of 

the mechanical system by extracting the behavior from a finite element or boundary element simu-

lation and then using the macromodel in a circuit level or system level simulator is a valid design 

flow. However, if the mechanical design needs to be changed, the finite element or boundary ele-

ment model must be recreated and the macromodel must be re-extracted. Finite element packages 
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by themselves are not suitable to simulate the electrical circuit behavior. Likewise, off-the-shelf cir-

cuit simulators do not have the features necessary to simulate mechanical devices. The Nodal 

Design of Actuators and Sensors (NODAS) library [17] created at Carnegie Mellon University 

addresses the problem of co-simulation of mechanical and electrical devices by allowing the MEMS 

engineer to work in a single simulator. NODAS is written in Verilog-A [9] and can be used in any 

circuit simulator that supports the Verilog-A language standard. Cadence Spectre [10] [11] is an 

example of such a simulator. 

1.1 Prior Work
Prior work in MEMS device modeling and simulation focused in the area of nodal analysis. 

Nodal analysis [9] solves the set of equations where the sum of flows into a node equals zero. In the 

electrical domain, Kirchhoff’s current law (where current is the flow) is used. The mechanical 

equivalents are forces and moments. Prior work in the area of nodal simulation of MEMS devices 

includes using electrical equivalent circuits to represent mechanical structures and creating behav-

ioral models of mechanical structures in system level simulators such as Matlab and hardware 

description language (HDL) enabled circuit simulators such as Cadence Spectre and Synopsys 

Saber [12]. 

H.A.C. Tilmans demonstrated that electrical equivalents of micromechanical structures 

could be created [6] [7] [8]. Since HDL-enabled circuit simulators were not available at the time, 

the goal was to allow engineers to use existing circuit simulators such as SPICE to quickly analyze 

mechanical structures. Several examples of electrical equivalents to mechanical quantities are: volt-

age for force, current for velocity, charge for displacement, inductance for mass, and capacitance 

for compliance (the inverse of the spring constant). Using these circuit equivalents, it was demon-

strated that complex structures, such as comb-finger resonators, could be modeled and simulated.
2



SUGAR from UC Berkeley [13] [14] takes a different approach. Instead of using existing 

circuit simulators which forces use of electrical equivalents, the modified nodal analysis algorithm 

was implemented in Matlab. Behavioral models of elements such as beams, electrostatic gaps, and 

simple circuit components (resistors, voltage sources, etc.) were created as element stamps compat-

ible with the Matlab implementation of nodal analysis. Though the mechanical and electrical 

domains were integrated under one simulator, only simple transistor models are available, limiting 

simulation accuracy of modern foundry CMOS processes.

Unlike UC Berkeley, G. Lorenz and R. Nuel at Bosch [15] stepped away from implement-

ing a simulator by developing MEMS models in the MAST HDL language that could be simulated 

in Synopsys Saber. The MAST HDL language (as well as the Verilog-A HDL language) requires 

that the mechanical equivalents of current (flow) and voltage (potential) be chosen. Force and dis-

placement are examples of one such choice for mechanical flow and potential. Appendix B.6 gives 

a brief introduction to mechanical equivalents of electrical flow and potential. A more detailed dis-

cussion of flows and potentials can be found in [9]. Lorenz later used these MEMS models to imple-

ment Coventor ARCHITECT [16]. ARCHITECT currently contains behavioral models from 

domains such as electromechanical, optical, fluidic, and RF. Not only does it provide a rich set of 

mechanical behavioral models, these models can be used in conjunction electrical circuit models 

from CMOS foundries. 

Work done at Carnegie Mellon University focuses on developing a set of atomic element 

behavioral models (beams, plates, and electrostatic gaps) which could be used to build models of 

complex MEMS devices [17] [18] [19] [20] [21] [22]. The behavioral modeling language chosen 

was Verilog-A. The Cadence Spectre simulator was used for development and simulation. Spectre 

supports the electrical device models provided by the CMOS foundries Carnegie Mellon uses for 

its CMOS-MEMS process. Therefore, accurate electrical and mechanical simulation could be per-

formed in a single simulator using NODAS. Furthermore, by using a standard IC design tool flow 
3



such as Cadence, automatic layout generation from a NODAS schematic and layout extraction into 

a NODAS schematic can be performed on MEMS devices [23] [24].

1.2 MEMS Processing
Several options exist for fabricating MEMS devices. A brief (and non-exhaustive) over-

view of these processes will be given. In general, MEMS processes can be split into two types: bulk 

and thin-film micromachining. In bulk micromachining, the silicon substrate is used to create 

mechanical structures. Typical thicknesses of these devices are in the hundreds of microns. Thin-

film micromachining uses the deposited layers on top of the silicon wafer (polysilicon, oxide, and 

metal). The typical thicknesses are below ten microns. The MUMPS process [25] and post foundry 

CMOS micromachining processes [26] are typically used for thin-film micromachined MEMS 

devices. NODAS is able to model any rectangular geometries produced in any of these process. 

Currently, structural mechanics (static and dynamic), electrostatic forces, thermal expansion, ther-

mal conduction, and electrothermal heating are modeled in NODAS. Though not currently imple-

mented, other physical domains, such as kinematics, optics, and fluidics, and non-rectangular 

geometries, such as disks and spheres, can be added to the NODAS library. 

Much MEMS research at Carnegie Mellon utilizes a CMOS-MEMS process. In an inte-

grated complimentary MOSFET (CMOS) MEMS process, mechanical structures and electrical cir-

cuits are monolithically integrated. Typically, the electrical circuits are preamplifiers that amplify 

the small electrical signals and provide some common mode rejection (i.e. feed through rejection). 

Like the mechanical design process described above, the electrical design process is also iterative, 

starting with a hand design of the amplifier, followed by a simulation using a SPICE-like tool such 

as HSPICE [12] or Cadence Spectre [11]. CMOS-MEMS processing is discussed in [26] [27] [28]. 

Mechanical structures are built from metal, dielectric, and polysilicon beams. Figure 1-1a shows a 

cross section view of a CMOS-MEMS chip before post processing. A metal layer is used to protect 
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electronic circuits as well as define the beams and other mechanical structures. In this example (a 

three metal layer process), metal 3 is used as a mask during the anisotropic oxide etch. Figure 1-1b 

shows the chip after the anisotropic oxide etch. The electronic devices have been protected from the 

etch by the metal 3 layer. The mechanical structure becomes apparent after the etch. Here, there are 

three beams which have been defined. The left beam has a polysilicon, metal 1, metal 2, and metal 

3 stack. The center beam has a metal 2 mask and consists of a poly, metal 1 and metal 2 stack. 

Finally, the right beam consists of a metal 1, metal 2, and metal 3 stack. The final step in the CMOS 

MEMS process is to release the mechanical structures by using an isotropic silicon etch Figure 1-

1c. Examples of devices fabricated using this process can be found in [18] [19] [27] [28] [29] [30].

1.3 NODAS Background
The NODAS library consists of atomic element models: anchors, beams, electrostatic gaps, 

and plates. The models are written in Verilog-A [9] and can be simulated in any Verilog-A enabled 

circuit simulator such as Cadence Spectre [10]. The Verilog-A enabled circuit simulator allows the 

Figure 1-1. CMOS MEMS post-processing steps, cross section view.

oxide
metal 3
metal 2

metal 1
polysilicon
substrate

(a) (b)

(c)

... ...

...

electronics MEMS structures

(a) before postprocessing, (b) after anisotropic oxide etch, (c) after isotropic silicon etch. 
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MEMS designer to simulate both the mechanical and electrical responses of the system together. 

Though this work focuses on the 2D beam and 2D electrostatic gap modeling for RF MEMS, a brief 

introduction on the other NODAS elements is useful. A detailed description of the models can be 

found in [17]. With the exception of the electrostatic gap model, all NODAS models have 2D and 

3D versions. The 2D models capture the in-plane translational degrees of freedom (x, y) and a rota-

tional degree of freedom (rotation about the z axis, φz) for each terminal of the model. Model ter-

minals are used to communicate with the rest of the simulation schematic. For instance, a resistor 

has two terminals, positive and negative, and a beam has two terminals, one at each end of the 

beam’s length. Each terminal can have multiple nodes. Each degree of freedom is a node in the sim-

ulation. For the 2D beam and electrostatic gap models, there are two terminals (each end of the 

beam or electrode), therefore a 2D model has six degrees of freedom (four translational and two 

rotational degrees of freedom). The 3D models capture the in-plane and out-of-plane translational 

degrees of freedom (x, y, z) and the rotational degrees of freedom about all three axes (φx, φy, φz). 

For the 3D beam and electrostatic gap models, there are twelve degrees of freedom (six translational 

and six rotational). 

The NODAS library is modularized so that all of the physics is contained in a library of 

submodules called NODAS_submodules. This library contains the 2D and 3D mechanical beam ele-

ments (linear and non-linear), the electrical beam element, the 2D thermal beam element, the elec-

trostatic gap elements (electromechanical and electric-only), the 2D comb elements, the 2D and 3D 

plate elements (rigid and elastic). By using these submodules, a library of one conductor models 

(for single structural layer polysilicon-based surfaced micromachined processes) and three conduc-

tor models (for CMOS-MEMS processes with embedded polysilicon, metal 1, metal 2, and metal 3 

layers) can be easily maintained. For the three conductor models, poly is not counted as one of the 

conductors. The NODAS naming convention implies that poly is not used by itself in the CMOS-

MEMS process, as a poly only beam cannot be fabricated (a metal mask layer is required). The sub-
6



modules are written as if they were to be used for the three conductor case. To use the submodule 

as a single conductor model, only the appropriate parameters in the submodules are set. These 

libraries are called: NODAS02_1C_2D (one conductor, 2D), NODAS02_1C_3D (one conductor, 

3D), NODAS02_3C_2D (three conductor, 2D), NODAS02_3C_3D (three conductor, 3D). The 02

indicates that this library architecture was developed in 2002. Finally, there are process-specific 

libraries that integrate these NODAS models (using soft links to these one of three conductor mod-

els) with process-specific parameters. The available processes are: AMS, HP, JAZZ, MUMPS, 

SIGE6, TSMC 035. For instance, the 2D AMS process uses the NODAS02_3C_2D models whereas 

the 3D MUMPS process uses the NODAS02_1C_3D models. See Appendix B.9 for more details on 

the NODAS code architecture.

The function of the atomic NODAS elements are now outlined. The NODAS anchor 

models set the angular displacement, cartesian displacements and temperature to zero. Two types 

of beam models are supported in NODAS: the linear and nonlinear models. The linear model is used 

when the beam bends a small distance or can be considered linear. The nonlinear model is used 

when the beam has a large geometric deflection or when the beam experiences a large axial stress. 

Two types of plate models are supported in NODAS: the elastic and rigid models. The elastic plate 

model is used when the plate experiences out-of-plane bending or in-plane stretching whereas the 

rigid plate model is used to transfer forces and moments without bending. Finally, two electrostatic 

gap models are supported in NODAS: electric-only and electromechanical. The electric-only gap 

model captures the capacitive effects of the gap, but does not generate any forces or moments. In 

addition to modeling the capacitive effects of the gap, the electromechanical gap model generates 

an electrostatic force and moment based on the applied voltages across the two beam electrodes. 

Aside from the main benefit of being able to co-simulate mechanical and electrical devices 

together, the NODAS library allows the designer to create a composable and hierarchical design. 

The idea of composability is two fold. First, higher accuracy can be attained by breaking up a seg-
7



ment of the mechanical device into smaller pieces. For instance, a cantilever beam 100 µm long can 

be built using a single NODAS beam element model 100 µm long. However, more accuracy can be 

attained by breaking up the cantilever beam into two 50 µm beam elements, for instance. The dis-

cretization of the beam into smaller elements is similar to a mesh refinement in finite element pack-

ages. The second part of composability is that a single element can be connected, in different 

orientations, to other elements to form more complex elements. Figure 1-2 shows how a complex 

system such as a radio transceiver can be broken down into different levels of abstraction. The high-

est level of abstraction is the system level, followed by the component level (which includes the 

VCO, mixer, filter, LNA, etc.). Below the component level, there are functional elements like comb 

fingers. Finally, at the lowest level of abstraction are the atomic elements such as inductors, beams, 

and gaps. By connecting several atomic beam and gap elements together complex structures such 

as comb fingers can be created. Hierarchical design is used to abstract away and simplify large and 

complex structures. For instance, a varactor (Section 4.2) consisting of sixteen movable fingers and 

two thermal actuators would be tedious to create by using atomic elements only. By creating sub-

cells which contain a basic repeatable structure and arraying these cells, the repetitive process of 

instantiating atomic elements can be eliminated. Multiple levels of subcells can be used to further 

simplify the design process. Furthermore, hierarchical design facilitates topology reuse. Subcells 

from previous designs can be reused as is or copied and modified to speed up the design process.

This thesis focuses on refinements to and verification of the 2D beam models and 2D elec-

trostatic gap model. Verification can be split into three major areas (Table 1-1). Individual elements 

must be verified by themselves to ensure that the physics is modeled correctly when compared to 

analytic equations and finite element simulations. Next, the elements must be composable. Using 

many identical elements to discretize the problem should yield more accurate results when com-

pared to analytic equations and finite element simulations. Finally, composing different atomic ele-
8



Table 1-1. Types of Verification.
Type of Verification Description

Individual element Verifying that each element is accurate and models the physics 
intended. The model should also be invariant to rotations and flipping of 
the schematic symbols. Checking the accuracy against analytic and 
finite element analysis.

VCO

fLO

Radio 
logicVCO

fLO

Radio 
logic

Figure 1-2. Levels of abstraction

ga
p

VCO

System

Component/Subsystem

Functional Element

Atomic Element
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ments to make complex devices or systems should be compared to experimental or finite element 

simulations. 

The updated 2D beam models are discussed in Chapter 2, followed by a discussion of the 

2D electrostatic gap models in Chapter 3. Canonical problems are presented in both these chapters 

with comparisons to analytic and finite element simulations. Several applications of the electro-

static gap and beam models are given in Chapter 4. The source code of the electrothermal beam 

model and the electrostatic gap model are listed in Appendix A. General Verilog-A modeling issues 

are presented in Appendix B. Finally, ANSYS scripts used for the verification of the models are 

presented in Appendix C.

Composability Discretizing of a problem into many identical elements. For example, 
breaking up a 100 µm beam into ten 10 µm beam segments. Checking 
the accuracy against finite element analysis.

Applications Using heterogeneous elements to build complex structures. For 
instance, using beam, gap and plate elements to build a crab leg resona-
tor. Checking the results against finite element analysis and experimen-
tal results.

Table 1-1. Types of Verification.
Type of Verification Description
10



2Electrothermal Beam 
Modeling and Verification

Electrostatic or electrothermal actuation can be used to move MEMS structures into differ-

ent positions. For small stroke actuation, electrostatic actuators can be used efficiently. For longer 

stroke actuators, electrothermal actuators are needed. The thermal actuator works by exploiting the 

different temperature coefficient of expansions (TCEs) of materials. The TCE measures how a 

material expands when exposed to a temperature source. The larger the TCE, the greater the expan-

sion. By heating an actuator built from a composite beam (metal, oxide, and poly), the different 

TCEs of each material will cause stress in the beam because each material will want to expand at a 

different rate. This stress causes a bending moment and forces the beam to bend in such a way as to 

relieve this stress. To generate the heat necessary to raise the temperature of the beam, a polysilicon 

resistor is typically used. Modeling the electrothermal actuator requires models for thermal expan-

sion, residual stress, thermal conductance, and electrothermal power generation. Though this thesis 

deals only with 2D in-plane thermal effects, the derivations presented in this chapter can be 

extended to include out-of-plane thermal effects. Before continuing with the discussion of the elec-

trothermal beam model, a mechanical beam model update is discussed. 

2.1 Mechanical Beam Model Update
After running simulations to verify the accuracy of the beam model, an error in the beam 

model Verilog-A code was identified. To test the accuracy of the NODAS beam models, a beam 

was modeled using varying numbers of NODAS beam elements. An AC analysis was run to extract 

the resonant frequency of this beam. Adding more NODAS beam elements for a given length 
11



should lead to a more fine grained model of the beam, resulting in a more accurate model. However, 

as more NODAS beam segments were added to the NODAS schematic of this beam, the resonant 

frequency kept decreasing. The error was tracked down to the use of a variable that had inconsistent 

purposes.

In the initial version of the NODAS beam models, corner effects (where two beams meet 

at a corner) were modeled by fitting the NODAS simulation to a finite element simulation of a crab 

leg resonator [17]. The corner model was activated by using the flag_shear parameter, which is also 

used to turn on the shear beam model. The beam’s length was increased by 30% of the beam’s width 

when the sheer model was activated. However, there are cases when the shear model needs to be 

used without adding more length to the beam. The test simulation mentioned previously is one such 

case. The introduction of a new variable, joint_extension, was added to solve this problem. 

joint_extension can be set to 0 (default), 1 or 2. If it is set to 0, the length of the beam is not 

increased. If it is set to 1 or 2, 30% of the width (one corner) and 60% of the width (two corners) 

would be added to the length of the beam respectively (Figure 2-1). The Verilog-A implementation 

is shown in Listing 2-1. beam_mech_lin is the submodule name. The variables in the parentheses 

Figure 2-1. Beam Corner effects.
(a)
l

w

l

w

l

w

(b) (c)

(a) joint_extension = 0 (no corners), (b) joint_extension = 1 (one corner), (c) joint_extension = 2 (two 
corners).

Listing 2-1. Revised beam model with corner effects.

beam_mech_lin # (.l(l+0.3*w*joint_extension), .w(w-overetch), .thick-
ness(thickness), .E(E), .density(density), .angle(angle), 
.flag_shear(flag_shear),.z_air_gap(air_gap), .visc_air(visc_air), 
.Poisson_ratio(Poisson_ratio), .Xc(Xc), .Yc(Yc))
     beam_mech_lin_1 (phia, phib, xa, xb);
12



are used to overwrite the submodule’s parameters. For instance, .l(l+0.3*w*joint_extension) means 

that the parameter l in the submodule beam_mech_lin should be overwritten with the value 

l+0.3*w*joint_extension. beam_mech_lin_1 is the instance name and the variables in the parenthe-

ses are the signal wire names. These signal wires can be connected to other submodules. For 

instance, the beam module also instantiates the thermal beam model (beam_thermal) using the phia

and phib signal wires.

2.2 Thermal Expansion
The difference between the thermal coefficient of expansion (TCE) of the metal and oxide 

layers in a CMOS beam will cause a beam to bend both laterally and out of plane. The 2D NODAS 

beam models capture the lateral in-plane bending produced by these thermal stresses. A convention 

for the calculation of the bending moments caused by the thermal expansion was chosen. Figure 2-

2a shows the top view and Figure 2-2b shows the cross section view. The points a and b are the 

same points in both views. In order to derive the thermal bending moments, the location of the neu-

tral axis must be calculated. The neutral axis is the axis in the cross section of the beam where there 

is no stress [31]. It is then used in the calculation of the moment generated by the thermal expansion 

of the beam layers. The moment arms are computed relative to the neutral axis.

y

x

Figure 2-2. Thermal moment convention.

z

z

y x

a
a

b

b

(a)

(b)

(a) top view, (b) cross section view

oxide

metal
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2.2.1 Neutral Axis Calculation
In order to determine the location of the neutral axis, a model of the CMOS beam must be 

created. Figure 2-3. shows the model for a metal 1, metal 2, metal 3, and poly stack. Sixteen stack 

combinations exist using these four layers. It is assumed that each metal layer could have oxide to 

the left, right, or both sides of the metal. If there is no oxide layer to the left and right of the metal, 

the widths woil and woir (the subscript i is the metal or poly layer) are set to 0 and the metal width 

is equal to w. Depending on which metal layers are chosen, the insulating oxide layer thickness 

between metal layers will vary. For instance, a metal 3 and poly stack will only have a single oxide 

layer between metal 3 and poly

The calculation for the location of the neutral axis is derived in [31]. (2.1) is the equation 

used to calculate the location of the neutral axis yo. The summation is performed for each area in 

the cross section. 

Figure 2-3. Neutral axis calculation model. M3, M2, M1, poly stack. 

z

y x

yo

neutral axis

tm3

tm2

tm1

tpoly

tpoly-sub

tm1-poly

tm2-m1

tm3-m2

w

wom3l wom3rwm3

wom2l wom2rwm2

wom1l wom1rwm1

wopl woprwp

The black dots are the locations of the centroids for volume of material.
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(2.1)

Rearranging and solving for yo, (2.1) can be rewritten as:

(2.2)

where yci is the location of the centroid of the ith material section from the left edge of the cross 

section. Ei is the Young’s modulus for the ith material section (i.e. metal, poly, or oxide) and Ai is 

the area of the cross section for the ith material section.

2.2.2 Moment Calculation
The moment due to the thermal coefficient of expansion for a multi-layer CMOS beam was 

derived in [18] [19]. For reference, the derivation presented in [19] is repeated here and modified 

for in-plane lateral bending.

Mzi (2.3) is the total moment about the z-axis produced by the interfacial forces of the ith

layer. 

(2.3)

where P is the force column vector and Y is the moment arm vector measured from the neutral axis. 

Since Pi is produced by action-reaction pairs, they sum to zero. 

(2.4)

where yi is given by (2.5).
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(2.5)

If the thickness of the beam is assumed to be smaller than the radius of curvature (ρ), the 

radius of curvature can be assumed to be the same for all layers. Therefore, Mzi is:

(2.6)

Izi is the moment of inertia of the ith layer. wi is the width and hi is the thickness of the ith

layer. Let T0 be the temperature at which the beam is flat (at the characteristic temperature). 

Equating the strains at the interfaces between the layers due to a temperature change, ∆T = 

T - T0, the following relation results:

(2.7)

By noting the uniformity of the subscript i, (2.7) can be rewritten as:

(2.8)

where C is the uniform axial strain for all layers. αi is the TCE for the ith layer. Multiplying by 

EiAiyi, (2.8) becomes:

(2.9)

Summing (2.9) over all layers and using (2.3) and (2.6), (2.10) is obtained.

(2.10)

The first term of (2.10) contains the parallel axis theorem for computing moments and the 

right hand side reduces to zero. The total bending moment on a composite beam is obtained as 

(2.11).
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(2.11)

The model can be further extended by adding a residual stress term (σri) for each layer 

(2.12). 

(2.12)

2.3 Thermal Conduction
To model electrothermal heating of a beam, a thermal conduction and an electrothermal 

model were developed. The thermal conductance of a material is given by (2.13)

(2.13)

where Q is the heat conduction rate (Watts/second), ∆T temperature difference between the two 

ends of the material, h is the thickness of the material, w is the width, l is the length, and κ is the 

thermal conductivity (with units of Watts/K-m). Thermal conductance is an analog of electrical 

conduction. Q and T are analogous to I and V. Similar to electrical conduction, thermal conduc-

tances in parallel add together. For a multi-layer CMOS beam, the total thermal conductance is the 

sum of the thermal conductances of each layer.

In a CMOS process, the high sheet resistance of polysilicon can be exploited to make a 

heating resistor. The power dissipated by a resistor is given by (2.14).

(2.14)

where V is the voltage difference between the two terminals of the resistor and R is the resistance. 

The power dissipated in the poly resistor generates heat and raises the temperature of the CMOS 

beam. By applying the conservation of power, the heat conduction rate flowing through the beam, 

Q, is equal to the power dissipated by the poly resistor, PR. ∆T can be solved to find the change in 

Mz yiwihiEi∆Tαi
i
∑=

Mz yiwihi Ei∆Tαi σri+( )
i
∑=

GT
Q
∆T
------- κhw

l
-------= =

PR
V2

R
------=
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temperature of the beam. A T-model (Figure 2-4a) or a π-model (Figure 2-4b) can be chosen to 

lump the electrothermal heating for beam temperature computation. In the T-model, the beam is 

split into two equal lengths (l/2) and a new thermal node (node c) is created. The power generated 

by the resistor is fed into this node. The effective thermal conductance of the two beam segments is 

twice the thermal conductance (2GT) of the original beam (GT). In the π-model, the power generated 

by the poly resistor is split equally between nodes a and b. Though the T-model introduces an extra 

internal node, it was implemented in NODAS because it is more physically accurate for fewer 

beams. Consider the case when Ta and Tb are fixed to a common heat sink of temperature T0. A 

voltage is also placed across the beam between Va and Vb. For the T-model, Tc will be at a higher 

temperature than Ta and Tb and heat will flow from node c to nodes a and b. In contrast, the since 

∆T = 0 in the π-model, no heat flows through the beam. Both models produce the correct results, 

the T-model is more physically accurate. 

The NODAS implementation of electrothermal conduction is shown in Listing 2-2. 

flag_poly is a parameter which is 1 when there is a poly layer and 0 where there is no poly layer. 

sheet_resistance_poly is the sheet resistance of the poly layer. l and pw are the length and width of 

the poly layer. Rpoly is the resistance of the poly layer. Ppoly is the electrical power flowing across 

Figure 2-4. Electrothermal conduction models.
(a) T-model. The thermal power generated by the poly resistor is fed into node c, an internal node. The 
beam with length l is split into two equal segments of length l/2. The effective thermal conductance is 
twice the thermal conductance (GT) of the single beam with length l. (b) π-model. Half of the thermal 
power generated by the poly resistor is fed into node a and the other half is fed into node b. The T-model 
is used in NODAS. 

a bc
l/2 l/2

PR

2GT 2GT

Ta Tb

Va Vb

a b
l

0.5PR

GT

Ta Tb

Va Vb

0.5PR

(a) (b)
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the poly resistor. It is only calculated when there is a poly layer. Next, the thermal power flowing 

through the beam resulting from a difference in temperature between the two ends of the beam 

(nodes a and b) is calculated. Since the T-model was used, the power is summed at the internal node 

c. Finally, the power generated by the poly resistor is added to node c. Since the two previous lines 

calculated the power leaving node c, Ppoly was made negative to make the power leave node c to 

ground (Kirchhoff’s current law). Pwr(tc, ta) is the power flowing from tc to ta. Pwr(tc) is the 

power flowing into tc. 

2.4 Verification

2.4.1 Fixed-Fixed and Fixed-Guided beams
With the corrections made to the joint model, the accuracy of the beam model could be 

compared to analytic equations. A fixed-fixed beam with a 50 nN uniform distributed load (Figure 

Listing 2-2. Electrothermal conduction.

@ (initial_step) begin
   if (flag_poly==1) begin

Rpoly = sheet_resistance_poly * l/pw;
   end
   else begin 

Rpoly = 0;
   end
end

if (flag_poly==1) begin
   Ppoly = pow(deltaV,2)/Rpoly;
end
else begin
   Ppoly = 0;
end

// assign the thermal power through the beam
Pwr(tc,ta) <+ 2*Geff*(Temp(tc) - Temp(ta));
Pwr(tc,tb) <+ 2*Geff*(Temp(tc) - Temp(tb));

// assign the thermal power due to the poly resistor
Pwr(tc) <+ -Ppoly;
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2-5a) and a fixed-guided beam with a 50 nN uniform distributed load and 25 MPa compressive 

stress (Figure 2-5b) were chosen to test the accuracy of the model. 

Figure 2-6 shows the results of the simulations. The x axis is the position along the beam 

and the y axis is the percent difference between the analytic equation and the NODAS simulation 

results (2.15). The 2, 4, 8, 16, and 32 NODAS 2D nonlinear beam segments were used to model the 

100 µm long beam. For the fixed-fixed case (Figure 2-6a), the accuracy is greater than 6.1x10-6% 

and for the fixed-guided case (Figure 2-6b), the accuracy is greater than 15x10-3%. 

(2.15)

Figure 2-5. Beam verification problems. 

(a) (b)

25 MPa

50 nN

-50 µm -50 µm50 µm 50 µm0 µm 0 µm

50 nNy

x

(a) Fixed-fixed beam with 50 nN uniform distributed load. (b) Fixed-guided beam with 50 nN uniform 
distributed load and 20 MPa compressive axial stress. Both beams are 100µm long, by 2µm wide, by 
2µm thick. The Young’s modulus was set to 170 GPa and the density was set to 2330 kg/m3.

% difference 100
yanalytic yNODAS–

yanalytic
------------------------------------------- 
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2.4.2 Multimorph Beam
The NODAS thermal expansion model was compared with an ANSYS simulation. The 

ANSYS model can be found in Appendix C.2. It uses the SOLID45 brick element. The NODAS 

schematic testbed uses a single NODAS linear beam. In both simulations, the beam is anchored on 

one end and free on the other end. The width of the beam was 10 µm and the length was 100 µm. 

The Young’s Modulus for the oxide and metal were assumed to be both 62GPa for simulation pur-

poses only. The thermal coefficient of expansion for metal and oxide were set to 23 µm/K and 8.1 

µm/K for simulation purposes only. The reference temperature T0 (Tref in ANSYS) was set to 294K 

and the simulation temperature was set to 350K. Finally, Poisson’s ratio was set to 0.3. The results 

of the simulation are presented in Table 2-1. The percent difference is calculated as 100*(ANSYS-

NODAS)/ANSYS, where NODAS and ANSYS are the tip deflections in the y direction reported by 

6.1e-6%

5.1e-6%

4.1e-6%
-50µm 0µm 50µm

x

%
 D

iff
er

en
ce

Figure 2-6. Beam verification results.
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(a) (b)

(a) y displacement of a fixed-fixed beam with a 50nN uniform distributed load. NODAS vs. Analytic. 
%Difference = 100*(1 - yNODAS/yANALYTIC). 2, 4, 8, 16, and 32 beam segments plotted. (b) y 
displacement of a fixed-guided beam with 50nN uniform distributed load and 25MPa compressive 
stress. NODAS vs. Analytic. %Difference = 100*(1 - yNODAS/yANALYTIC). 2, 4, 8, 16, and 32 beam 
segments plotted. Both beams are 100µm long, by 2µm wide, by 2µm thick. The Young’s modulus was 
set to 170 GPa and the density was set to 2330 kg/m3.
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both simulations. As can be seen, the accuracy is within 2%. Adding more NODAS beam segments 

does not increase the accuracy of the simulations.

2.4.3 Electrothermal heating
A polysilicon resistor subjected to electrothermal heating was simulated in NODAS and in 

ANSYS. A 100 µm long, 5 µm wide, and 0.28 µm thick poly resistor was connected to a 300K tem-

perature source on one end and a 500K temperature source on the other end. 5V was placed across 

the resistor. The thermal conductivity of poly was set to 30 W/K-m and the sheet resistance of poly 

was set to 100 ohms/square. The resulting temperature profile across the length of the poly resistor 

is shown in Figure 2-7. In this plot, 2, 4, 8, 16 and 32 NODAS beam elements were used. The 

ANSYS simulation uses the SOLID5 brick element. The NODAS results are within 1.4% of the 

ANSYS results for all points along the poly resistor’s length. As can be seen, increasing the number 

of beam segments does not increase the accuracy of the results, but it does provide a more fine 

grained temperature distribution. The ANSYS model can be found in Appendix C.3.

Table 2-1.  Multimorph simulation comparison. NODAS versus ANSYS for different metal stack 
combinations. ANSYS simulations were run on a 2GHz Pentium 4 computer with 1GB of RAM. 
NODAS simulations were run on a dual 1GHz UltraSparc III Sun-Fire 280R server with 4GB of RAM. 
Stack % Difference NODAS Sim Time (s) ANSYS Sim time (s)

M3, M2, M1 1.08 0.02 120

M3, M2 1.02 0.01 69

M3, M1 0.60 0.01 69

M3 1.46 0 33

M2, M1 1.21 0.01 48

M2 0.89 0.01 27

M1 1.65 0 42
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Figure 2-7. Temperature profile of a poly resistor.
Temperature versus position along a poly resistor. 2, 4, 8, 16, and 32 NODAS beam segments were used 
for this simulation. The left end of the poly resistor was connected to a 300K temperature source and the 
right end was connected to a 500K temperature source. 5V was placed across the poly resistor. The 
sheet resistance of poly was set to 100 ohms/square, the thermal conductivity of poly was set to 30 W/
K-m. The length, width and thickness were set to 100 µm, 5 µm, and 0.28 µm respectively. The ANSYS 
temperature profile was a path through the center of the poly resistor running from y = 0 µm to 100 µm.
Note: Areal poly resistor would melt at these high temperatures. The data presented here is used to 
verify simulation accuracy only.
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3Electrostatic Gap Modeling 
and Verification

In MEMS devices such as mixers, filters, and resonators, electrical signals are used to gen-

erate mechanical motion. These electrical signals are coupled to the mechanical devices by electro-

static forces generated by the electric fields. The electrostatic gap model was created to model these 

forces. The modeling and verification of the NODAS electrostatic gap model is discussed in this 

chapter. Since the electrostatic force is a distributed phenomena, but the NODAS models are 

lumped parameter models, the distributed forces must be lumped to the nodes of the model. The 

first section of this chapter discusses the process of lumping a distributed forces (and moments) to 

the nodes of a model. The electrostatic force modeling is then discussed, followed by a discussion 

of the damping and contact models. A rotated parallel plate approximation is used to simplify the 

electrostatic force calculation. As demonstrated in Section 3.12, the error introduced in this approx-

imation can be reduced by adding more beam and gap elements. Section 3.3.1 discusses the deriva-

tion of this approximation. Next, lateral electrostatic forces, electrical modeling, and the electric 

only gap model is discussed. Finally, the verification of the electrostatic gap model is presented. 

3.1 Lumping
When analyzing physical systems, distributed forces (electrostatic forces, gravity, damp-

ing, etc.) are typically encountered.  The distributed forces do not need to be treated differently if 

analytic equations are solved by hand, however, when using a technique such as nodal analysis, 

where the only points of communication between the outside world and the model is through the 

nodes on the model, the distributed forces must be mapped onto the nodes of the model. For 
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instance, in the electrostatic gap model, a distributed force arises due to an electric field generated 

by a potential difference between two beam electrodes (Figure 3-1). 

Each degree of freedom in the NODAS gap model has two nodes: a and b (one for each end 

of the beam, Figure 3-2).  For instance, xa_t<0> is the x displacement pin for the top beam electrode 

whereas xb_b<1> is the y displacement pin for the bottom beam electrode. _t and _b means top and 

bottom respectively. The effect of the distributed forces needs to be modeled at these nodes while 

maintaining accuracy. In the following derivation, the lumping of the forces is considered for one 

of the beams.

In Section 2.3, it was shown that the power generated by the poly resistor could be lumped 

to the center of the beam (with a new internal node) or to the ends of the beams. The lumping in this 

case was straightforward: either all of the power was lumped to the center of the beam or half the 

power was lumped to each end of the beam. The lumping discussed in this section has one major 

difference. Since beams can bend, in order to lump the forces and moments to the beam nodes, the 

V=0

V=V1

Fe

y

x

Figure 3-1. Distributed electrostatic force on a MEMS beam.

gap2D_pp

xa_t<0:1>
phia_t
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xa_b<0:1>
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xb_b<0:1>
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Node a Node b

Figure 3-2. NODAS Electrostatic Gap Symbol.
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beam’s shape must be taken into account. The beam’s shape function (also called a basis function) 

is used as a weighting function to the determine how much of the force or moment should be 

assigned to each node of the beam.

3.1.1 Lumping Distributed Forces
The derivation of the lumping of distributed forces can be found on pages 161 - 162 of [32]. 

Starting with the definition of virtual work, the work done by displacements caused by the distrib-

uted forces (δW in (3.1)) can be equated to the work done by the lumped forces (right hand side of 

(3.1)).  

(3.1)

where Φ is the matrix of surface forces.  Pequivalent is a vector of the lumped forces.  δU is the virtual 

displacements in the direction of the forces, and δu is the distribution of virtual displacements.  

(3.2)

where a is the vector of basis functions. A complete list of basis functions can be found on page 293 

of [32].  U is the vector of discrete displacements in the direction of the forces and u is the vector 

function of interior (distributed) displacements.  In this case, if the electrostatic force acting on the 

beam electrodes in the y direction, u is the function y(ξ) and U is a column vector given in (3.3), 

which represents the lumped displacements at the nodes of the beam.

(3.3)

For example, for a 2-D beam of length L displaced in the y direction, a is given by (3.4) - (3.7), 

where  (the normalized position along the beam’s length).

δW δuTΦ Sd
S
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u aU=
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yb

θb

ξ x
L
---=
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(3.4)

(3.5)

(3.6)

(3.7)

From (3.2), it follows that

(3.8)

Substituting (3.8) into (3.1) we get

(3.9)

Since the virtual displacements are arbitrary, it follows that

(3.10)

Therefore, for a distributed force q(x) acting in the y direction, (3.11) is the equation for 

energy conservation:

(3.11)

Converting to the normalized coordinates, the lumped forces and moments at the nodes are 

then given by (3.12) - (3.15). In this case, q(x) is the force per unit length. 

(3.12)

(3.13)
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(3.14)

(3.15)

A point force can be modeled as an infinite pressure acting over zero area such that product 

ΦdS is equal to the point force.  For instance, consider (3.12), where q(ξ) is a point force F0 at some 

point ξ0, the concentrated load Fa would be a1(ξ0)*F0.  

A further generalization for a combination of distributed force q(x) acting in the y direction, 

distributed moment r(x) acting around the z axis, N concentrated loads Fi acting at position ξi

(i=1..N) and K concentrated moments Mi acting at position ξi (i=1..K) can be made. The correspond-

ing lumped forces and moments at the nodes are given by (3.16) - (3.19).

(3.16)

(3.17)

(3.18)

(3.19)

The notation ai’ = dai/dξ. The factors of L and 1/L in (3.16) to (3.19) come from the switch 

of the x coordinates to the normalized ξ coordinates.
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3.2 Gap Topology
In the original implementation of the gap model, a static variable called topology was used 

to describe the configuration of the beam electrodes. When topology = 1, the top beam was to the 

left of the bottom beam (Figure 3-3a) and when topology = 0, the bottom beam was to the left of the 

top beam (Figure 3-3b). This method of describing the beam electrode configuration was limited in 

that the beams must be overlapped and the cannot switch their topologies (i.e. topology = 1 becomes 

topology = 0). On the other hand, to support composable simulation, the gap may appear between 

any parallel plate configuration. Figure 3-3 shows a few possible gap configurations for two beam 

electrodes (top and bottom beams).

To solve this problem this thesis first determines gap topology from the layout configura-

tion, and then updates the gap topology dynamically. This dynamic topology replaces the static 

Figure 3-3. Electrode configurations.
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topology used in the earlier model. In the Verilog-A implementation, the top and bottom beams are 

renamed as beam 1 and beam 2. Four user parameters are sufficient to fully describe the relative 

positions of the beam electrodes (bottom_electrode_offset, overlap, finger_l_t, and finger_l_b). 

bottom_electrode_offset is the distance from the top beam’s left edge to the bottom beam’s left 

edge. It is denoted by i in Figure 3-3. overlap (ii in Figure 3-3) is the region where the two beams 

are overlapped. If there is no overlap (Figure 3-3e,f), overlap is set to 0. finger_l_t is the top elec-

trode length, and finger_l_b is the bottom electrode length. The variable offsetL2Right can be cal-

culated from these four parameters (Listing 3-1).  

Listing 3-1. Static (layout) beam offset calculations.

@ (initial_step) begin
    offsetL2Left = bottom_electrode_offset;
    magoffsetL2Right=finger_l_t+finger_l_b-overlap-
        (abs(offsetL2Left)+overlap);

    if (offsetL2Left >= 0) begin
        if (finger_l_t == overlap) begin
           offsetL2Right = magoffsetL2Right;
        end
        else if (finger_l_b == overlap) begin
           offsetL2Right = -magoffsetL2Right;
        end
        else if (overlap > 0) begin
           offsetL2Right = magoffsetL2Right;
        end
        else begin
           offsetL2Right = offsetL2Left+finger_l_b-finger_l_t;
        end
    end
    else begin
        if (finger_l_t == overlap) begin
           offsetL2Right = magoffsetL2Right;
        end
        else if (finger_l_b == overlap) begin
           offsetL2Right = -magoffsetL2Right;
        end
        else if (overlap > 0) begin
           offsetL2Right = -magoffsetL2Right;
        end
        else begin
            offsetL2Right = -(abs(offsetL2Left)+finger_l_t-finger_l_b);
        end
    end
end
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Since the static beam configuration does not change, it is placed in an @initial block. Using 

the displacement applied at the nodes, the new beam configuration can be calculated (Listing 3-2).

L1 and L2 are the top beam length and bottom beam lengths respectively. xm1_l is the x 

displacement on the left side of the top electrode. xm2_l is the x displacement on the left side of the 

bottom electrode. xp1_l is the x displacement on the right side of the top electrode. xp2_l is the x 

displacement on the right side of the bottom electrode. m and p are the left and right nodes of the 

beams respectively. 1 and 2 indicate whether the variable is used for the top or bottom beam respec-

tively. _l indicates that the variables are local frame variables (Section 3.8). If the top beam moves 

left or the bottom beam moves right, the dynamic offsets dynoffsetL2Left and dynoffsetL2Right

increase. Similarly, if the top beam moves right or the bottom beam moves left, the dynamic offsets 

dynoffsetL2Left and dynoffsetL2Right decrease. The first two lines of Listing 3-2 model this behav-

ior. The dynamic overlap, dynOverlap, is calculated by subtracting the dynamic left and right off-

sets from the top and bottom beams respectively and taking the average. If the dynamic overlap is 

less than zero, the overlap variable, ov, is set to zero, otherwise it is set to dynOverlap. 

Once the dynamic offsets and overlap have been calculated, the endpoints of the overlap 

region can be computed (Listing 3-3). These end points are needed for the lumping of the electro-

static forces. The variables x1l, x2l, x1r, and x2r are the x positions of the top beam left overlap 

Listing 3-2. Dynamic beam offset calculations.

dynoffsetL2Left = offsetL2Left + (-xm1_l+xm2_l);
dynoffsetL2Right = offsetL2Right + (-xp1_l+xp2_l);

dynOverlap = (L1-abs(dynoffsetL2Left)+L2-abs(dynoffsetL2Right))/2.0;
if (dynOverlap > 0) begin
    ov = dynOverlap;
end
else begin
    // there's no overlap
    ov = 0;
end
31



region endpoint, bottom beam left overlap region endpoint, top beam right overlap region endpoint 

and bottom beam right overlap region endpoint respectively. 

The model must then calculate the electrostatic forces and lump the forces to the correct 

nodes. The lumping integrals, (3.12)-(3.15), are performed over the whole beam length, however, 

since the electrostatic force only exists in the overlap region (between x1l and x1r, x2l and x2r), the 

lumping integral only needs to be calculated between these points. 

3.3 Electrostatic Forces
When a voltage is applied across the beam electrodes, the electrostatic force causes the 

beams to bend. The calculation of the electric field in the overlap region does not have an analytic 

solution. Thus the approximation that the beam electrodes are rigid rotated parallel plates is made. 

Though the approximation seems crude, it will be shown that accuracy of up to 2% can be achieved 

by discretizing the problem into more beam and gap elements.

Listing 3-3. Overlap region endpoint computation.

 if (dynoffsetL2Left >=0) begin
        x1l = dynoffsetL2Left;
        x2l = 0;
        if (dynoffsetL2Right >= 0) begin
            x1r = L1;
            x2r = L2-dynoffsetL2Right;
        end
        else begin
            x1r = L1 + dynoffsetL2Right;
            x2r = L2;
        end
    end
    else begin
        x1l = 0;
        x2l = -dynoffsetL2Left;
        if (dynoffsetL2Right >= 0) begin
            x1r = L1;
            x2r = L2-dynoffsetL2Right;
        end
        else begin
            x1r = L1 + dynoffsetL2Right;
            x2r = L2;
        end
    end
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3.3.1 Rotated Parallel Plate Approximation
A rotated parallel plate approximation is made in the overlap region (Figure 3-4). In order 

to calculate the equivalent parallel plate representation, the gap, g, and the angle of rotation, theta0, 

must be calculated. To find the rotation angle theta0, the angle of the top and bottom beams in the 

center of the overlap region is averaged. The angle is found by taking the derivative of the beam 

basis function and evaluating it a a point along the x axis. Using the variables x1l, x1r, x2l, x2r and 

the beam shape functions, the y displacement of the endpoints of the overlap region (y1l, y1r, y2l, 

y2r) can be calculated. Listing 3-4 shows the Verilog-A implementation of these calculations. The 

function topBeamY calculates the y displacement of the beam at a point x, where x is the last param-

eter of the function. Similarly, the function topBeamAngle calculates the angle of the beam at a 

Figure 3-4. Rotated parallel plate approximation.

x1l, y1l
x1r, y1r

x2l, y2l

x2r, y2r

theta0g

Listing 3-4. theta0 and gap calculation.

y1l = topBeamY(ym1, yp1, am1, ap1, L1, x1l);
y1r = topBeamY(ym1, yp1, am1, ap1, L1, x1r);
y2l = topBeamY(ym2, yp2, am2, ap2, L2, x2l);
y2r = topBeamY(ym2, yp2, am2, ap2, L2, x2r);

// get the angle at the midpoint
ang1mid = (topBeamAngle(ym1,yp1,am1,ap1,L1,(x1l+x1r)/2.0));
ang2mid = (topBeamAngle(ym2,yp2,am2,ap2,L2,(x2l+x2r)/2.0));

// the average angle of the beams
theta0 = (ang1mid + ang2mid)/2.0;

// find the endpoint which has the smallest gap
dy_l = min((y1r-y2r+gap),(y1l-y2l+gap)); 
dy = dy_l*cos(theta0);
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point x. The gap in the local frame (g in Figure 3-4, dy_l in the Verilog-A code) is chosen to be the 

minimum of the gap at the left and right side of the overlap region. Since the gap is calculated in 

the local frame, the rotated parallel plate gap (dy) is calculated by multiplying dy_l by cos(theta0). 

See Section 3.8 for an explanation of the frames of reference.

3.3.2 Electrostatic Force Equation
By making a rotated parallel plate approximation, the electrostatic force between the two 

beam electrodes is simply the electric force generated by a parallel plate capacitor (3.20). l is the 

length of the overlapped region (Figure 3-3), h is the thickness of the beam electrode, V is the volt-

age across the beam electrodes, g is the distance between the two beam electrodes, and εo is the per-

mittivity of free space. 

(3.20)

The Verilog-A implementation for the parallel plate electrostatic force is shown in Listing 

3-5. Since the force must be lumped to the nodes of the gap model, the electrical force per unit 

length is calculated here and will be used in the lumping integral (Section 3.6). 

In Listing 3-5, the voltage between the two beams, v, is approximated as the average of the 

voltage at the left and right ends of the beam. thickness is the thickness of the beams (w in (3.20)) 

and dy is the gap between the two beams (g in (3.20)).

Felec
εolhV2

2g2
----------------=

Listing 3-5. Electrostatic force per unit length.

v = (V(va_t,va_b)+V(vb_t,vb_b))/2.0;
v_squared = pow(v,2);

Felec = -0.5*`eps0*thickness*v_squared/pow(dy,2);
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3.4 Damping
Two types of damping are modeled in NODAS: Couette and squeeze-film damping. The 

damping caused by the two beams sliding past each other while keeping the gap constant (in the x

direction for Figure 3-5) is called Couette damping. Since the beam model has sufficient informa-

tion to calculate the Couette damping force, it handled in the beam models. Squeeze film damping 

occurs when there is a changing gap between two beams (or two plates). When the gap decreases, 

the air between the two beams squeezes out and when the gap increases, air fills the new volume 

between the two beams. Since squeeze-film damping requires a gap, it is handled in the gap model. 

In the case of the gap model, a squeeze film damping force is generated when the beams move in 

the y direction (Figure 3-5). 

The equation for squeeze film damping is given in (3.21). 

(3.21)

where h is the beam thickness and l is the beam length. g is the instantaneous gap between the two 

beam electrodes (dy in the gap model Verilog-A code).  is the velocity of the beam. µ is the vis-

cosity of air and K is a factor which depends on the geometry of the beam. For a beam with w = l, 

K=0.42. The Verilog-A implementation of (3.21) is shown in Listing 3-6. Kdamp is the factor K, ov

is the length of the overlap (l in (3.21)), and gap is the gap (g in (3.21)). thickness is the thickness 

Figure 3-5. Squeeze film damping.
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of the beam (w in (3.21)). ddt(dy) is the time derivative of the gap (i.e. the velocity). Since the forces 

must be lumped to the ends of the beams, the force per unit length is used for Fy_damping. There-

fore l3 (ov3) becomes l2 (ov2). 

3.5 Contact Model
Figure 3-6 shows a canonical gap problem. The top beam electrode is connected to a spring 

whereas the bottom beam electrode is anchored. As the voltage between the beams increases, the 

gap between the two beams decreases. If sufficient voltage is applied, the beams may eventually 

come into contact with each other. When two-thirds of the original gap remains, the system 

becomes unstable and the top beam snaps in and contacts the bottom beam.

The electrostatic force is proportional to the gap squared (3.20). As the voltage increases, 

the force versus gap curve moves away from the origin (Figure 3-7a). Assuming a linear contact 

spring model [17], use of the 1/g2 relationship produces valid solutions in both the first and second 

quadrants, however, the only valid solutions are in the first quadrant (positive valued gaps). In order 

to prevent the simulator from finding the negative valued gap solution (second quadrant), a contact 

model was developed. The initial model is shown in Figure 3-7a [17]. It was a linear spring constant 

which was a function of the gap. The figure shows the load line plot of the contact model against 

Listing 3-6. Squeeze film damping force per unit length.

Pos(V_dy) <+ ddt(dy);
Fy_damping = Kdamp*visc_air*ov*ov*thickness/pow(dy,3)*Pos(V_dy);

Figure 3-6. Canonical gap problem.
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the electrostatic force. As can be seen, valid stable first quadrant solutions exist in the lowest curves 

(solid line, far right most circles). Two other solutions exist in this case (middle circle and far left 

circle), however, the simulator will find the stable solution in the first quadrant. When the voltage 

is further increased, there are no solutions in the first quadrant (dashed curve, square), the simulator 

will only find the non-physical solution in the second quadrant. 

In order to force the simulator to find a solution in the first quadrant, an improved contact 

model was developed (Figure 3-7b). First, the electrostatic force was capped at a maximum value, 

Fe,max, calculated from value of a maximum electric field, a user-defined process parameter. (3.22)

shows the equation for the maximum electrostatic force. The quantity  is the magnitude of the 

electric field across the gap (assuming a parallel plate configuration with no fringing electric fields). 

Therefore,  can be considered the maximum electrical field, Emax. In the Verilog-A imple-

mentation, Emax is called elec_breakdown. 

(3.22)

Next, minimum gap parameters, gmin and gcontact, were created. gmin is the absolute mini-

mum gap possible (Figure 3-8c) and it is forced to intersect Fe,max. gcontact is the point at which the 

two beams come into contact (Figure 3-8b). gcontact can be thought of as an insulating layer sur-

rounding the composite metal beam. It is this insulating layer which provides the restoring force 

Fcontact

F

g

V increasing

Figure 3-7. Electrostatic Force contact model: force vs. gap plots.
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when the two beams come into contact. The new contact model is a line defined by the two points: 

(gmin, Fe,max), (gcontact, 0). There is no longer a solution in the second quadrant because the 1/g2

curves are capped at Fe,max and cannot intersect with the contact force load line.

The Verilog-A implementation of the contact model is shown in Listing 3-7. The variable 

FeMax is the maximum electrostatic force per unit length (Fe,max/l). Since FeMax is calculated from 

Figure 3-8. gcontact and gmin
An insulating layer was created for the contact model. This layer provides a reaction force when the 
beams come into contact. (a) normal gap, no contact. (b) gap when first in contact, gcontact. (c) minimum 
possible gap, gmin.

g0 gcontact gmin

(a) (b) (c)

insulator composite metal beam

Listing 3-7. Contact model.

@ (initial_step) begin
FeMax =  -0.5*`eps0*thickness*pow(elec_breakdown,2);
// slope of the contact force (per unit length)
slope = FeMax/(gmin - gcontact);

end

// check to see if there is a gap
if (dy<gcontact) begin

// contact force
Fy_contact = slope*(dy-gcontact);

end
else begin

// there is a normal gap, no contact
Fy_contact = 0;

end

// if the electric force per unit length
// is greater than the max electric force, set the force to FeMax
if (abs(Felec) > abs(FeMax)) begin

 Fl = FeMax;
end
else begin

 Fl = Felec;
end
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a user-defined process parameter, the breakdown electric field value, it does not have any time 

dependence and therefore can be calculated in the initial step. Similarly, the slope of the contact 

force line is constant since gmin and gcontact are user defined parameters that have no time depen-

dence. The first if/else block checks to see if the instantaneous gap solution (dy) is less than gcon-

tact. If it is, the beams are in contact and the contact model is activated, otherwise there is no contact 

force. The second if/else block imposes the maximum electrostatic force. If the electrostatic force 

per unit length exceeds FeMax, the force per unit length, Fl, is set to FeMax, otherwise it is set to 

FeMax.

3.6 Gap Model Lumping Equations
The electrostatic, damping and contact forces must be lumped to the nodes of the model. 

The integral of the force per unit length of these forces over the beam shape function accomplishes 

this task (Section 3.1). Listing 3-8 shows an analog function if11 which is the definite integral of 

the beam basis function in (3.4). The other three beam shape functions can be found in the electro-

static gap Verilog-A code listed in Appendix A. 

Listing 3-9 shows the equations for the lumped forces and moments in the rotated parallel 

plate frame of reference. See Section 3.2 for a description of x1l, x2l, x1r, x2r. In the rotated parallel 

plate approximation, the damping and contact force per unit lengths are not dependent on the posi-

tion along the beam. Therefore, these forces can be moved outside of the lumping integrals, thus 

simplifying the calculation. Fsum is the force balance equation that sums the electrostatic, contact 

and damping forces per unit length.

Listing 3-8. Beam shape function integral example.

analog function real if11;
    input L,x;
    real L,x;
    if11 = x - pow(x,3)/pow(L,2) + pow(x,4)/(2.0*pow(L,3));
endfunction
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3.7 Lateral Electrostatic Force
If an overlap region is non-zero and does not completely overlap either beam, an electro-

static force in the x direction exists. The force is:

(3.23)

Since a parallel plate approximation is made, C is a function of the overlap length l (region 

ii in Figure 3-3). Therefore, the derivative is taken with respect to the change in the overlap region. 

The capacitance is given by (3.24). 

(3.24)

where h is the thickness, l is length of the overlap region, g is the gap and εo is the permittivity of 

free space. (3.23) can then be reduced to:

(3.25)

The Verilog-A implementation of the lateral electrostatic force is shown in Listing 3-10. 

Fxd_l is the lateral electrostatic force per unit length. var1 is a variable used to reduce redundant 

Listing 3-9. Lumped forces and moments.

Fsum = Fl-Fy_contact-Fy_damping;

Fa1_l = -Fsum*(if11(L1,x1r) - if11(L1,x1l));
Ma1_l = -Fsum*(if21(L1,x1r) - if21(L1,x1l));
Fb1_l = -Fsum*(if31(L1,x1r) - if31(L1,x1l));
Mb1_l = -Fsum*(if41(L1,x1r) - if41(L1,x1l));
Fa2_l = Fsum*(if11(L2,x2r) - if11(L2,x2l));
Ma2_l = Fsum*(if21(L2,x2r) - if21(L2,x2l));
Fb2_l = Fsum*(if31(L2,x2r) - if31(L2,x2l));
Mb2_l = Fsum*(if41(L2,x2r) - if41(L2,x2l));
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2
--- d

dx
------ CV2( ) 1

2
---V2dC
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Listing 3-10. Lateral electrostatic force.

var1 = `eps0*thickness/(dy);
Fxd_l = 0.5*v_squared*var1;
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calculations, eps0 is the permittivity of free space, thickness is the thickness of the beam, dy is the 

instantaneous rotated parallel plate gap (shown as g in (3.23) and (3.24)) and v_squared is the volt-

age squared.

3.8 Frames of Reference
The gap model uses three frames of reference: the chip (layout) frame, the local frame, and 

the rotated frame. The chip frame is the frame where the individual atomic elements (beams, plates, 

gaps, etc.) are drawn. The equations for all NODAS atomic elements operate in the local frame [17]. 

Finally, the rotated frame is the frame used to calculate the electrostatic forces for the rotated par-

allel plate approximation (Figure 3-4). 

To transform the coordinates from the chip frame to local frame, (3.26) is used. To trans-

form the forces from the local frame to chip frame (3.27) is used. Similarly, to transform the forces 

from the rotated frame to the local frame, (3.27) is used. (3.28) and (3.29) give the rotation matrix 

and its inverse for a 2D coordinate system. θ is the rotation angle. 

(3.26)

(3.27)

Figure 3-9. Frames of reference.
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(3.28)

(3.29)

In Figure 3-9 and (3.26) (3.27), x’ and y’ correspond to ylocal and xlocal, whereas x and y

correspond to xchip and ychip. An example of the rotation from the chip frame to the local frame is 

shown in first two lines of Listing 3-11. Similarly, the rotation from the local frame to the chip frame 

is shown in the last two lines of Listing 3-11. cos_dc and sin_dc are the calculated cosine and sine 

of the rotation angle between the chip and local frames. finger_number is a user parameter which 

multiplies the force and moments by that number. The default value is set to 1. 

3.9 Electrical Modeling
The total current crossing the gap is given by (3.30). 

(3.30)

where C is the total parallel plate capacitance between the two beam electrodes (3.24). The total 

current must be lumped to both nodes of the gap model. A rigid plate approximation is used to lump 

these currents [17]. The lumped currents are given in (3.31) and (3.32).

(3.31)

R θcos θsin
θsin– θcos

=

R 1– θcos θsin–
θsin θcos

=

Listing 3-11. Frame of reference coordinate transforms.

// rotate positions from chip frame to local frame
xm1_l = cos_dc*Pos(xa_t[0]) + sin_dc*Pos(xa_t[1]);
ym1_l = cos_dc*Pos(xa_t[1]) - sin_dc*Pos(xa_t[0]);

// rotate forces from local frame to chip frame
F(xa_t[0]) <+  (cos_dc*Fa1x-sin_dc*Fy_1l)*finger_number;
F(xa_t[1]) <+  (sin_dc*Fa1x+cos_dc*Fy_1l)*finger_number;

Itotal
dq
dt
------ d CV( )

dt
----------------= =

Itip Itotal 1 ov
2l
------– 

 =
42



(3.32)

where l is the length of the beam electrode, ov is the length of the overlap region. Itip is the current 

that is flowing between the overlapped ends of the beam electrodes. Iattach is the current flowing 

between the other two ends of the beam electrodes. In Figure 3-10a, Itip is the current flowing from 

node b_t to a_b and Iattach is the current flowing from a_t to b_b. If both beams are completely over-

lapped (i.e. ov = l), half of the total current flows through each node of a given beam.

The Verilog-A implementation of the electrical model is shown in Listing 3-12. var1 and 

var2 are variables used to reduce redundant calculations (Appendix B.8). finger_l_t is the electrode 

length of the top electrode. ddt(q) is the time derivative of the charge stored on the capacitor (i.e. 

Iattach Itotal
ov
2l
------ 
 =

Figure 3-10. Current flows. Iattach (dashed line), Itip (solid line).
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Listing 3-12. Electrical model.

var1 = `eps0*thickness/(dy);
cap = var1*ov;
q = v * cap;

var2 = ov/2.0/finger_l_t;
I_tip    = ddt(q)*(1-var2);
I_attach = ddt(q)*var2;

// the tip and the attached points depend on the dynoffset vars
if (dynoffsetL2Left >=0) begin
   I(vb_t,va_b) <+ I_tip;
   I(va_t,vb_b) <+ I_attach;
end
else begin
   I(vb_t,va_b) <+ I_attach;
   I(va_t,vb_b) <+ I_tip;
end
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the current). The if/else block assigns the current based on the beam configuration. The if block cor-

responds to Figure 3-10a and the else block corresponds to Figure 3-10b. 

3.10 Special cases
Electrostatic forces only exist when the overlap region is greater than zero. The gap model 

must capture this requirement. Listing 3-13 shows the Verilog-A code which calculates the electro-

static force per unit length, contact force per unit length, and gap. If there is no overlap, the force 

per unit lengths are set to 0 and the gap (dy) is set to the original gap. dy must be set to a value to 

prevent hidden states (Appendix B.2). When the overlap region exists, the calculations listed in 

Listing 3-4-Listing 3-5, and Listing 3-7 are performed. The code is not re-listed here to save space. 

Similarly, when transforming the forces from the rotated frame to the local frame, care must 

be taken to ensure that the forces are correctly captured (Listing 3-14). Since lateral electrostatic 

forces in the x direction can exist, the code must be able to determine if there is a lateral electrostatic 

force. If the overlap region exists and is not equal to either beam’s length, then the translation of 

forces proceeds as detailed in Section 3.8. If however, the overlap region does not exist, or the over-

lap region is equal to either beam’s length, there is no lateral force. When there is no overlap region, 

Listing 3-13. Special case: forces only exist when there is an overlap region.

if (ov > 0) begin
   // calculate Felec, dy, Fy_contact, Fl
   ...

end
else begin
   // there is no parallel plate electric field
   Felec = 0;
   // set this to some reasonable number (such as the original gap)
   dy_l = gap;
   dy = gap;
   // there is no contact force
   Fy_contact = 0;
   // there is no force per unit length
   Fl = 0;
end
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all of the forces in the x direction are set to zero and do not show up in the calculation of the forces 

in the y direction in the local frame.

3.11 Electric only gap model
An electric only gap model was created in order to address a simulation speed issue. While 

attempting to simulate a MEMS varactor (Section 4.2) using NODAS, it was determined that a full 

electrostatic and mechanical simulation of this type of structure was too computationally expensive. 

The varactor modeled is shown in Figure 3-11. The capacitor design utilizes both parallel-plate gap 

and area tuning. The capacitor yoke beams provide support for the capacitor fingers. In this design, 

there are 40 capacitor fingers on each yoke beam. There are 10 yoke beams in total, 5 beams are 

connected to a fixed frame and 5 are connected to a movable frame. When the thermal actuators are 

heated, the structure will move left or right, thus changing the overlap of the capacitor fingers (area 

tuning) as well as the gap between the yoke beams (gap tuning). 

Table 3-1 shows the results of the full varactor simulation (40 fingers per frame by 5 frame 

sections, each section has a fixed and movable frame). The DC operation point simulation takes 

over 4 hours on a dual 1GHz UltraSparc III SunFire 280R with 4GB of RAM running SunOS 5.9. 

Listing 3-14. Special case: forces in x direction only exist when there is an overlap.

if ((ov != L1) && (ov != L2) && (ov > 0)) begin
   // translate the forces from the rotated frame to the local frame
   ...
end
else begin
   // the overlap is equal to L1 or L2
   Fxd_l = 0;
   Fa1x = 0;
   Fb1x = 0;
   Fa2x = 0;
   Fb2x = 0;
   // no x component for the y forces
   Fy_1r = cos(theta0)*Fb1_l;
   Fy_1l = cos(theta0)*Fa1_l;
   Fy_2r = cos(theta0)*Fb2_l;
   Fy_2l = cos(theta0)*Fa2_l;
end
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As a simple test, the structure was reduced to a 5x5 (5 fingers per frame, 5 frame sections) and 5x1 

(5 fingers per frame, 1 frame section) to see how the simulation time scaled. When increasing the 

number of nodes, N, the growth rate was determined to be N3.5.

To simplify the problem, the NODAS gap elements were removed and a beam only simu-

lation was run to get a baseline simulation time. Table 3-2 shows the results of that simulation. The 

electromechanical gap model was increasing the simulation time significantly. The growth rate with 

the beam-only simulation was determined to be N1.8.

Table 3-1. Beam and electromechanical gap DC OP simulation time of finger-based MEMS varactor.
Size Nodes Equations Iterations Time (s)

Full Varactor 7051 61914 4 16602

5x5 1843 10851 5 106.6

5x1 439 2477 5 1.17

Table 3-2. Beam only DC OP simulation time of finger-based MEMS varactor.
Size Nodes Equations Iterations Time (s)

Full Varactor 10453 43708 2 43.17

5x5 1777 7354 2 1.29

5x1 379 1592 2 0.1

Figure 3-11. Finger based varactor design, A.Oz. [30]. Area and gap tuning. 
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The simulation time growth rate was unacceptable and it was decided to create a gap model 

with the electrostatic forces and moments removed. This model only contained code to calculate the 

capacitive currents and the effects of externally applied displacements. The simulation time for this 

model is shown in Table 3-3. The growth rate was determined to be N2.2, a significant improvement 

over the full electromechanical gap model.

The cause of the high growth rate in the full electromechanical model seems to stem from 

the fact that the finger based varactor has gap models which act in the x and y directions. It is pos-

sible that a sparse matrix is no longer maintained in this case, causing the simulation time to explode 

as the number of nodes increases.

The electric only gap model should be used in simulations with a large number of nodes 

and where the structure can be assumed to be stiff enough so that the beams do not have significant 

bending. In smaller simulations, the full electromechanical gap model can be used.

3.12 Verification

3.12.1 Contact Model
The canonical gap problem shown in Figure 3-6 is used to verify that the contact model 

functions properly. Figure 3-12 shows the NODAS schematic for the canonical gap problem. The 

original contact model allowed the simulator to find a solution where the gap was negative. Figure 

3-13a is the DC sweep plot showing the gap (y axis) versus voltage (x axis) using the original con-

tact model. The initial gap is 2 µm and the voltage is swept from 0V to 10000V. As the voltage is 

Table 3-3. Beam and gap (electrostatic only) DC OP simulation time of finger-based MEMS varactor.
Size Nodes Equations Iterations Time (s)

Full Varactor 7051 60394 3 151.38

5x5 1213 8005 3 1.96

5x1 307 1829 2 0.16
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increased, the gap decreases, however, the gap becomes negative at high voltages. Figure 3-13b is 

the same DC sweep simulation but using the new contact model. As can be seen, the simulator only 

finds the positive gap solutions. 

Figure 3-12. NODAS schematic for canonical gap problem.
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Figure 3-13. Contact model simulation plots: gap versus voltage. 

(a)

(b)

2 µm

0 µm

2 µm

0 µm

0 V 10000 V

0 V 10000 V

(a) original contact model showing that a negative gap is found when sufficient voltage is applied. (b) 
revised contact model showing that the simulator does not find the negative gap solution. (c) 0V - 100V 
plot of (b) showing that the snap-in voltage occurs at 67.5V for this problem.
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3.12.2 Fixed-Fixed Beam
To verify the gap model, a fixed-fixed beam (Figure 3-14) with electrostatic actuation was 

created in NODAS and ANSYS, a finite element package [2]. The fixed-fixed beam problem is a 

good test case because two important physical factors can be verified: large axial forces and non-

parallel electric fields. As the voltage is increased between the fixed-fixed beam and the bottom 

electrode, the beam bends toward the electrode, eventually coming into contact with the electrode. 

The results of NODAS simulations of a beam that is 100 µm long, 2 µm wide, 2 µm thick, with a 2 

µm gap, and with Young’s Modulus of 170 GPa is shown in Figure 3-15. The NODAS schematic 
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Figure 3-14. Fixed-Fixed beam with electrostatic actuation.
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Figure 3-15. Fixed-Fixed beam mode shapes. 
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100 µm long beam, 2 µm wide, 2 µm thick, 2 µm gap, E = 170 GPa. Voltages: 140V, 320V, 440V. 128 
NODAS beam/gap segments were used.
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for this problem has 128 NODAS beam and 128 NODAS gap elements. These dimensions are typ-

ical for a polysilicon MEMS process such as MUMPS. 

The ANSYS tutorial provides a sample electromechanical simulation (Appendix C.1), the 

results of which were used to compare to the NODAS simulation. Unlike the previous example 

shown in Figure 3-15, the beam in this example is thicker, so as to make the beam more compliant, 

and the gap is smaller. Both of these properties make this beam suitable to be used as a MEMS 

switch. Whereas the pull-in voltage in the previous example was between 320V and 440V, the pull-

in voltage for this MEMS switch is around 16.5V and 17.5V. The beam’s properties are: L = 80 µm, 

W = 0.5 µm, thickness = 10 µm, E = 169 GPa, ν = 0.25. In the ANSYS model, the Plane42 (with 

plane stress option), Trans109, and Contac12 elements were used. To model the system and to com-

pare the accuracy of the NODAS model with the ANSYS model, the length of the beam was broken 

up into 2, 4, 8, 16, 32, 64, and 128 NODAS beam and gap segments. Figure 3-16 shows an example 

of 4 beam and gap segments.

Table 3-4 lists the percentage difference of the y displacement results between NODAS and 

ANSYS. The comparison was made at the center of the fixed-fixed beam, though the results are 

similar along the length of the beam. The percentage difference of the displacements is defined as:

Figure 3-16. 4 NODAS beam and gap segments subcell.
This subcell is used for the 4, 8, 16, 32, 64, and 128 NODAS beam and gap element fixed-fixed beam 
simulations. The top nodes of the gap models are anchored to model the fixed electrode. Note that the 
schematic shown here models the fixed electrode at the top whereas in Figure 3-14, the fixed electrode 
is at the bottom. The displacements reported by the NODAS simulations were transformed in 
MATLAB by subtracting the displacements from the initial gap.

NODAS beam element

NODAS electromechanical gap element NODAS anchor element
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(3.33)

Two voltage points are given. At 16.5V, the system is near the instability point and on the 

verge of snap-in. In the 2, 4, and 8 beam/gap segment cases, the NODAS model reported that the 

beam had snapped in, thus resulting in the high percentage difference between NODAS and 

ANSYS. As more segments were added, the NODAS model was able to model the electrostatic 

force and the beam bending more accurately. At 14.5V, the beam still exhibits a large deflection, 

but it not near the snap-in point. This case demonstrates the accuracy of NODAS when operating 

away from the snap-in voltage. Using 8 or more beam/gap segments results in accuracy of greater 

than 9%. Thus, if high accuracy is required, at least 8 beam/gap segments should be used. 

The simulation times for the NODAS and ANSYS models are given in Table 3-5 and 

Table 3-6. The accuracy results in Table 3-4 were calculated using the 481 element ANSYS model. 

Accuracy comparisons between NODAS and ANSYS were also performed using the finest mesh 

possible (6156 elements) given the constraints of the computer used for the ANSYS simulations. 

The change in accuracy between NODAS and the ANSYS 481 and 6156 element meshes was 

approximately an additional 1%-5% difference. Even with the finest ANSYS mesh for this problem, 

Table 3-4. Fixed-Fixed beam: NODAS versus ANSYS. Comparison at the center of the beam.
Number of
NODAS

Beam/Gap
Segments

481 ANSYS
Elements

% difference
at 14.5V

481 ANSYS
Elements

% difference
at 16.5V

(near pull-in 
point)

6156 ANSYS
Elements

% difference
at 14.5V

6156 ANSYS
Elements

% difference
at 16.5V

(near pull-in point)

2 29.54 167.97 30.85 172.58

4 15.35 141.76 16.51 145.92

8 8.82 142.44 9.92 146.61

16 4.96 15.32 6.01 17.33

32 2.87 6.81 3.91 8.65

64 1.82 3.57 2.84 5.35

128 1.33 2.16 2.34 3.91

yANSYS y– NODAS
yANSYS

----------------------------------------- 100⋅
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NODAS achieves a accuracy of within 4% (with 128 NODAS beam/gap segments) with a 4x reduc-

tion of simulation time.

Table 3-5. NODAS simulation time versus # of NODAS elements for the fixed-fixed beam example. 
Simulations were run on a 2GHz Pentium IV machine with 1GB of RAM running Windows 2000 
Professional.
# of NODAS beam/gap segments # of Nodes # of Equations Simulation time (s)

2 25 117 0.03

4 53 259 0.07

8 101 506 0.14

16 197 1000 0.35

32 389 1988 1.23

64 773 3964 2.11

128 1541 7916 7.41

Table 3-6. ANSYS simulation time versus # of ANSYS elements for the fixed-fixed 
beam example. Simulation were run on a dual 1GHz UltraSparc III Sun-Fire 280R 
with 4GB RAM running SunOS 5.9.
# of mesh Elements # of Nodes Simulation time (s)

481 405 1

805 809 3

1441 1127 5

4005 3213 15

6156 4797 29
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4Application Examples

The goal of this chapter is to introduce several examples of MEMS devices which can be 

simulated using NODAS. Since the NODAS models are composable, complex devices can be cre-

ated that yield accurate results. The types of devices that can be simulated are not limited by the 

examples shown in this chapter. As long as the device can be broken up into beam, plate and gap 

elements (Figure 1-2), it can be simulated in NODAS. Three examples will be discussed in this 

chapter: a thermal actuator, a varactor, and a resonant mixer. The thermal actuator example will 

demonstrate the use of the thermal beam model. The varactor and resonant mixer examples will 

demonstrate the use of the beam and gap models. 

4.1 Thermal Actuator
The thermal extensions to the NODAS beam model described in Chapter 2 enable the sim-

ulation of electrothermal physics involved in a thermal actuator. A CMOS-MEMS thermal actuator 

is an example of how the NODAS beam model can be used to model thermal effects. The CMOS-

MEMS thermal actuator exploits the differences in the thermal coefficient of expansions (TCEs) of 

the different materials in a CMOS beam stack. Figure 4-1 shows the layout view of a thermal actu-

ator designed by A. Oz [30]. When a temperature is applied, the actuator tip will move either left or 

right depending on the thermal coefficient of expansions and the metal layer offsets. By offsetting 

the metal position in the beam cross section, the effects of the thermal bending moment can be tuned 

to get the desired tip displacements. This thermal actuator is composed of four quadrants connected 

by plates. Each quadrant has five parallel beams and each beam is divided into three sections. Half 
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way through the beam length of a single actuator leg, the direction of the offset changes (see dotted 

boxes in Figure 4-1). Figure 4-2 shows the cross section view of a single actuator beam leg. Half of 

the beam’s length has a left offset for metal 1 and metal 2 and the other half has a right offset. For 

this design, the metal 3 width is 1.2 µm and the offsets of the metal 1 and metal 2 layers are 0.6 µm. 

The widths of metal 1 and metal 2 are 0.6 µm. At the center of the beam’s length, all three metal 

layers span the 1.2 µm width of the beam.

The NODAS schematic is of Actuator 1A is shown in Figure 4-3. As shown, each actuator 

beam length is split into three sections. The top and bottom sections of the length contain metal 

stacks where metal 2 and metal 1 are either offset to the left or to the right. The center beam is a 

small 2 µm region where the metal 3, metal 2, and metal 1 layers span the whole 1.2 µm width. A 

Figure 4-1. Thermal Actuator 1A layout in Jazz 0.35 process. A. Oz [30].
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NODAS DC temperature source is used to apply a temperature to the structure. The three frames 

connecting the actuator beams all have the same widths and lengths. 

The actuator’s beam length, actl, is 200 µm, and the width, actw is 1.2 µm. The length of 

the frame connecting the five actuator sections, actfl, is 20 µm, and it’s width is 12 µm. The frame 

Figure 4-2. Cross section views of the offset metal layer stack in Actuator 1A.
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Figure 4-3. Thermal Actuator 1A NODAS schematic.
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section connecting the two halves (left and right groups of five), actmidl, has a length of 16 µm and 

a width, actmidw, of 12 µm. The thickness used for the simulations is 10 µm. The characteristic tem-

perature, T0, was experimentally determined to be 367K. For the simulations, the temperature coef-

ficients of expansion, α, for metal and oxide are 28.3 µm/K and 0.4 µm/K respectively.

Table 4-1 summarizes the results of the measured actuator tip deflection, Coventor finite 

element simulation [1], and NODAS simulation displacements. The reported displacements are rel-

ative displacements from the self-assembly position, which is found at room temperature (294K). 

The original data and Coventor simulations can be found in [30]. The percentage difference in the 

relative displacements between Coventor and NODAS is less than 10%. The differences between 

NODAS and the experimental measurements can be accounted for by the uncertainty in the thermal 

coefficients of expansion, the exact value of the characteristic temperature as well as the actual fab-

ricated dimensions. 

4.2 Varactor
A varactor is a variable capacitor. A CMOS-MEMS implementation of a varactor was 

designed by A. Oz [30]. The NODAS schematic of this varactor uses both the electrostatic gap 

Table 4-1. Thermal Actuator 1A NODAS versus measured. Displacements are relative to self 
assembly displacement at T=294K. For NODAS and Coventor simulations, αmetal = 28.3 µm/K, αox = 
0.4 µm/K, and T0 = 367K.

Temperature
(K)

Measured
Displacement 

(µm)

Coventor
Displacement 

(µm)

NODAS
Displacement 

(µm)

NODAS 
simulation time 

(s)

325K 5.5 4.3 4.2 0.11

350K 10.5 8.3 7.6 0.11

375K 16.0 12.3 11.0 0.11

400K 21.0 16.4 17.8 0.11

425K 25.5 20.5 21.2 0.11
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model as well as the 2D linear beam model with thermal effects. Figure 4-4 shows the layout view 

of this varactor. It is a beam-based design. The gap between the capacitor beam fingers can be 

changed (gap tuning) by heating the thermal actuators, causing the movable frame to move left or 

right. The minimum capacitance occurs when the gap between the beams are equally spaced. Elec-

trically, the signal enters from the upper left corner of the device. The movable frame is connected 

to electrical ground. The beam stack in the capacitor uses metal 1 through metal 4. The beam stack 

in the actuators use poly, metal 1, metal 2 and metal 3, however, only metal 2 and metal 3 are con-

nected to ground. The poly in the actuators is used for thermal heating and metal 1 is used to supply 

the current to the poly resistors. The bottom thermal actuator is used to latch the capacitor into a 

high capacitance or low capacitance value. This latch mechanism is not modeled in this NODAS 

simulation. Metal 1 and metal 2 in the actuators are offset to the left or to the right edge of the beam 

cross section (see Section 4.1) in order to provide a thermal bending moment at room temperature. 

Figure 4-4. Layout view of beam based varactor design, Jazz 0.35 process [30].
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This moment causes the capacitor structure to move to it’s self-assembled position after the struc-

ture is released. 

A hierarchy of subcells with NODAS elements is used to model the varactor. The thermal 

actuator subcell models the offset metal beams used for thermal actuation. The capacitor subcell is 

broken up into two levels of hierarchy. The first level captures the number of capacitor beam fin-

gers. It instantiates the common subcell for the capacitor section. Figure 4-5 shows the graphic rep-

resentation of the capacitor beam finger subcell. It models one beam finger mounted on the fixed 

frame and one beam finger mounted on the movable frame. It uses two gap models to capture the 

electrostatic and capacitive effects between the capacitor beam fingers. Figure 4-6 shows the hier-

archy of the varactor simulation.

A DC operating point and a S-parameter analysis were performed in Cadence Spectre. 

Table 4-2 shows the simulation time versus the number of nodes for each analysis type. The S-

parameter simulation was swept from 100 MHz to 6GHz using the default conservative step size 

option in Spectre (20 total steps for this simulation). 

Table 4-2. DC OP and S-parameter simulation time.The S-parameter simulation was run from 
100 MHz to 6GHz. Simulations were run on a dual 1GHz UltraSparc III Sun-Fire 280R with 
4GB of RAM running SunOS 5.9. 

Simulation Type Simulation Time (s) # of Nodes # of Equations

DC OP 3.76 819 16097

S-parameter 7.54 819 16097

Figure 4-5. Capacitor finger subcell.
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Both the experimental setup and the NODAS simulation used a single port S-parameter 

analysis. Therefore, the parameter of interest is S11. From the S-parameter analysis, the quality 

factor Q, capacitance C, and resistance R can be extracted from their respective definitions in (4.1)-

(4.3). The S-parameter analysis in Spectre can also calculate Z-parameters. The Z11 parameter was 

extracted from the S-parameter analysis and was used to calculate the quality factor. 

(4.1)

Figure 4-6. NODAS schematic hierarchy of varactor design in Jazz process. 
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(4.2)

(4.3)

However, when Z-parameters are not readily available, S-parameters can be converted to 

Z-parameters. To convert from a single port S-parameter (S11) to a single port Z-parameter (Z11) 

the equation shown in (4.4) is used. Rs is the source resistance of the port used in the S-parameter 

analysis. 

(4.4)

The NODAS simulation was set so that one side of the gap (gap1 in Figure 4-5) was 1 µm 

and the other side (gap2 in Figure 4-5) was 5 µm (a capacitance value of approximately 389fF). The 

experimentally measured quality factor [30] is compared to the quality factor calculated from the 

NODAS simulation and to a simple RC model developed by A. Oz in Figure 4-7. The RC model is 

a π-model, where half of the capacitance is lumped to each side of the beam. A single resistor is 

used to model the resistance of each beam. 

The trend of the quality factor plot is similar between the measured and simulated values. 

The resistance and capacitance values affect the quality factor measurements. For instance, increas-

ing the resistance in the NODAS model, the quality factor will decrease. A more accurate model 

can be achieved if the exact values of the sheet resistance of the metal layers and the exact gaps 

between the capacitor beam fingers were known. Also, the measured data does not de-embed the 

on-chip probe pads, which adds a loss in Q in the measured data. The NODAS and RC models 

match very closely.

By heating the thermal actuators, the gap between the capacitor beam fingers will change. 

The initial layout gaps are 2 µm and 4 µm (see Figure 4-8a). The maximum capacitance occurs 

C 1
2πf Z11( )imag( )
---------------------------------------=

R Z11( )real=

Z11 Rs
1 S11+
1 S11–
-----------------=
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when the minimum gap is reached on one side (0.2 µm and 5.8 µm, Figure 4-8c). The minimum 

capacitance occurs when the gaps are equal (3 µm each, Figure 4-8b).

When the structure is released, the beam fingers will move right to it’s self-assembled posi-

tion at room temperature (294K). Using a characteristic temperature (T0) of 367K and the capacitor 

dimensions for the 16 beam Jazz process varactor (Figure 4-4), the temperature versus capacitance 

Figure 4-7. Varactor quality factor.
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relationship shown in Table 4-3 can be extracted from a S-parameter analysis. The displacement 

reported is from the layout configuration (Figure 4-8a). Therefore, the maximum capacitance 

occurs when the displacement is -1.8 µm and the minimum capacitance occurs when the displace-

ment is 1 µm. 

Though the application of a DC temperature source in the simulation environment is one 

way to cause the actuator to move, the fabricated varactor uses electrothermal heating to raise the 

temperature of the actuator. The same simulation which produced the results of Table 4-3 was rerun 

but with a voltage source connected across the poly resistors embedded in the actuators. The poly 

resistors in this varactor was fabricated with a silicide block, which is used to create higher resis-

tance unsilicided poly resistors. The sheet resistance of silicided poly is approximately 5 ohms/

square, whereas unsilicided poly has a sheet resistance of approximately 100 ohms/square. The 

voltage across the poly resistors was swept from 0V to 4.55V. T0 was assumed to be 367K, the sheet 

resistance of unsilicided poly was set to 100 ohms/square. A DC temperature source set to 294K 

Table 4-3. Capacitance versus temperature for the Jazz 16 beam varactor. T0 was assumed to be 367K. 
Capacitance was calculated at 3GHz. The displacement is relative to the layout position. Positive 
displacements move right and negative displacements move left.

Temperature (K) Displacement (µm) Capacitance (fF) Q Resistance (Ohm)

294 1.345 230.0 87.8 2.63

300 1.235 228.2 88.5 2.63

312 1.014 226.9 89.1 2.62

325 0.774 228.1 88.6 2.62

350 0.313 237.9 84.2 2.65

375 -0.147 260.8 75.4 2.70

400 -0.608 306.8 62.3 2.77

425 -1.069 406.5 45.2 2.89

450 -1.530 714.0 24.2 3.04

465 -1.806 1611 10.4 3.16
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was connected to the anchors of both actuators. This temperature source is a boundary condition for 

the simulation and acts as a heat sink. Table 4-4 shows the capacitance versus voltage data.  

The plot corresponding capacitance versus voltage plot is shown in Figure 4-9.

4.3 Resonant Mixer
MEMS devices can be used as resonators. Resonators can be found in system level devices 

such as mixers (Figure 1-2), filters, and accelerometers. In the case of mixers and filters, electrical 

signals (RF frequency, for example), are applied to the drive electrode of a MEMS device. The 

signal is coupled electrostatically across an air gap to the resonator which can filter out and mix sig-

nals at specific frequencies. The filtered and mixed signals can be read out at the sense electrode. 

Figure 4-10 shows an SEM of a resonant mixer (“Device 6”) designed and tested by J. Brotz and J. 

Stillman [29].

A first order NODAS schematic of the resonant mixer is shown in Figure 4-11. Even 

though the drive and sense electrodes are on curl matched frames which can vibrate, this NODAS 

Table 4-4. Capacitance versus voltage for the Jazz 16 beam varactor. T0 was assumed to be 367K. The 
sheet resistance of poly was set to 100 ohms/square. Capacitance was calculated at 3GHz. The 
displacement is relative to the layout position. Positive displacements move right and negative 
displacements move left. The voltage was swept from 0V to 4.55V.

Voltage (V) Capacitance (fF) Displacement (µm) Q Resistance (Ohm)

0.00 229.6 1.345 87.9 2.63

0.50 229.1 1.307 88.1 2.63

1.00 227.9 1.193 88.7 2.63

1.50 226.9 1.002 89.1 2.62

2.00 228.5 0.735 88.5 2.63

2.50 235.5 0.392 85.3 2.64

3.00 253.4 -0.027 78.1 2.68

3.50 296.0 -0.523 65.0 2.76

4.00 416.4 -1.095 44.0 2.90

4.50 1255 -1.743 13.5 3.13

4.55 1695 -1.812 9.9 3.17
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model assumes that the drive and sense electrodes are immovable. Therefore, this NODAS sche-

matic only captures the effect of the cantilever device. 2D NODAS linear beams and the full elec-

tromechanical gap model were used to model this system. For improved accuracy, 8 NODAS beam 

segments were used to model the cantilever beam section. In order to probe the displacements at the 

Figure 4-9. Capacitance versus voltage plot of the Jazz 16 beam varactor.
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center or each side of the box section, 2 NODAS beam segments were used to model each side of 

the box.

To compare the results of the NODAS simulation with the experimental measurements, the 

measured dimensions shown in Table 4-5 were used. The only dimension not measured was the 

thickness and therefore a thickness of 3.41 µm was used, which is the same thickness used in the 

hand calculations found in [29]. 

Table 4-5. Resonant Mixer Device 6 measured quantities.
Parameter Measured Value

thickness not measured (3.41 µm used in simulation)

beam width 1.25 µm

cantilever length 32.5 µm

electrode length 7.28 µm

electrode width 1.25 µm

drive gap 1.25 µm

sense gap 1.25 µm

resonant frequency 412060 Hz at 23V DC Bias

Figure 4-11. Resonant Mixer Device 6 NODAS schematic.
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Using the dimensions listed in Table 4-5 and the simulation parameters listed in Table 4-6, 

the NODAS simulation reports a resonant frequency of 372.4 kHz (Figure 4-12) compared to the 

measured resonant frequency of 412 kHz The CPU time for a 100 kHz to 1 MHz AC sweep with 

500 points per decade is 1.1s on a dual 1GHz UltraSparc III SunFire 280R with 4GB of RAM run-

ning SunOS 5.9. The difference in the measured and simulated resonant frequency can be attributed 

to three unmeasured quantities: the thickness, Young’s Modulus, and density. The benefit of using 

NODAS in a simulator such as Cadence Spectre is that the parameter sweep and the optimizations 

tools can be used to explore the design space. For instance, running a parameter sweep on the 

Young’s Modulus shows how the resonant frequency changes Figure 4-13. Similarly, the width of 

Table 4-6. Resonant Mixer Device 6 NODAS simulation settings.
Parameter Value

DC Bias 23 V

Young’s Modulus 62 GPa (estimated)

Density 2496 kg/m3 (estimated)

Figure 4-12. Mixer “Device 6” NODAS AC simulation.
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the beam can be swept (Figure 4-14). A 0.125 µm difference in the beam width (1.25µm vs. 

1.375µm) produces a 40 kHz change in resonant frequency. Thus, the inaccuracy of the measured 

beam width can also contribute to the difference between the NODAS simulation and the experi-

mental results.

To demonstrate mixing, a transient analysis was performed. A 1V 50.373MHz sinusoidal 

signal was applied to the drive electrode. A 25V 50MHz sinusoidal signal with a 23V DC offset was 

applied to the cantilever beam. The resulting y displacement of the cantilever is shown in Figure 4-

15. The right plot shows the transient analysis result and the left plot shows the discrete Fourier 

transform (DFT) of the transient analysis. The DFT transforms a waveform from the time domain 

into the frequency domain. The DFT of this simulation shows that there is a DC component as well 

as several peaks clustered in the 300 kHz to 400 kHz range. The resonant frequency of the mixer 

Figure 4-13. Parametric sweep of Young’s Modulus.
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Figure 4-14. Parametric sweep of beam width. 
Beam width (µm)

Fr
eq

ue
nc

y 
(k

H
z)

Experimental resonant frequency, 412 kHz

NODAS resonant frequency, 372.4 kHz at E = 62GPa

Parametric sweep of beam width
1.25µm 

1.375µm

Figure 4-15. Discrete Fourier transform (DFT) of transient simulation of “Device 6”.
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(as reported by the AC analysis) is 372.4 kHz and the DFT of the transient analysis reports that there 

is a peak at 371.4 kHz. 

The resolution of the DFT depends on two factors: the sampling rate and the size of the time 

steps in the transient analysis. The sampling rate must be high enough to capture the highest fre-

quency component of the signal (Nyquist rate). Similarly, the maximum time step in the transient 

analysis should be smaller than the period of the largest frequency component of the signal. 
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5Conclusions

5.1 Beam model
The NODAS beam model was updated and new physical effects were added. The inconsis-

tent use of a user parameter in the Verilog-A code which produced a miscalculation in the beam’s 

length was corrected. In-plane moments generated from the different coefficients of expansion in a 

CMOS-MEMS beam were modeled. A thermal conduction model was also implemented to capture 

the effects of electrothermal heating and heat conduction. 

When compared to analytic equations for a fixed-fixed beam under a uniform distributed 

load and a fixed-guided beam with axial compressive stress under a uniform distributed load, the 

NODAS beam model was shown to be accurate to within 6.1x10-6 percent and 15x10-3 percent 

respectively when using multiple NODAS beam segments. A NODAS simulation of a multi-layer 

CMOS-MEMS beam under an applied temperature and with varying metal layer configurations was 

shown to produce tip deflections to within 2% when compared to the analogous ANSYS simula-

tions.

The thermal actuator and the varactor examples were used to demonstrate the application 

of the NODAS beam models. The thermal actuator simulation showed that the NODAS thermal 

beam model was able to capture the thermal moments of an actuator built out of more than one 

beam. Extracting more accurate numbers for the material properties (specifically the characteristic 

temperature, T0, and the thermal coefficients of expansion, α) as well as using measured device 

dimensions, a more accurate NODAS model could be created. Nevertheless, the goal of creating an 

accurate thermal beam model was achieved.
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5.2 Gap model
Two gap models were developed: an electromechanical and electric-only model. The initial 

electrostatic gap model was revised to fix the contact model and to address composability issues 

stemming from the initial implementation of the code used to calculate the gap topology. The model 

was also renamed as the electromechanical gap model. The electromechanical gap model captures 

the physics involved when the voltage across the gap creates a force and moment. The electric-only 

gap model was created to address the large simulation time issue faced when trying to model the 

area and gap tuning varactor. When many gaps with rotation angles of 0 degrees and 90 degrees 

were present in a simulation, the large number of nodes, along with the fact that there was an inter-

action of forces in both the x and y directions, made the simulation time follow a greater than 

expected growth rate. The electric-only gap model should only be used when the effects of the elec-

trostatic forces and moments are negligible (i.e. when the structure is very stiff). When fewer gap 

elements are needed, the electromechanical gap model should be used.

An electrostatically actuated fixed-fixed beam simulation demonstrated that the electro-

static gap model has high accuracy when compared to ANSYS. If 128 NODAS beam/gap segments 

are used, the displacement of an electrostatically actuated fixed-fixed beam is accurate to within 

2.2% when compared with ANSYS. Using 8 NODAS beam/gap segments achieves an accuracy of 

within 9%. The trade-off of simulation speed versus accuracy was also demonstrated. In the fixed-

fixed beam configuration, a 4x increase in speed was achieved using NODAS compared to using 

the finest mesh possible in ANSYS. The accuracy of the NODAS simulation when compared to the 

refined mesh ANSYS simulation was still within 4% of the ANSYS simulation result.

The varactor and mixer applications were introduced and it was demonstrated that NODAS 

was able to simulate the expected behavior of these MEMS devices. If more accurate material prop-

erties and dimensions could be obtained and if other physical effects such as fringing electric fields 

were added to the model, the simulation results would match better with the experimental data. 
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These two examples show that it is possible to build complex MEMS devices using the basic atomic 

NODAS beams and gaps.

5.3 Future work
This work focused on enhancements to the 2D beam model and the 2D electrostatic gap 

model. Near term work should concentrate on generating 3D models for the physics discussed in 

this thesis. A 3D thermal beam model is a logical and straightforward extension of the 2D thermal 

beam model. The derivations for the in-plane thermal bending moments can be easily modified to 

model out-of-plane curling. A 3D electrostatic gap model should be developed. Fringing electric 

field forces should also be investigated. 

A verification suite should be created in order to test new models before being released to 

the general public. The canonical problems discussed here (fixed-fixed beam with electrostatic 

actuation and multimorph beam) should be included in such a suite. A table of NODAS simulation 

results and ANSYS (or any other finite element package) results for these test problems should be 

created so that the NODAS models can be quickly verified for accuracy. A list of suggested canon-

ical problems follows: cantilever beam using a force source at the free end, cantilever beam using 

electrostatic actuation, fixed-fixed beam with a force source at the center of the beam, crab-leg res-

onator, resonant mixer, thermal actuator, and a simple varactor example. 
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Appendix A: Verilog-A Code

A.1 Electrostatic Gap Model Submodule
//(c) Copyright 1999-2003 Carnegie Mellon University
//    All Rights Reserved.
//
//VerilogA for NODAS02_3C_2D, NODAS02_1C_2D gap2D_pp, veriloga
//NODAS Version: 1.1 10/21/2003
//
//Synopsys:
// 2D, rigid, w/ initial angle and rotation, w/o fringing and ground plane. 
// displacement and force/moments lumping are based on beam shape functions
// rotated straight electrical field 
// 4th-order Taylor-expansion
//
//Revision History:
//Date             Who          What
//07-25-2002     qjing@ece      Created non-bus version
//08-06-2002       khe@ece      Modified to bus version
//01-06-2003    qjing@ece       fixed the asymmetry in x-direction
// What was changed is the last 5-12 lines of the verilogA code, that is, the
// definition of forces flowing though the connection terminals in the chip
// frame. In those forces, force terms for both topology 1 and 0
// should be included. But in the original code, for forces in
// x-direction, only terms for topology 1 were defined. The parts for
// y-direction was correct. That's why we saw asymmetric x-displacements in 
// the simulation with the old model. The model is now symmetric. 
//10-21-2003    gcwong@ece      new gap model based on rotated parallel plate
//02-10-2004gcwong@ecedivision by 180 needed a 180.0
//02-11-2004gcwong@ecefixed overlap force calculations
//02-17-2004gcwong@eceremoved metal layers from voltage calcs
//03-02-2004gcwong@ececreated electromechanical gap submodule

`include "../../constants.h"
`include "../../discipline.h"

module gap_pp_mech(phia_b, phia_t, phib_b, phib_t, va_b, va_t, vb_b, vb_t, xa_b, 
xa_t, xb_b, xb_t);

    inout phia_b;
    rotational phia_b;
    inout phia_t;
    rotational phia_t;
    inout phib_b;
    rotational phib_b;
    inout phib_t;
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    rotational phib_t;
    inout va_b;
    electrical va_b;
    inout va_t;
    electrical va_t;
    inout vb_b;
    electrical vb_b;
    inout vb_t;
    electrical vb_t;
    inout [0:1] xa_b;
    kinematic [0:1] xa_b;
    inout [0:1] xa_t;
    kinematic [0:1] xa_t;
    inout [0:1] xb_b;
    kinematic [0:1] xb_b;
    inout [0:1] xb_t;
    kinematic [0:1] xb_t;
    
    parameter real bottom_electrode_offset = 0;
    
    parameter real finger_l_t = 0;
    parameter real finger_l_b = 0;
    
    parameter real finger_number = 0;
    parameter real gap = 0;
    parameter real overlap = 0;
    
    // thickness
    parameter real thickness = 0;
    
    parameter real angle = 0;
    
    parameter real visc_air = 0;

    // remaining gap at which the beams come into contact
    parameter real gcontact = 0;
    
    // minimum contact gap
    parameter real gmin = 0;
    
    // electic field breakdown (100V/um)
    parameter real elec_breakdown = 0;

    // squeeze film damping coeff
    parameter real Kdamp = 0;
    
    real Felec;// the calculated electrostatic force
    real FeMax;// the maximum exectrostatic force
    real Fl;// the constant electric force in the overlap region
    // which will be lumped into the beam ends
    // all three are force/length
    
    real ov;  // overlap in rotated frame ~x
    real dynOverlap;  // dynamic overlap variable
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    real dy_l;     // change of gap in the local frame
    real dy;     // change of gap in the rotated frame
    real dx;     // change of gap
    real v;    // applied voltage 
    real cap;    // capacitance     
    
    real q1, q2;  // charge
    real q;  // charge
    real slope;
    
    real v_squared;  // v^2
    
    real Fy_damping;
    
    // some variables to reduce # of calculations
    real Fsum, var1, var2;
    
    kinematic V_dy;
    
    real I_attach, I_tip;
    real L1, L2, ym1, yp1, am1, ap1, ym2, yp2, am2, ap2;
    real Fa1, Fb1, Fa2, Fb2, Fy_1r, Fy_2l, Fy_1l, Fy_2r;
    real xm1, xm2, xp1, xp2, rad, cos_dc, sin_dc;
    real xm1_l, xm2_l, xp1_l, xp2_l, ym1_l, ym2_l, yp1_l, yp2_l;
    
    real Fxd_l, Fa1_l, Fb1_l, Fa2_l, Fb2_l, Fa1x, Fa1y, Fa2x, Fa2y, Fb1x, Fb1y, 
Fb2x, Fb2y; 
    
    real Fy_contact;
    
    real Ma1_l, Ma2_l, Mb1_l, Mb2_l;
    
    real ang1mid, ang2mid, theta0;
    
    //these are the static offsets of the beams, calculated in the initial block
    real offsetL2Right, offsetL2Left, magoffsetL2Right;
    // these are the dynamic offsets of the beams, calculated at each iteration
    real dynoffsetL2Left, dynoffsetL2Right;
    
    // the endpoints of the overlap region for each beam (beam 1, beam 2)
    real x1l, x1r, x2l, x2r;
    real y1l, y1r, y2l, y2r;
    
    // define the 8 beam basis functions
    // top beam function.  origin starts at left
    analog function real f11;
        input L,x;
        real L,x;
        f11 = 1.0 - 3.0*pow((x/L),2) + 2.0*pow((x/L),3);
    endfunction
    
    analog function real f21;
        input L,x;
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        real L,x;
        f21 = x - 2.0*(pow(x,2)/L) + pow(x,3)/pow(L,2);
    endfunction
    
    analog function real f31;
        input L,x;
        real L,x;
        f31 = 3.0*pow((x/L),2) - 2.0*pow((x/L),3);
    endfunction
    
    analog function real f41;
        input L,x;
        real L,x;
        f41 = -pow(x,2)/L + pow(x,3)/pow(L,2);
    endfunction
    
    // bottom beam function.  origin starts at right and is flipped about y-axis
    analog function real f12;
        input L,x;
        real L,x;
        f12 = 1.0 - 3.0*pow(((L-x)/L),2) + 2.0*pow(((L-x)/L),3);
    endfunction
    
    analog function real f22;
        input L,x;
        real L,x;
        f22 = (L-x) - 2.0*(pow((L-x),2)/L) + pow((L-x),3)/pow(L,2);
    endfunction
    
    analog function real f32;
        input L,x;
        real L,x;
        f32 = 3.0*pow(((L-x)/L),2) - 2.0*pow(((L-x)/L),3);
    endfunction
    
    analog function real f42;
        input L,x;
        real L,x;
        f42 = -pow((L-x),2)/L + pow((L-x),3)/pow(L,2);
    endfunction
    
    // define the beam shape functions
    // the shape functions take 7 arguments, ya, yb, phia, phib, L, x
    // ya, yb, phia, phib are the constants multiplied with each of the four basis
    // functions (defined above)
    // L is the length of the beam
    // returns the y value at x
    
    // top beam function starts from left (i.e. origin at node a)
    analog function real topBeamY;
        input ya, yb, phia, phib, L, x;
        real ya, yb, phia, phib, L, x;
        topBeamY = f11(L,x)*ya + f21(L,x)*phia + f31(L,x)*yb + f41(L,x)*phib;
    endfunction
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    // bottom beam function starts from right (i.e. origin at node b)
    // positive x is toward the left (i.e. the origin is mirrored about the y-axis)
    analog function real bottomBeamY;
        input ya, yb, phia, phib, L, x;
        real ya, yb, phia, phib, L, x;
        bottomBeamY = f12(L,x)*yb + f22(L,x)*phib + f32(L,x)*ya + f42(L,x)*phia;
    endfunction
    
    // take the derivative of the basis functions and define the angle function
    // as d/dx [y(x)]
    
    // top beam
    analog function real df11;
        input L,x;
        real L,x;
        df11 = -6.0*x/pow(L,2) + 6.0*pow(x,2)/pow(L,3);
    endfunction
    
    analog function real df21;
        input L,x;
        real L,x;
        df21 = 1.0 - 4.0*x/L + 3.0*pow((x/L),2);
    endfunction
    
    analog function real df31;
        input L,x;
        real L,x;
        df31 = 6.0*x/pow(L,2) - 6.0*pow(x,2)/pow(L,3);
    endfunction
    
    analog function real df41;
        input L,x;
        real L,x;
        df41 = -2.0*x/L + 3.0*pow((x/L),2);
    endfunction
    
    // bottom beam function.  origin starts at right and is flipped about y-axis
    analog function real df12;
        input L,x;
        real L,x;
        df12 = 6.0*(L-x)/pow(L,2) - 6.0*pow((L-x),2)/pow(L,3);
    endfunction
    
    analog function real df22;
        input L,x;
        real L,x;
        df22 = -1.0 + 4.0*(L-x)/L - 3.0*pow(((L-x)/L),2);
    endfunction
    
    analog function real df32;
        input L,x;
        real L,x;
        df32 = -6.0*(L-x)/pow(L,2) + 6.0*pow((L-x),2)/pow(L,3);
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    endfunction
    
    analog function real df42;
        input L,x;
        real L,x;
        df42 = 2.0*(L-x)/L - 3.0*pow(((L-x)/L),2);
    endfunction
    
    // top beam angle
    analog function real topBeamAngle;
        input ya, yb, phia, phib, L, x;
        real ya, yb, phia, phib, L, x;
        topBeamAngle = df11(L,x)*ya + df21(L,x)*phia +
            df31(L,x)*yb + df41(L,x)*phib;
    endfunction
    
    // bottom beam angle
    analog function real bottomBeamAngle;
        input ya, yb, phia, phib, L, x;
        real ya, yb, phia, phib, L, x;
        bottomBeamAngle = df12(L,x)*yb + df22(L,x)*phib +
            df32(L,x)*ya + df42(L,x)*phia;
    endfunction
    
    // take the indefinite integral of the basis functions, used for lumping 
    
    // top beam
    analog function real if11;
        input L,x;
        real L,x;
        if11 = x - pow(x,3)/pow(L,2) + pow(x,4)/(2.0*pow(L,3));
    endfunction
    
    analog function real if21;
        input L,x;
        real L,x;
        if21 = pow(x,2)/2.0 - (2.0/3.0)*pow(x,3)/L + pow(x,4)/(4.0*pow(L,2));
    endfunction
    
    analog function real if31;
        input L,x;
        real L,x;
        if31 = pow(x,3)/pow(L,2) - pow(x,4)/(2.0*pow(L,3));
    endfunction
    
    analog function real if41;
        input L,x;
        real L,x;
        if41 = -pow(x,3)/(3.0*L) + pow(x,4)/(4.0*pow(L,2));
    endfunction
    
    // bottom beam function.  origin starts at right and is flipped about y-axis
    analog function real if12;
        input L,x;
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        real L,x;
        if12 = pow(x,3)/pow(L,2) - pow(x,4)/(2.0*pow(L,3));
    endfunction
    
    analog function real if22;
        input L,x;
        real L,x;
        if22 = (1.0/3.0)*pow(x,3)/L - pow(x,4)/(4.0*pow(L,2));
    endfunction
    
    analog function real if32;
        input L,x;
        real L,x;
        if32 = x - pow(x,3)/pow(L,2) + pow(x,4)/(2.0*pow(L,3));
    endfunction
    
    analog function real if42;
        input L,x;
        real L,x;
        if42 = -pow(x,2)/2.0 + (2.0/3.0)*pow(x,3)/L - pow(x,4)/(4.0*pow(L,2));
    endfunction
    
    
    analog begin
    

@ (initial_step) begin
            // calculate the static offset of the bottom beam
            //
            // the positive direction is in the direction of the arrow
            //                      offsetL2right
            //   top electrode (L2) |+------->|
            //    ******************
            //
            //              bottom electrode (L2)
            //               ******************
            //    |+------->|
            //    bottom_electrode_offset = offsetL2Left
            //    (user parameter)          (internal variable)

            offsetL2Left = bottom_electrode_offset;
            magoffsetL2Right=finger_l_t+finger_l_b-overlap-(abs(offsetL2Left)+over-
lap);

            // rules for the calculation of the static offsetL2Right variable
            if (offsetL2Left >= 0) begin
                if (finger_l_t == overlap) begin
                    offsetL2Right = magoffsetL2Right;
                end
                else if (finger_l_b == overlap) begin
                    offsetL2Right = -magoffsetL2Right;
                end
                else if (overlap > 0) begin
                    offsetL2Right = magoffsetL2Right;
                end
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                else begin
                    offsetL2Right = offsetL2Left+finger_l_b-finger_l_t;
                end
            end
            else begin
                if (finger_l_t == overlap) begin
                    offsetL2Right = magoffsetL2Right;
                end
                else if (finger_l_b == overlap) begin
                    offsetL2Right = -magoffsetL2Right;
                end
                else if (overlap > 0) begin
                    offsetL2Right = -magoffsetL2Right;
                end
                else begin
                    offsetL2Right = -(abs(offsetL2Left)+finger_l_t-finger_l_b);
                end
            end
    

    // convert the angle in degrees to radians
    rad = angle* `M_PI /180.0;
    cos_dc = cos(rad);
    sin_dc = sin(rad);

    // the length of the electrodes (beams)
    L1 = finger_l_t;
    L2 = finger_l_b;

    // Maximum electric field, based on the electric field breakdown
    // per unit length
    FeMax =  -0.5*`eps0*thickness*pow(elec_breakdown,2);

    // slope of the contact force (per unit length)
    slope = FeMax/(gmin - gcontact);

end

// rotate into local frame
// m is the left node (node a), p is the right node (node b)
// 1 is the top beam, 2 is the bottom beam
xm1_l = cos_dc*Pos(xa_t[0]) + sin_dc*Pos(xa_t[1]);
ym1_l = cos_dc*Pos(xa_t[1]) - sin_dc*Pos(xa_t[0]);

xm2_l = cos_dc*Pos(xa_b[0]) + sin_dc*Pos(xa_b[1]);
ym2_l = cos_dc*Pos(xa_b[1]) - sin_dc*Pos(xa_b[0]);

xp1_l = cos_dc*Pos(xb_t[0]) + sin_dc*Pos(xb_t[1]);
yp1_l = cos_dc*Pos(xb_t[1]) - sin_dc*Pos(xb_t[0]);

xp2_l = cos_dc*Pos(xb_b[0]) + sin_dc*Pos(xb_b[1]);
yp2_l = cos_dc*Pos(xb_b[1]) - sin_dc*Pos(xb_b[0]);

// calculate the dynamic offset
// recall that the offsets are relative to the top electrode
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// if the top beam moves left (and the bottom beam moves right)
//    offsetL2Left and offsetL2Right increase
// if the top beam moves right (and the bottom beam moves left)
//    offsetL2Left and offsetL2Right decrease
dynoffsetL2Left = offsetL2Left + (-xm1_l+xm2_l);
dynoffsetL2Right = offsetL2Right + (-xp1_l+xp2_l);

// the position variables
xm1 = xm1_l;
ym1 = ym1_l;
xm2 = xm2_l;
ym2 = ym2_l;
xp1 = xp1_l;
yp1 = yp1_l;
xp2 = xp2_l;
yp2 = yp2_l;

// the angles 
am1 = Theta(phia_t);
ap1 = Theta(phib_t);
am2 = Theta(phia_b);
ap2 = Theta(phib_b);

// calculate the overlap
dynOverlap = (L1 - abs(dynoffsetL2Left) + L2 - abs(dynoffsetL2Right))/2;
if (dynOverlap > 0) begin
    ov = dynOverlap;
end
else begin
    // there's no overlap
    ov = 0;
end

// find the endpoints of the overlap region (if it exists)
// these end points are relative to the beam's shape functions
// ** if there is no overlap, these end points mean nothing.  Instead of
// setting them to some default number, we just use whatever the logic
// tells us, realizing that in the end, the calculated forces will 
// be zero
if (dynoffsetL2Left >=0) begin
    x1l = dynoffsetL2Left;
    x2l = 0;
    if (dynoffsetL2Right >= 0) begin
        x1r = L1;
        x2r = L2-dynoffsetL2Right;
    end
    else begin
        x1r = L1 + dynoffsetL2Right;
        x2r = L2;
    end
end
else begin
    x1l = 0;
    x2l = -dynoffsetL2Left;
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    if (dynoffsetL2Right >= 0) begin
        x1r = L1;
        x2r = L2-dynoffsetL2Right;
    end
    else begin
        x1r = L1 + dynoffsetL2Right;
        x2r = L2;
    end
end

// calculate the voltage difference
v = (V(va_t,va_b)+V(vb_t,vb_b))/2.0;
      

// the square of the applied voltage
v_squared = pow(v,2);

// where the two beams overlap, find the gap that exists between the
// two beams. To do this calculation, we check 4 points on the two beams
// as depiced below. y1l and y1r are the left and right endpoints of the
// overlapping region for beam 1 respectively.  y2l and y2r are the
// left and right endpoints of the overlapping region on beam 2.
//                |-- y1l
//                v
// 1  ******************* <-- y1r
//                 (gap) 
//        y2l --> *******************  2
//                      ^
//                      |-- y2r

// get y points for each x coordinate above
y1l = topBeamY(ym1, yp1, am1, ap1, L1, x1l);
y1r = topBeamY(ym1, yp1, am1, ap1, L1, x1r);
y2l = topBeamY(ym2, yp2, am2, ap2, L2, x2l);
y2r = topBeamY(ym2, yp2, am2, ap2, L2, x2r);

// get the angle at the midpoint
ang1mid = (topBeamAngle(ym1,yp1,am1,ap1,L1,(x1l+x1r)/2.0));
ang2mid = (topBeamAngle(ym2,yp2,am2,ap2,L2,(x2l+x2r)/2.0));

// the average angle of the beams
theta0 = (ang1mid + ang2mid)/2.0;

// the following calculations only make sense when the overlap 
// is non-zero
if (ov > 0) begin
    // find the endpoint which has the smallest gap
    dy_l = min((y1r-y2r+gap),(y1l-y2l+gap)); 
    dy = dy_l*cos(theta0);
    
    // The parallel plate force in the overlap region
    // rotated by angle theta. The force is constant through this region
    // force per unit length
    Felec = -0.5*`eps0*thickness*v_squared/pow(dy,2);
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    // the contact force
    if (dy<gcontact) begin

// contact force
Fy_contact = slope*(dy-gcontact);

    end
    else begin

// there is a normal gap, no contact
Fy_contact = 0;

    end

    // if the electric force per unit length 
    // is greater than the max electric force
    // set the force to FeMax
    if (abs(Felec) > abs(FeMax)) begin
        Fl = FeMax;
    end
    else begin
        Fl = Felec;
    end
end
else begin
    // there is no parallel plate electric field
    Felec = 0;
    // set this to some reasonable number (such as the original gap)
    dy_l = gap;
    dy = gap;
    // there is no contact force
    Fy_contact = 0;
    // there is no force per unit length
    Fl = 0;
end

Pos(V_dy) <+ ddt(dy);
// damping per unit length
Fy_damping = Kdamp*visc_air*ov*ov*thickness/pow(dy,3)*Pos(V_dy);

// variable for the sum of forces (avoids recalculation)
Fsum = Fl-Fy_contact-Fy_damping;

// The following 8 equations are lumped forces and moments
// force balance in the local frame and lump in the local frame
Fa1_l = -Fsum*(if11(L1,x1r) - if11(L1,x1l));
Ma1_l = -Fsum*(if21(L1,x1r) - if21(L1,x1l));
Fb1_l = -Fsum*(if31(L1,x1r) - if31(L1,x1l));
Mb1_l = -Fsum*(if41(L1,x1r) - if41(L1,x1l));
Fa2_l = Fsum*(if11(L2,x2r) - if11(L2,x2l));
Ma2_l = Fsum*(if21(L2,x2r) - if21(L2,x2l));
Fb2_l = Fsum*(if31(L2,x2r) - if31(L2,x2l));
Mb2_l = Fsum*(if41(L2,x2r) - if41(L2,x2l));

// variable to reduce recalculation
var1 = `eps0*thickness/(dy);
// total capacitance formed by the overlap of the electrodes
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cap = var1*ov;

// Fex = 1/2*(d/dov)(cap)*V^2
if ((ov != L1) && (ov != L2) && (ov > 0)) begin
    // the overlap is not equal to L1 or L2
    Fxd_l = 0.5*v_squared*var1;

    // transform the forces in the displaced frame back to the local 
    // frame we must apply the x force in the y direction
    // since we lump the x force to one end, we can do a simple mapping
    // for now:
    //  if neither beam is completely overlapped by the other beam then:
    //      - if the top beam is to the left of the bottom beam, then 
    //      we assign the forces to the right of the top beam and to the
    //      left of the bottom beam
    //      - otherwise we do the opposite
    // same goes for x
    if ((dynoffsetL2Left > 0) && (dynoffsetL2Right > 0)) begin
        // x forces go to top beam right, bottom beam left
        Fa1x = -sin(theta0)*Fa1_l;
        Fb1x = cos(theta0)*Fxd_l-sin(theta0)*Fb1_l;
        Fa2x = cos(theta0)*(-Fxd_l)-sin(theta0)*Fa2_l;
        Fb2x = -sin(theta0)*Fb2_l;
        Fy_1l = cos(theta0)*Fa1_l;
        Fy_1r = sin(theta0)*Fxd_l + cos(theta0)*Fb1_l;
        Fy_2l = sin(theta0)*Fxd_l + cos(theta0)*Fa2_l;
        Fy_2r = cos(theta0)*Fb2_l;
    end
    else begin
        // x forces go to top beam left, bottom beam right
        Fa1x = cos(theta0)*(-Fxd_l)-sin(theta0)*Fa1_l;
        Fb1x = -sin(theta0)*Fb1_l;
        Fa2x = -sin(theta0)*Fa2_l;
        Fb2x = cos(theta0)*Fxd_l-sin(theta0)*Fb2_l;
        Fy_1l = sin(theta0)*(-Fxd_l) + cos(theta0)*Fa1_l;
        Fy_1r = cos(theta0)*Fb1_l;
        Fy_2l = cos(theta0)*Fa2_l;
        Fy_2r = sin(theta0)*Fxd_l + cos(theta0)*Fb2_l;
    end
end
else begin
    // the overlap is equal to L1 or L2
    Fxd_l = 0;
    Fa1x = 0;
    Fb1x = 0;
    Fa2x = 0;
    Fb2x = 0;
    // no x component for the y forces
    Fy_1r = cos(theta0)*Fb1_l;
    Fy_1l = cos(theta0)*Fa1_l;
    Fy_2r = cos(theta0)*Fb2_l;
    Fy_2l = cos(theta0)*Fa2_l;
end
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// determine the charge
q = v * cap;

var2 = ov/2.0/finger_l_t;
I_tip    = ddt(q)*(1-var2);
I_attach = ddt(q)*var2;

// the tip and the attached points depend on the dynoffset vars
if (dynoffsetL2Left >=0) begin
    I(vb_t,va_b) <+ I_tip;
    I(va_t,vb_b) <+ I_attach;
end
else begin
    I(vb_t,va_b) <+ I_attach;
    I(va_t,vb_b) <+ I_tip;
end

// rotate back from local to chip frame
F(xa_t[0]) <+  (cos_dc*Fa1x-sin_dc*Fy_1l)*finger_number;
F(xb_t[0]) <+  (cos_dc*Fb1x-sin_dc*Fy_1r)*finger_number;
F(xa_b[0]) <+  (cos_dc*Fa2x-sin_dc*Fy_2l)*finger_number;
F(xb_b[0]) <+  (cos_dc*Fb2x-sin_dc*Fy_2r)*finger_number;

F(xa_t[1]) <+  (sin_dc*Fa1x+cos_dc*Fy_1l)*finger_number;
F(xb_t[1]) <+  (sin_dc*Fb1x+cos_dc*Fy_1r)*finger_number;
F(xa_b[1]) <+  (sin_dc*Fa2x+cos_dc*Fy_2l)*finger_number;
F(xb_b[1]) <+  (sin_dc*Fb2x+cos_dc*Fy_2r)*finger_number;

Tau(phia_t) <+  Ma1_l*finger_number;
Tau(phib_t) <+  Mb1_l*finger_number;
Tau(phia_b) <+  Ma2_l*finger_number;
Tau(phib_b) <+  Mb2_l*finger_number;

    end
endmodule

A.2 Electric Only Gap Model Submodule
//(c) Copyright 1999-2003 Carnegie Mellon University
//    All Rights Reserved.
//
//VerilogA for NODAS02_3C_2D, gap2D_pp_elec, veriloga
//NODAS Version: 1.1 10/21/2003
//
//Synopsys:
// 2D, rigid, w/ initial angle and rotation, w/o fringing and ground plane. 
// displacement and force/moments lumping are based on beam shape functions
// rotated straight electrical field 
// 4th-order Taylor-expansion
//
//Revision History:
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//Date             Who          What
//07-25-2002     qjing@ece      Created non-bus version
//08-06-2002       khe@ece      Modified to bus version
//01-06-2003    qjing@ece       fixed the asymmetry in x-direction
// What was changed is the last 5-12 lines of the verilogA code, that is, the
// definition of forces flowing though the connection terminals in the chip
// frame. In those forces, force terms for both topology 1 and 0
// should be included. But in the original code, for forces in
// x-direction, only terms for topology 1 were defined. The parts for
// y-direction was correct. That's why we saw asymmetric x-displacements in 
// the simulation with the old model. The model is now symmetric. 
//10-21-2003    gcwong@ece      new gap model based on rotated parallel plate
//02-10-2004    gcwong@ece      forked electrostatic and 
// electrostatic/mechanical models
//02-17-2004    gcwong@ece      changed module name
// removed bottom beam functions
// removed metal layers from voltage calcs
//03-02-2004gcwong@ececreated electrical only submodule

`include "../../constants.h"
`include "../../discipline.h"

module gap_pp_elec(phia_b, phia_t, phib_b, phib_t, va_b, va_t, vb_b, vb_t, xa_b, 
xa_t, xb_b, xb_t);

    inout phia_b;
    rotational phia_b;
    inout phia_t;
    rotational phia_t;
    inout phib_b;
    rotational phib_b;
    inout phib_t;
    rotational phib_t;
    inout va_b;
    electrical va_b;
    inout va_t;
    electrical va_t;
    inout vb_b;
    electrical vb_b;
    inout vb_t;
    electrical vb_t;
    inout [0:1] xa_b;
    kinematic [0:1] xa_b;
    inout [0:1] xa_t;
    kinematic [0:1] xa_t;
    inout [0:1] xb_b;
    kinematic [0:1] xb_b;
    inout [0:1] xb_t;
    kinematic [0:1] xb_t;
    
    parameter real bottom_electrode_offset = 0;
    
    parameter real finger_l_t = 0;
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    parameter real finger_l_b = 0;
    
    parameter real finger_number = 0;
    parameter real gap = 0;
    parameter real overlap = 0;
    
    // thickness
    parameter real thickness = 0;
    
    parameter real angle = 0;
    
    parameter real visc_air = 0;

    // remaining gap at which the beams come into contact
    parameter real gcontact = 0;
    
    real ov;  // overlap in rotated frame ~x
    real dynOverlap;  // dynamic overlap variable
    
    real dy_l;     // change of gap in the local frame
    real dy;     // change of gap in the rotated frame
    real dx;     // change of gap
    real v;    // applied voltage 
    real cap;    // capacitance     
    
    real q;  // charge
    
    real v_squared;  // v^2
    
    // some variables to reduce # of calculations
    real var1, var2;
    
    real I_attach, I_tip;
    real L1, L2, ym1, yp1, am1, ap1, ym2, yp2, am2, ap2;
    real xm1, xm2, xp1, xp2, rad, cos_dc, sin_dc;
    real xm1_l, xm2_l, xp1_l, xp2_l, ym1_l, ym2_l, yp1_l, yp2_l;
    
    real ang1mid, ang2mid, theta0;
    
    //these are the static offsets of the beams, calculated in the initial block
    real offsetL2Right, offsetL2Left, magoffsetL2Right;
    // these are the dynamic offsets of the beams, calculated at each iteration
    real dynoffsetL2Left, dynoffsetL2Right;
    
    // the endpoints of the overlap region for each beam (beam 1, beam 2)
    real x1l, x1r, x2l, x2r;
    real y1l, y1r, y2l, y2r;
    
    // define the 4 beam basis functions
    // top beam function.  origin starts at left
    analog function real f11;
        input L,x;
        real L,x;
        f11 = 1.0 - 3.0*pow((x/L),2) + 2.0*pow((x/L),3);
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    endfunction
    
    analog function real f21;
        input L,x;
        real L,x;
        f21 = x - 2.0*(pow(x,2)/L) + pow(x,3)/pow(L,2);
    endfunction
    
    analog function real f31;
        input L,x;
        real L,x;
        f31 = 3.0*pow((x/L),2) - 2.0*pow((x/L),3);
    endfunction
    
    analog function real f41;
        input L,x;
        real L,x;
        f41 = -pow(x,2)/L + pow(x,3)/pow(L,2);
    endfunction
    
    // define the beam shape functions
    // the shape functions take 7 arguments, ya, yb, phia, phib, L, x
    //ya,yb, phia, phib are the constants multiplied with each of the four basis
    // functions (defined above)
    // L is the length of the beam
    // returns the y value at x
    
    // top beam function starts from left (i.e. origin at node a)
    analog function real topBeamY;
        input ya, yb, phia, phib, L, x;
        real ya, yb, phia, phib, L, x;
        topBeamY = f11(L,x)*ya + f21(L,x)*phia + f31(L,x)*yb + f41(L,x)*phib;
    endfunction
    
    // take the derivative of the basis functions and define the angle function
    // as d/dx [y(x)]
    
    // top beam
    analog function real df11;
        input L,x;
        real L,x;
        df11 = -6.0*x/pow(L,2) + 6.0*pow(x,2)/pow(L,3);
    endfunction
    
    analog function real df21;
        input L,x;
        real L,x;
        df21 = 1.0 - 4.0*x/L + 3.0*pow((x/L),2);
    endfunction
    
    analog function real df31;
        input L,x;
        real L,x;
        df31 = 6.0*x/pow(L,2) - 6.0*pow(x,2)/pow(L,3);
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    endfunction
    
    analog function real df41;
        input L,x;
        real L,x;
        df41 = -2.0*x/L + 3.0*pow((x/L),2);
    endfunction
    
    // top beam angle
    analog function real topBeamAngle;
        input ya, yb, phia, phib, L, x;
        real ya, yb, phia, phib, L, x;
        topBeamAngle = df11(L,x)*ya + df21(L,x)*phia +
            df31(L,x)*yb + df41(L,x)*phib;
    endfunction
    
    analog begin

@ (initial_step) begin
    // calculate the static offset of the bottom beam
    //
    // the positive direction is in the direction of the arrow
    //                      offsetL2right
    //   top electrode (L2) |+------->|
    //    ******************
    //
    //              bottom electrode (L2)
    //               ******************
    //    |+------->|
    //    bottom_electrode_offset = offsetL2Left
    //    (user parameter)          (internal variable)

    offsetL2Left = bottom_electrode_offset;
    magoffsetL2Right=finger_l_t+finger_l_b-overlap-(abs(offsetL2Left)+over-

lap);

    // rules for the calculation of the static offsetL2Right variable
    if (offsetL2Left >= 0) begin
        if (finger_l_t == overlap) begin
            offsetL2Right = magoffsetL2Right;
        end
        else if (finger_l_b == overlap) begin
            offsetL2Right = -magoffsetL2Right;
        end
        else if (overlap > 0) begin
            offsetL2Right = magoffsetL2Right;
        end
        else begin
            offsetL2Right = offsetL2Left+finger_l_b-finger_l_t;
        end
    end
    else begin
        if (finger_l_t == overlap) begin
            offsetL2Right = magoffsetL2Right;
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        end
        else if (finger_l_b == overlap) begin
            offsetL2Right = -magoffsetL2Right;
        end
        else if (overlap > 0) begin
            offsetL2Right = -magoffsetL2Right;
        end
        else begin
            offsetL2Right = -(abs(offsetL2Left)+finger_l_t-finger_l_b);
        end
    end

    // convert the angle in degrees to radians
    rad = angle* `M_PI /180.0;
    cos_dc = cos(rad);
    sin_dc = sin(rad);

    // the length of the electrodes (beams)
    L1 = finger_l_t;
    L2 = finger_l_b;

end

// rotate into local frame
// m is the left node (node a), p is the right node (node b)
// 1 is the top beam, 2 is the bottom beam
xm1_l = cos_dc*Pos(xa_t[0]) + sin_dc*Pos(xa_t[1]);
ym1_l = cos_dc*Pos(xa_t[1]) - sin_dc*Pos(xa_t[0]);

xm2_l = cos_dc*Pos(xa_b[0]) + sin_dc*Pos(xa_b[1]);
ym2_l = cos_dc*Pos(xa_b[1]) - sin_dc*Pos(xa_b[0]);

xp1_l = cos_dc*Pos(xb_t[0]) + sin_dc*Pos(xb_t[1]);
yp1_l = cos_dc*Pos(xb_t[1]) - sin_dc*Pos(xb_t[0]);

xp2_l = cos_dc*Pos(xb_b[0]) + sin_dc*Pos(xb_b[1]);
yp2_l = cos_dc*Pos(xb_b[1]) - sin_dc*Pos(xb_b[0]);

// calculate the dynamic offset
// recall that the offsets are relative to the top electrode
// if the top beam moves left (and the bottom beam moves right)
//    offsetL2Left and offsetL2Right increase
// if the top beam moves right (and the bottom beam moves left)
//    offsetL2Left and offsetL2Right decrease
dynoffsetL2Left = offsetL2Left + (-xm1_l+xm2_l);
dynoffsetL2Right = offsetL2Right + (-xp1_l+xp2_l);

// the position variables
xm1 = xm1_l;
ym1 = ym1_l;
xm2 = xm2_l;
ym2 = ym2_l;
xp1 = xp1_l;
yp1 = yp1_l;
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xp2 = xp2_l;
yp2 = yp2_l;

// the angles 
am1 = Theta(phia_t);
ap1 = Theta(phib_t);
am2 = Theta(phia_b);
ap2 = Theta(phib_b);

// calculate the overlap
dynOverlap = (L1 - abs(dynoffsetL2Left) + L2 - abs(dynoffsetL2Right))/2;
if (dynOverlap > 0) begin
    ov = dynOverlap;
end
else begin
    // there's no overlap
    ov = 0;
end

// find the endpoints of the overlap region (if it exists)
// these end points are relative to the beam's shape functions
if (dynoffsetL2Left >=0) begin

            x1l = dynoffsetL2Left;
            x2l = 0;
            if (dynoffsetL2Right >= 0) begin
                x1r = L1;
                x2r = L2-dynoffsetL2Right;
            end
            else begin
                x1r = L1 + dynoffsetL2Right;
                x2r = L2;
            end
        end
        else begin
            x1l = 0;
            x2l = -dynoffsetL2Left;
            if (dynoffsetL2Right >= 0) begin
                x1r = L1;
                x2r = L2-dynoffsetL2Right;
            end
            else begin
                x1r = L1 + dynoffsetL2Right;
                x2r = L2;
            end
        end
    

// where the two beams overlap, find the gap that exists between the
// two beams. To do this calculation, we check 4 points on the two beams
//as depicted below. y1l and y1r are the left and right endpoints of the
// overlapping region for beam 1 respectively.  y2l and y2r are the
// left and right endpoints of the overlapping region on beam 2.
//                |-- y1l
//                v
// 1  ******************* <-- y1r
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//                 (gap) 
//        y2l --> *******************  2
//                      ^
//                      |-- y2r

// get y points for each x coordinate above
y1l = topBeamY(ym1, yp1, am1, ap1, L1, x1l);
y1r = topBeamY(ym1, yp1, am1, ap1, L1, x1r);
y2l = topBeamY(ym2, yp2, am2, ap2, L2, x2l);
y2r = topBeamY(ym2, yp2, am2, ap2, L2, x2r);

// get the angle at the midpoint
ang1mid = (topBeamAngle(ym1,yp1,am1,ap1,L1,(x1l+x1r)/2.0));
ang2mid = (topBeamAngle(ym2,yp2,am2,ap2,L2,(x2l+x2r)/2.0));

// the average angle of the beams
theta0 = (ang1mid + ang2mid)/2.0;

// find the endpoint which has the smallest gap
dy_l = min((y1r-y2r+gap),(y1l-y2l+gap)); 
dy = dy_l*cos(theta0);

// calculate the voltage difference
v = (V(va_t,va_b)+V(vb_t,vb_b))/2.0;
      
// the square of the applied voltage
v_squared = pow(v,2);

// warn user if the gap disappears
if (dy<gcontact) begin
    $display("A gap no longer exists!");
end

// variable to reduce recalculation
var1 = `eps0*thickness/(dy);
// total capacitance formed by the overlap of the electrodes
cap = var1*ov;

// determine the charge
q = v * cap;

var2 = ov/2.0/finger_l_t;
I_tip    = ddt(q)*(1-var2);
I_attach = ddt(q)*var2;

        // the tip and the attached points depend on the dynoffset vars
        if (dynoffsetL2Left >=0) begin
            I(vb_t,va_b) <+ I_tip;
            I(va_t,vb_b) <+ I_attach;
        end
        else begin
            I(vb_t,va_b) <+ I_attach;
            I(va_t,vb_b) <+ I_tip;
        end
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    end
endmodule

A.3 Three Conductor Electrostatic Gap Model
//(c) Copyright 1999-2003 Carnegie Mellon University
//    All Rights Reserved.
//
//VerilogA for NODAS02_3C_2D, gap2D_pp, veriloga
//NODAS Version: 1.1 10/21/2003
//
//Synopsys:
// 2D, rigid, w/ initial angle and rotation, w/o fringing and ground plane. 
// displacement and force/moments lumping are based on beam shape functions
// rotated straight electrical field 
// 4th-order Taylor-expansion
//
//Revision History:
//Date             Who          What
//07-25-2002     qjing@ece      Created non-bus version
//08-06-2002       khe@ece      Modified to bus version
//01-06-2003    qjing@ece       fixed the asymmetry in x-direction
// What was changed is the last 5-12 lines of the verilogA code, that is, the
// definition of forces flowing though the connection terminals in the chip
// frame. In those forces, force terms for both topology 1 and 0
// should be included. But in the original code, for forces in
// x-direction, only terms for topology 1 were defined. The parts for
// y-direction was correct. That's why we saw asymmetric x-displacements in 
// the simulation with the old model. The model is now symmetric. 
//10-21-2003    gcwong@ece      new gap model based on rotated parallel plate
//02-10-2004gcwong@ecedivision by 180 needed a 180.0
//02-11-2004gcwong@ecefixed overlap force calculations
//02-17-2004gcwong@eceremoved metal layers from voltage calcs
//03-02-2004gcwong@eceused submodule

`include "../../constants.h"
`include "../../discipline.h"
`include "../../process.h"
`include "../../design.h"

module gap2D_pp(phia_b, phia_t, phib_b, phib_t, va_b, va_t, vb_b, vb_t, xa_b, xa_t, 
xb_b, xb_t, ta_b, ta_t, tb_b, tb_t);

    inout phia_b;
    rotational phia_b;
    inout phia_t;
    rotational phia_t;
    inout phib_b;
    rotational phib_b;
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    inout phib_t;
    rotational phib_t;
    inout va_b;
    electrical va_b;
    inout va_t;
    electrical va_t;
    inout vb_b;
    electrical vb_b;
    inout vb_t;
    electrical vb_t;
    inout [0:1] xa_b;
    kinematic [0:1] xa_b;
    inout [0:1] xa_t;
    kinematic [0:1] xa_t;
    inout [0:1] xb_b;
    kinematic [0:1] xb_b;
    inout [0:1] xb_t;
    kinematic [0:1] xb_t;
    inout ta_b;
    thermal ta_b;
    inout ta_t;
    thermal ta_t;
    inout tb_b;
    thermal tb_b;
    inout tb_t;
    thermal tb_t;
    
    parameter real bottom_electrode_offset = `default_bottom_electrode_offset;
    
    parameter real finger_l_t = `default_finger_l_t;
    parameter real finger_l_b = `default_finger_l_b;
    
    parameter real finger_number = `default_finger_number;
    parameter real gap = `default_gap;
    parameter real overlap = `default_gap_overlap;
    
    // thicknesses used for calculation of total beam thickness and 
    // Young's modulus
    parameter real t_m3 = `default_t_m3;
    parameter real t_m2 = `default_t_m2;
    parameter real t_m1 = `default_t_m1;
    parameter real t_poly = `default_t_poly;
    
    parameter real   t_m3_m2 = `default_t_m3_m2;
    parameter real   t_m3_m1_overpoly = `default_t_m3_m1_overpoly;
    parameter real   t_m3_m1_overfield = `default_t_m3_m1_overfield;
    parameter real   t_m3_poly = `default_t_m3_poly;
    parameter real   t_m3_sub = `default_t_m3_sub;
    parameter real   t_m2_m1_overpoly = `default_t_m2_m1_overpoly;
    parameter real   t_m2_m1_overfield = `default_t_m2_m1_overfield;
    parameter real   t_m2_poly = `default_t_m2_poly;
    parameter real   t_m2_sub = `default_t_m2_sub;
    parameter real   t_m1_poly = `default_t_m1_poly;
    parameter real   t_m1_sub = `default_t_m1_sub;
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    parameter real   t_poly_sub = `default_t_poly_sub;
    
    parameter integer flag_m3 = 1;
    parameter integer flag_m2 = 1;
    parameter integer flag_m1 = 1;
    parameter integer flag_poly = 1;
    
    // thickness
    parameter real thickness = flag_m3*t_m3 + flag_m2*t_m2
    +flag_m1*t_m1 + flag_poly*t_poly
    +flag_m3*flag_m2*t_m3_m2
    +flag_m3*(1-flag_m2)*flag_m1*flag_poly*t_m3_m1_overpoly
    +flag_m3*(1-flag_m2)*flag_m1*(1-flag_poly)*t_m3_m1_overfield
    +flag_m3*(1-flag_m2)*(1-flag_m1)*flag_poly*t_m3_poly
    +flag_m3*(1-flag_m2)*(1-flag_m1)*(1-flag_poly)*t_m3_sub
    +flag_m2*flag_m1*flag_poly*t_m2_m1_overpoly
    +flag_m2*flag_m1*(1-flag_poly)*t_m2_m1_overfield
    +flag_m2*(1-flag_m1)*flag_poly*t_m2_poly
    +flag_m2*(1-flag_m1)*(1-flag_poly)*t_m2_sub
    +flag_m1*flag_poly*t_m1_poly
    +flag_m1*(1-flag_poly)*t_m1_sub
    +flag_poly*t_poly_sub;
    
    parameter real angle = `default_gap_angle;
    
    parameter real visc_air = `default_visc_air;

    // remaining gap at which the beams come into contact
    parameter real gcontact = `default_gcontact;
    
    // minimum contact gap
    parameter real gmin = `default_gmin;
    
    // electic field breakdown (100V/um)
    parameter real elec_breakdown = `default_elec_breakdown;

    // squeeze film damping coeff
    parameter real Kdamp = `default_Kdamp;
    
    gap_pp_mech # ( .bottom_electrode_offset(bottom_electrode_offset), 
.finger_l_t(finger_l_t), .finger_l_b(finger_l_b), .finger_number(finger_number), 
.gap(gap), .overlap(overlap), .thickness(thickness), .angle(angle), 
.visc_air(visc_air), .gcontact(gcontact), .gmin(gmin), 
.elec_breakdown(elec_breakdown), .Kdamp(Kdamp) )

gap_pp_mech_1 (phia_b, phia_t, phib_b, phib_t, va_b, va_t, vb_b, vb_t, xa_b, 
xa_t, xb_b, xb_t);

endmodule
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A.4 Three Conductor Electric Only Gap Model
//(c) Copyright 1999-2003 Carnegie Mellon University
//    All Rights Reserved.
//
//VerilogA for NODAS02_3C_2D, gap2D_pp_elec, veriloga
//NODAS Version: 1.1 10/21/2003
//
//Synopsys:
// 2D, rigid, w/ initial angle and rotation, w/o fringing and ground plane. 
// displacement and force/moments lumping are based on beam shape functions
// rotated straight electrical field 
// 4th-order Taylor-expansion
//
//Revision History:
//Date             Who          What
//07-25-2002     qjing@ece      Created non-bus version
//08-06-2002       khe@ece      Modified to bus version
//01-06-2003    qjing@ece       fixed the asymmetry in x-direction
// What was changed is the last 5-12 lines of the verilogA code, that is, the
// definition of forces flowing though the connection terminals in the chip
// frame. In those forces, force terms for both topology 1 and 0
// should be included. But in the original code, for forces in
// x-direction, only terms for topology 1 were defined. The parts for
// y-direction was correct. That's why we saw asymmetric x-displacements in 
// the simulation with the old model. The model is now symmetric. 
//10-21-2003    gcwong@ece      new gap model based on rotated parallel plate
//02-10-2004    gcwong@ece      forked electrostatic and 
// electrostatic/mechanical models
//02-17-2004    gcwong@ece      changed module name
// removed bottom beam functions
// removed metal layers from voltage calcs
//03-02-2004gcwong@eceused submodule

`include "../../constants.h"
`include "../../discipline.h"
`include "../../process.h"
`include "../../design.h"

module gap2D_pp_elec(phia_b, phia_t, phib_b, phib_t, va_b, va_t, vb_b, vb_t, xa_b, 
xa_t, xb_b, xb_t, ta_b, ta_t, tb_b, tb_t);

    inout phia_b;
    rotational phia_b;
    inout phia_t;
    rotational phia_t;
    inout phib_b;
    rotational phib_b;
    inout phib_t;
    rotational phib_t;
    inout va_b;
    electrical va_b;
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    inout va_t;
    electrical va_t;
    inout vb_b;
    electrical vb_b;
    inout vb_t;
    electrical vb_t;
    inout [0:1] xa_b;
    kinematic [0:1] xa_b;
    inout [0:1] xa_t;
    kinematic [0:1] xa_t;
    inout [0:1] xb_b;
    kinematic [0:1] xb_b;
    inout [0:1] xb_t;
    kinematic [0:1] xb_t;
    inout ta_b;
    thermal ta_b;
    inout ta_t;
    thermal ta_t;
    inout tb_b;
    thermal tb_b;
    inout tb_t;
    thermal tb_t;
    
    parameter real bottom_electrode_offset = `default_bottom_electrode_offset;
    
    parameter real finger_l_t = `default_finger_l_t;
    parameter real finger_l_b = `default_finger_l_b;
    
    parameter real finger_number = `default_finger_number;
    parameter real gap = `default_gap;
    parameter real overlap = `default_gap_overlap;
    
    // thicknesses used for calculation of total beam thickness 
    parameter real t_m3 = `default_t_m3;
    parameter real t_m2 = `default_t_m2;
    parameter real t_m1 = `default_t_m1;
    parameter real t_poly = `default_t_poly;
    
    parameter real   t_m3_m2 = `default_t_m3_m2;
    parameter real   t_m3_m1_overpoly = `default_t_m3_m1_overpoly;
    parameter real   t_m3_m1_overfield = `default_t_m3_m1_overfield;
    parameter real   t_m3_poly = `default_t_m3_poly;
    parameter real   t_m3_sub = `default_t_m3_sub;
    parameter real   t_m2_m1_overpoly = `default_t_m2_m1_overpoly;
    parameter real   t_m2_m1_overfield = `default_t_m2_m1_overfield;
    parameter real   t_m2_poly = `default_t_m2_poly;
    parameter real   t_m2_sub = `default_t_m2_sub;
    parameter real   t_m1_poly = `default_t_m1_poly;
    parameter real   t_m1_sub = `default_t_m1_sub;
    parameter real   t_poly_sub = `default_t_poly_sub;
    
    parameter integer flag_m3 = 1;
    parameter integer flag_m2 = 1;
    parameter integer flag_m1 = 1;
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    parameter integer flag_poly = 1;
    
    // thickness
    parameter real thickness = flag_m3*t_m3 + flag_m2*t_m2
    +flag_m1*t_m1 + flag_poly*t_poly
    +flag_m3*flag_m2*t_m3_m2
    +flag_m3*(1-flag_m2)*flag_m1*flag_poly*t_m3_m1_overpoly
    +flag_m3*(1-flag_m2)*flag_m1*(1-flag_poly)*t_m3_m1_overfield
    +flag_m3*(1-flag_m2)*(1-flag_m1)*flag_poly*t_m3_poly
    +flag_m3*(1-flag_m2)*(1-flag_m1)*(1-flag_poly)*t_m3_sub
    +flag_m2*flag_m1*flag_poly*t_m2_m1_overpoly
    +flag_m2*flag_m1*(1-flag_poly)*t_m2_m1_overfield
    +flag_m2*(1-flag_m1)*flag_poly*t_m2_poly
    +flag_m2*(1-flag_m1)*(1-flag_poly)*t_m2_sub
    +flag_m1*flag_poly*t_m1_poly
    +flag_m1*(1-flag_poly)*t_m1_sub
    +flag_poly*t_poly_sub;
    
    parameter real angle = `default_gap_angle;
    
    parameter real visc_air = `default_visc_air;
    //parameter real contact_oxide_t = `default_ntv_ox_t;
    // remaining gap at which the beams come into contact
    parameter real gcontact = `default_gcontact;

    gap_pp_elec # ( .bottom_electrode_offset(bottom_electrode_offset), 
.finger_l_t(finger_l_t), .finger_l_b(finger_l_b), .finger_number(finger_number), 
.gap(gap), .overlap(overlap), .thickness(thickness), .angle(angle), 
.visc_air(visc_air), .gcontact(gcontact) )

gap_pp_elec_1 (phia_b, phia_t, phib_b, phib_t, va_b, va_t, vb_b, vb_t, xa_b, 
xa_t, xb_b, xb_t);

endmodule

A.5 Thermal beam model
//(c) Copyright 1999-2004 Carnegie Mellon University
//    All Rights Reserved.
//
//VerilogA for beam thermal effects, 2D, veriloga
//NODAS Version: 1.0 03-19-2004
//
//Synopsys:
//
//Revision History:
//Date             Who          What
//03-19-2004       gcwong@ece     Created

`include "../../constants.h"
`include "../../discipline.h"
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// model name and bus pin definition, multiple disciplines

module beam_thermal(phia, phib, ta, tb, va, vb);

    inout phia, phib;
    rotational phia, phib;
    inout ta;
    thermal ta;
    inout tb;
    thermal tc;
    thermal tb;
    inout va, vb;
    electrical va, vb;

    // beam width and length
    parameter real w = 0;
    parameter real l = 0;
    // width of the oxide to the left and to the right of the metal in 
    // the metal layer.  If set to zero, the metal width equals the beam width
    parameter real wom3l = 0;
    parameter real wom3r = 0;
    parameter real wom2l = 0;
    parameter real wom2r = 0;
    parameter real wom1l = 0;
    parameter real wom1r = 0;
    parameter real wopl = 0;
    parameter real wopr = 0;

    // metal,poly, oxide young's modulus
    parameter real Emetal = 0;
    parameter real Eoxide = 0;
    parameter real Epoly = 0;

    // which metal layers are used
    parameter integer flag_m3 = 0;
    parameter integer flag_m2 = 0;
    parameter integer flag_m1 = 0;
    parameter integer flag_poly = 0;

    // thickness of metal layers and oxide layers
    parameter real t_m3 = 0;
    parameter real t_m2 = 0;
    parameter real t_m1 = 0;
    parameter real t_poly = 0;

    parameter real t_m3_m2 = 0;
    parameter real t_m3_m1_overpoly = 0;
    parameter real t_m3_m1_overfield = 0;
    parameter real t_m3_poly = 0;
    parameter real t_m3_sub = 0;
    parameter real t_m2_m1_overpoly = 0;
    parameter real t_m2_m1_overfield = 0;
    parameter real t_m2_poly = 0;
    parameter real t_m2_sub = 0;
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    parameter real t_m1_poly = 0;
    parameter real t_m1_sub = 0;
    parameter real t_poly_sub = 0;

    parameter real alpha_oxide = 0;
    parameter real alpha_metal = 0;
    parameter real alpha_poly = 0;

    // temperature when beam is not bending
    parameter real T0 = 0;

    // thermal conductivity
    parameter real koxide = 0;
    parameter real kpoly = 0;
    parameter real kmetal = 0;

    // residual stress parameters
    parameter real sigma_res_oxide = 0;
    parameter real sigma_res_poly = 0;
    parameter real sigma_res_metal = 0;

    // used for power calculation
    parameter real sheet_resistance_poly = 0;

    // the location of the neutral axis, temperature
    real w0, T, deltaV;
    // the calculated metal widths
    real m3w, m2w, m1w, pw;
    // variables for the moment calculation
    real Mz, Mz_temp, Mz_oxide_temp, Mz_metal_temp;
    real Mz_res, Mz_oxide_res, Mz_metal_res;
    // effective thermal conductance
    real Geff;
    // thermal resistor vars
    real Ppoly, Rpoly;

    // functions to simplify the calculation of the neutral axis
    // one is the numerator and the other is the denominator
    // for each metal or oxide layer, we add these functions to the 
    // numerator or denominator to calculate the neutral axis

    // metal layer
    analog function real neutral_numerator_metal;

input Emetal, Eoxide, h, w, wl, wr;
real Emetal, Eoxide, h, w, wl, wr;
// Emetal is the Young's Modulus for the metal/poly
// Eoxide is the Young's Modulus for the oxide
// h is the height of the metal layer
// w is the width of the metal layer
// wl is the width of the oxide section in the metal layer
// wr is the width of the oxide section in the metal layer

neutral_numerator_metal = h*(Eoxide*(pow(wl,2)-pow(wr,2)+2*w*wr) +
    Emetal*(pow(w,2)-pow(wl,2)+pow(wr,2)-2*w*wr));
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    endfunction

    analog function real neutral_denominator_metal;
input Emetal, Eoxide, h, w, wl, wr;
real Emetal, Eoxide, h, w, wl, wr;
// Emetal is the Young's Modulus for the metal/poly
// Eoxide is the Young's Modulus for the oxide
// h is the height of the metal layer
// w is the width of the metal layer
// wl is the width of the oxide section in the metal layer
// wr is the width of the oxide section in the metal layer

neutral_denominator_metal = 2*h*(Eoxide*(wl+wr) + Emetal*(w-wl-wr));
    endfunction

    // oxide layer
    analog function real neutral_numerator_oxide;

input Eoxide, h, w;
real Eoxide, h, w;
// Eoxide is the Young's Modulus for the oxide
// h is the height of the oxide layer
// w is the width of the oxide layer

neutral_numerator_oxide = h*Eoxide*pow(w,2);
    endfunction

    analog function real neutral_denominator_oxide;
input Eoxide, h, w;
real Eoxide, h, w;
// Eoxide is the Young's Modulus for the oxide
// h is the height of the oxide layer
// w is the width of the oxide layer

neutral_denominator_oxide = 2*h*Eoxide*w;
    endfunction

    // functions to simplify the calculation of the moments in the metal/poly
    // layer.  calculates the product of the ti, yi, and wi
    // ti: thickness of the layer
    // yi: distance from centroid of layer to neutral axis
    // wi: width of layer
    analog function real metal_t_y_w;

input t, w0, wm, wl;
real t, w0, wm, wl;
// t is the thickness
// w0 is the location of the neutral axis from the left edge of the
//     cross section
// wm is the width of the metal or poly in the layer
// wl is the width of the oxide to the left of the metal in the layer

metal_t_y_w = t*(wm/2.0+wl-w0)*wm;
    endfunction
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    analog function real oxide_t_y_w;
input t, w0, wl, wr;
real t, w0, wl, wr;
// t is the thickness
// w0 is the location of the neutral axis from the left edge of the
//     cross section
// wl is the width of the oxide to the left of the metal in the layer
// wr is the width of the oxide to the right of the metal in the layer

oxide_t_y_w = t*((wl/2.0-w0)*wl + (w-wr/2.0-w0)*wr);
    endfunction

    analog function real M_metal_temp;
input w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, wopr,
    m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly,
    alpha_oxide, Eoxide, alpha_metal, Emetal, alpha_poly, Epoly,
    flag_m3, flag_m2, flag_m1, flag_poly;
real w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, wopr,
    m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly,
    alpha_oxide, Eoxide, alpha_metal, Emetal, alpha_poly, Epoly,
    flag_m3, flag_m2, flag_m1, flag_poly;
// t_* is the thickness of a layer
// w0 is the location of the neutral axis from the left edge of the
//     cross section
// w*l is the width of the oxide to the left of the metal in the layer
// w*r is the width of the oxide to the right of the metal in the layer
// alpha_* is the coefficient of expansion
// E* is the young's modulus
// flag_* indicates if the layer is present

M_metal_temp = alpha_oxide*Eoxide*( 
    flag_m3*oxide_t_y_w(t_m3,w0,wom3l,wom3r) +
    flag_m2*oxide_t_y_w(t_m2,w0,wom2l,wom2r) +
    flag_m1*oxide_t_y_w(t_m1,w0,wom1l,wom1r) +
    flag_poly*oxide_t_y_w(t_poly,w0,wopl,wopr)

        ) + 
        alpha_metal*Emetal*(

    flag_m3*metal_t_y_w(t_m3,w0,m3w,wom3l) +
    flag_m2*metal_t_y_w(t_m2,w0,m2w,wom2l) +
    flag_m1*metal_t_y_w(t_m1,w0,m1w,wom1l)

        ) +
        alpha_poly*Epoly*flag_poly*metal_t_y_w(t_poly,w0,pw,wopl);

    endfunction
    
    analog function real M_metal_res;

input w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, wopr,
    m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly,
    sigma_oxide, sigma_metal, sigma_poly, 
    flag_m3, flag_m2, flag_m1, flag_poly;
real w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, wopr,
    m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly,
    sigma_oxide, sigma_metal, sigma_poly,
    flag_m3, flag_m2, flag_m1, flag_poly;
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// t_* is the thickness of a layer
// w0 is the location of the neutral axis from the left edge of the
//     cross section
// w*l is the width of the oxide to the left of the metal in the layer
// w*r is the width of the oxide to the right of the metal in the layer
// alpha_* is the coefficient of expansion
// E* is the young's modulus
// flag_* indicates if the layer is present

M_metal_res = sigma_oxide*( 
    flag_m3*oxide_t_y_w(t_m3,w0,wom3l,wom3r) +
    flag_m2*oxide_t_y_w(t_m2,w0,wom2l,wom2r) +
    flag_m1*oxide_t_y_w(t_m1,w0,wom1l,wom1r) +
    flag_poly*oxide_t_y_w(t_poly,w0,wopl,wopr)

        ) + 
        sigma_metal*(

    flag_m3*metal_t_y_w(t_m3,w0,m3w,wom3l) +
    flag_m2*metal_t_y_w(t_m2,w0,m2w,wom2l) +
    flag_m1*metal_t_y_w(t_m1,w0,m1w,wom1l)

        ) +
        sigma_poly*flag_poly*metal_t_y_w(t_poly,w0,pw,wopl);

    endfunction

    analog begin

@ (initial_step) begin

    // calculate the neutral axis for each metal layer combination
    // in separate file to reduce clutter
    // also calculates the moment terms except for the temperature
    // factor
    `include "neutral_axis.va"

    // calculate poly resistance if it exists
    if (flag_poly==1) begin

Rpoly = sheet_resistance_poly * l/pw;
    end
    else begin 

Rpoly = 0;
    end
end

// for now, just average the temperature across the beam
T = (Temp(ta) + Temp(tb))/2.0;

// the total moment acting on the beam is the sum of the
// moment due to the thermal expansion and the residual stress
Mz = Mz_temp*(T-T0) + Mz_res;

// calculate the electrical power dissipated in the poly resistor
if (flag_poly==1) begin
    Ppoly = pow(deltaV,2)/Rpoly;
end
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else begin
    Ppoly = 0;
end

// assign the thermal power through the beam
Pwr(tc,ta) <+ 2*Geff*(Temp(tc) - Temp(ta));
Pwr(tc,tb) <+ 2*Geff*(Temp(tc) - Temp(tb));

// assign the thermal power due to the poly resistor
Pwr(tc) <+ -Ppoly;

// assign the thermal moment on the beam
Tau(phia) <+ Mz;
Tau(phib) <+ -Mz;

    end // end of analog block
endmodule// end of module

A.6 Neutral axis include file
neutral_axis.va is included in the beam_thermal Verilog-A file. This file calculates the location of the 

neutral axis with respect to the left edge of the beam’s cross section. It also calculates the moment generated by 

the residual stress as well as the effective thermal conductance.

if (flag_m3==1 && flag_m2==1 && flag_m1==1 && flag_poly==1) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +

 neutral_numerator_oxide(Eoxide,t_m3_m2,w) +
 neutral_numerator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +
 neutral_numerator_oxide(Eoxide,t_m2_m1_overpoly,w) +
 neutral_numerator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_numerator_oxide(Eoxide,t_m1_poly,w) +
 neutral_numerator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_numerator_oxide(Eoxide,t_poly_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +
 neutral_denominator_oxide(Eoxide,t_m3_m2,w) +
 neutral_denominator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +
 neutral_denominator_oxide(Eoxide,t_m2_m1_overpoly,w) +
 neutral_denominator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_denominator_oxide(Eoxide,t_m1_poly,w) +
 neutral_denominator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_denominator_oxide(Eoxide,t_poly_sub,w));

    // metal width calculation
    m3w = w-wom3l-wom3r;
    m2w = w-wom2l-wom2r;
    m1w = w-wom1l-wom1r;
    pw = w-wopl-wopr;
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    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(

t_m3_m2+t_m2_m1_overpoly+t_m1_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(

t_m3_m2+t_m2_m1_overpoly+t_m1_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m3*(koxide*(wom3l+wom3r) + kmetal*m3w) +

t_m2*(koxide*(wom2l+wom2r) + kmetal*m2w) +
t_m1*(koxide*(wom1l+wom1r) + kmetal*m1w) +
t_poly*(koxide*(wopl+wopr) + kpoly*pw) +
koxide*w*(t_m3_m2+t_m2_m1_overpoly+t_m1_poly+t_poly_sub))/l;

end;

if (flag_m3==1 && flag_m2==1 && flag_m1==1 && flag_poly==0) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +

 neutral_numerator_oxide(Eoxide,t_m3_m2,w) +
 neutral_numerator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +
 neutral_numerator_oxide(Eoxide,t_m2_m1_overfield,w) +
 neutral_numerator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_numerator_oxide(Eoxide,t_m1_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +
 neutral_denominator_oxide(Eoxide,t_m3_m2,w) +
 neutral_denominator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +
 neutral_denominator_oxide(Eoxide,t_m2_m1_overfield,w) +
 neutral_denominator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_denominator_oxide(Eoxide,t_m1_sub,w));

    // metal width calculation
    m3w = w-wom3l-wom3r;
    m2w = w-wom2l-wom2r;
    m1w = w-wom1l-wom1r;
    pw = 0;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(
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t_m3_m2+t_m2_m1_overfield+t_m1_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(

t_m3_m2+t_m2_m1_overfield+t_m1_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m3*(koxide*(wom3l+wom3r) + kmetal*m3w) +

t_m2*(koxide*(wom2l+wom2r) + kmetal*m2w) +
t_m1*(koxide*(wom1l+wom1r) + kmetal*m1w) +
koxide*w*(t_m3_m2+t_m2_m1_overfield+t_m1_sub))/l;

end;

if (flag_m3==1 && flag_m2==1 && flag_m1==0 && flag_poly==1) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +

 neutral_numerator_oxide(Eoxide,t_m3_m2,w) +
 neutral_numerator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +
 neutral_numerator_oxide(Eoxide,t_m2_poly,w) +
 neutral_numerator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_numerator_oxide(Eoxide,t_poly_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +
 neutral_denominator_oxide(Eoxide,t_m3_m2,w) +
 neutral_denominator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +
 neutral_denominator_oxide(Eoxide,t_m2_poly,w) +
 neutral_denominator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_denominator_oxide(Eoxide,t_poly_sub,w));

    // metal width calculation
    m3w = w-wom3l-wom3r;
    m2w = w-wom2l-wom2r;
    m1w = 0;
    pw = w-wopl-wopr;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(

t_m3_m2+t_m2_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
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    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(

t_m3_m2+t_m2_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m3*(koxide*(wom3l+wom3r) + kmetal*m3w) +

t_m2*(koxide*(wom2l+wom2r) + kmetal*m2w) +
t_poly*(koxide*(wopl+wopr) + kpoly*pw) +
koxide*w*(t_m3_m2+t_m2_poly+t_poly_sub))/l;

end;

if (flag_m3==1 && flag_m2==1 && flag_m1==0 && flag_poly==0) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +

 neutral_numerator_oxide(Eoxide,t_m3_m2,w) +
 neutral_numerator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +
 neutral_numerator_oxide(Eoxide,t_m2_sub,w)) / 
 (neutral_denominator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +
 neutral_denominator_oxide(Eoxide,t_m3_m2,w) +
 neutral_denominator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +
 neutral_denominator_oxide(Eoxide,t_m2_sub,w));

    // metal width calculation
    m3w = w-wom3l-wom3r;
    m2w = w-wom2l-wom2r;
    m1w = 0;
    pw = 0;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(t_m3_m2+t_m2_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(t_m3_m2+t_m2_sub);
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    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m3*(koxide*(wom3l+wom3r) + kmetal*m3w) +

t_m2*(koxide*(wom2l+wom2r) + kmetal*m2w) +
koxide*w*(t_m3_m2+t_m2_sub))/l;

end;

if (flag_m3==1 && flag_m2==0 && flag_m1==1 && flag_poly==1) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +

 neutral_numerator_oxide(Eoxide,t_m3_m1_overpoly,w) +
 neutral_numerator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_numerator_oxide(Eoxide,t_m1_poly,w) +
 neutral_numerator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_numerator_oxide(Eoxide,t_poly_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +
 neutral_denominator_oxide(Eoxide,t_m3_m1_overpoly,w) +
 neutral_denominator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_denominator_oxide(Eoxide,t_m1_poly,w) +
 neutral_denominator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_denominator_oxide(Eoxide,t_poly_sub,w));

    // metal width calculation
    m3w = w-wom3l-wom3r;
    m2w = 0;
    m1w = w-wom1l-wom1r;
    pw = w-wopl-wopr;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(

t_m3_m1_overpoly+t_m1_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(

t_m3_m1_overpoly+t_m1_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);
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    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m3*(koxide*(wom3l+wom3r) + kmetal*m3w) +

t_m1*(koxide*(wom1l+wom1r) + kmetal*m1w) +
t_poly*(koxide*(wopl+wopr) + kpoly*pw) +
koxide*w*(t_m3_m1_overpoly+t_m1_poly+t_poly_sub))/l;

end;

if (flag_m3==1 && flag_m2==0 && flag_m1==1 && flag_poly==0) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +

 neutral_numerator_oxide(Eoxide,t_m3_m1_overfield,w) +
 neutral_numerator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_numerator_oxide(Eoxide,t_m1_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +
 neutral_denominator_oxide(Eoxide,t_m3_m1_overfield,w) +
 neutral_denominator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_denominator_oxide(Eoxide,t_m1_sub,w));

    // metal width calculation
    m3w = w-wom3l-wom3r;
    m2w = 0;
    m1w = w-wom1l-wom1r;
    pw = 0;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(t_m3_m1_overfield+t_m1_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(t_m3_m1_overfield+t_m1_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m3*(koxide*(wom3l+wom3r) + kmetal*m3w) +

t_m1*(koxide*(wom1l+wom1r) + kmetal*m1w) +
koxide*w*(t_m3_m1_overfield+t_m1_sub))/l;

end;

if (flag_m3==1 && flag_m2==0 && flag_m1==0 && flag_poly==1) begin
    // neutral axis calculation
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    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +
 neutral_numerator_oxide(Eoxide,t_m3_poly,w) +
 neutral_numerator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_numerator_oxide(Eoxide,t_poly_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +
 neutral_denominator_oxide(Eoxide,t_m3_poly,w) +
 neutral_denominator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_denominator_oxide(Eoxide,t_poly_sub,w));

    // metal width calculation
    m3w = w-wom3l-wom3r;
    m2w = 0;
    m1w = 0;
    pw = w-wopl-wopr;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(t_m3_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(t_m3_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m3*(koxide*(wom3l+wom3r) + kmetal*m3w) +

t_poly*(koxide*(wopl+wopr) + kpoly*pw) +
koxide*w*(t_m3_poly+t_poly_sub))/l;

end;

if (flag_m3==1 && flag_m2==0 && flag_m1==0 && flag_poly==0) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +

 neutral_numerator_oxide(Eoxide,t_m3_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m3,w,wom3l,wom3r) +
 neutral_denominator_oxide(Eoxide,t_m3_sub,w));

    // metal width calculation
    m3w = w-wom3l-wom3r;
    m2w = 0;
    m1w = 0;
    pw = 0;
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    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(t_m3_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(t_m3_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m3*(koxide*(wom3l+wom3r) + kmetal*m3w) +

koxide*w*(t_m3_sub))/l;
end;

if (flag_m3==0 && flag_m2==1 && flag_m1==1 && flag_poly==1) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +

 neutral_numerator_oxide(Eoxide,t_m2_m1_overpoly,w) +
 neutral_numerator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_numerator_oxide(Eoxide,t_m1_poly,w) +
 neutral_numerator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_numerator_oxide(Eoxide,t_poly_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +
 neutral_denominator_oxide(Eoxide,t_m2_m1_overpoly,w) +
 neutral_denominator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_denominator_oxide(Eoxide,t_m1_poly,w) +
 neutral_denominator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_denominator_oxide(Eoxide,t_poly_sub,w));

    // metal width calculation
    m3w = 0;
    m2w = w-wom2l-wom2r;
    m1w = w-wom1l-wom1r;
    pw = w-wopl-wopr;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(

t_m2_m1_overpoly+t_m1_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);
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    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(

t_m2_m1_overpoly+t_m1_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m2*(koxide*(wom2l+wom2r) + kmetal*m2w) +

t_m1*(koxide*(wom1l+wom1r) + kmetal*m1w) +
t_poly*(koxide*(wopl+wopr) + kpoly*pw) +
koxide*w*(t_m2_m1_overpoly+t_m1_poly+t_poly_sub))/l;

end;

if (flag_m3==0 && flag_m2==1 && flag_m1==1 && flag_poly==0) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +

 neutral_numerator_oxide(Eoxide,t_m2_m1_overfield,w) +
 neutral_numerator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_numerator_oxide(Eoxide,t_m1_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +
 neutral_denominator_oxide(Eoxide,t_m2_m1_overfield,w) +
 neutral_denominator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_denominator_oxide(Eoxide,t_m1_sub,w));

    // metal width calculation
    m3w = 0;
    m2w = w-wom2l-wom2r;
    m1w = w-wom1l-wom1r;
    pw = 0;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(t_m2_m1_overfield+t_m1_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(t_m2_m1_overfield+t_m1_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
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    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m2*(koxide*(wom2l+wom2r) + kmetal*m2w) +

t_m1*(koxide*(wom1l+wom1r) + kmetal*m1w) +
koxide*w*(t_m2_m1_overfield+t_m1_sub))/l;

end;

if (flag_m3==0 && flag_m2==1 && flag_m1==0 && flag_poly==1) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +

 neutral_numerator_oxide(Eoxide,t_m2_poly,w) +
 neutral_numerator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_numerator_oxide(Eoxide,t_poly_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +
 neutral_denominator_oxide(Eoxide,t_m2_poly,w) +
 neutral_denominator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_denominator_oxide(Eoxide,t_poly_sub,w));

    // metal width calculation
    m3w = 0;
    m2w = w-wom2l-wom2r;
    m1w = 0;
    pw = w-wopl-wopr;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(t_m2_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(t_m2_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m2*(koxide*(wom2l+wom2r) + kmetal*m2w) +

t_poly*(koxide*(wopl+wopr) + kpoly*pw) +
koxide*w*(t_m2_poly+t_poly_sub))/l;

end;
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if (flag_m3==0 && flag_m2==1 && flag_m1==0 && flag_poly==0) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +

 neutral_numerator_oxide(Eoxide,t_m2_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m2,w,wom2l,wom2r) +
 neutral_denominator_oxide(Eoxide,t_m2_sub,w));

    // metal width calculation
    m3w = 0;
    m2w = w-wom2l-wom2r;
    m1w = 0;
    pw = 0;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(t_m2_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(t_m2_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m2*(koxide*(wom2l+wom2r) + kmetal*m2w) +

koxide*w*(t_m2_sub))/l;
end;

if (flag_m3==0 && flag_m2==0 && flag_m1==1 && flag_poly==1) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +

 neutral_numerator_oxide(Eoxide,t_m1_poly,w) +
 neutral_numerator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_numerator_oxide(Eoxide,t_poly_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_denominator_oxide(Eoxide,t_m1_poly,w) +
 neutral_denominator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_denominator_oxide(Eoxide,t_poly_sub,w));

    // metal width calculation
    m3w = 0;
    m2w = 0;
    m1w = w-wom1l-wom1r;
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    pw = w-wopl-wopr;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(t_m1_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(t_m1_poly+t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m1*(koxide*(wom1l+wom1r) + kmetal*m1w) +

t_poly*(koxide*(wopl+wopr) + kpoly*pw) +
koxide*w*(t_m1_poly+t_poly_sub))/l;

end;

if (flag_m3==0 && flag_m2==0 && flag_m1==1 && flag_poly==0) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +

 neutral_numerator_oxide(Eoxide,t_m1_sub,w)) /
 (neutral_denominator_metal(Emetal,Eoxide,t_m1,w,wom1l,wom1r) +
 neutral_denominator_oxide(Eoxide,t_m1_sub,w));

    // metal width calculation
    m3w = 0;
    m2w = 0;
    m1w = w-wom1l-wom1r;
    pw = 0;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(t_m1_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(t_m1_sub);
119



    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_m1*(koxide*(wom1l+wom1r) + kmetal*m1w) +

koxide*w*(t_m1_sub))/l;
end;

if (flag_m3==0 && flag_m2==0 && flag_m1==0 && flag_poly==1) begin
    // neutral axis calculation
    w0 = (neutral_numerator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +

 neutral_numerator_oxide(Eoxide,t_poly_sub,w)) /
 (neutral_denominator_metal(Epoly,Eoxide,t_poly,w,wopl,wopr) +
 neutral_denominator_oxide(Eoxide,t_poly_sub,w));

    // metal width calculation
    m3w = 0;
    m2w = 0;
    m1w = 0;
    pw = w-wopl-wopr;

    // thermal expansion calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_temp = alpha_oxide*Eoxide*w*(w/2.0-w0)*(t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_temp = M_metal_temp(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, alpha_oxide, Eoxide, 
alpha_metal, Emetal, alpha_poly, Epoly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_temp = Mz_oxide_temp + Mz_metal_temp;

    // residual stress calculations
    // partial calculation of the moment resulting from the oxide layers only
    Mz_oxide_res = sigma_res_oxide*w*(w/2.0-w0)*(t_poly_sub);
    // partial calculation of the moment resulting from the metal/oxide layer
    Mz_metal_res = M_metal_res(w0, wom3l, wom3r, wom2l, wom2r, wom1l, wom1r, wopl, 
wopr, m3w, m2w, m1w, pw, t_m3, t_m2, t_m1, t_poly, sigma_res_oxide, 
sigma_res_metal, sigma_res_poly, flag_m3, flag_m2, flag_m1, flag_poly);

    Mz_res = Mz_oxide_res + Mz_metal_res;

    // calculate effective thermal conductance
    Geff = (t_poly*(koxide*(wopl+wopr) + kpoly*pw) +

koxide*w*(t_poly_sub))/l;
end;

// this case doesn't happen
if (flag_m3==0 && flag_m2==0 && flag_m1==0 && flag_poly==0) begin
    $display("ERROR: You selected no metal layers. Set the flag_* parameters.");
    $finish;
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end;
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Appendix B:Verilog-A Modeling

It is useful to discuss some of the issues and features in Verilog-A which may be encoun-

tered when creating models. 

B.1 Division
Verilog-A supports many mathematical functions, including division. Dividing two num-

bers or variables is simple (Listing B-1):

However, the simulator will interpret the statement as integer division and report that foo

equals 0 and foobar equals 1. To correct this problem, the integers must be written as 2.0, 3.0 and 

4.0 (Listing B-2):

This code will result in foo = 0.6 and foobar = 1.3. Calculated values saved in variables will 

take the format of the variable declaration. For instance, if bar was declared as an integer, bar will 

be 4 instead of 4.0. Care must be taken when declaring variables and when using those variables as 

divisors to ensure that the simulator will not interpret the division as integer division.

foo = 2 / 3;
bar = 4;
foobar = bar / 3;

Listing B-1. Division Example.

foo = 2.0 / 3.0;
bar = 4.0;
foobar = bar / 3.0;

Listing B-2. Correct way to implement division.
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B.2 Hidden States
Hidden states can be generated from incomplete if and case statements. For instance, the 

following if/else if block is incomplete (Listing B-3):

Assuming that bar was not previously set, bar will only be set when foo is greater than or 

equal to 1. The simulator does not know the value of bar when foo is less than 1. If a periodic steady 

state (PSS) simulation was executed on this code, the simulator would generate a hidden state error 

message. Two options exist to remedy this problem. First, an else statement block can be added to 

account for all remaining cases (Listing B-4) or bar can be initialized before the if/else if statement 

blocks (Listing B-5):

It is a matter of style as to which method is chosen, but the full case if statement in 

Listing B-6 is preferred for code readability. Similarly, when using the Verilog-A case statement, 

all cases should be accounted or the default statement should be set (Listing B-6).

if foo > 1 begin
bar = 5;

end
else if foo == 1 begin

bar = 1;
end

Listing B-3. Incomplete if statement.

if foo > 1 begin
bar = 5;

end
else if foo == 1 begin

bar = 1;
end
else

bar = 0;
end

Listing B-4. Full case if statement.
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B.3 Multiple discipline.h references
The discipline.h file contains definitions of the natures, disciplines and tolerances. In 

Cadence Spectre, a discipline.h file comes with the simulator. NODAS uses a customized version 

of the discipline.h file that all of the NODAS element models reference. A problem arises when 

analog hardware description language (AHDL) based libraries, such as transistor libraries, from 

third party vendors reference the default discipline.h file. Cadence Spectre will include the transis-

tor libraries first and read the default discipline.h file. When it encounters a NODAS or any other 

customized discipline.h file, it will compare it with the discipline.h file(s) previously read into the 

simulator. If differences exist, Cadence Spectre will report an error stating that previous definitions 

of the natures have been defined differently. If the transistor libraries are not being used, the tem-

porary solution is to remove the transistor library from the model library list. The permanent solu-

bar = 0;
if foo > 1 begin

bar = 5;
end
else if foo == 1 begin

bar = 1;
end

Listing B-5. if statement with bar initialized to 0.

case 1
(foo > 1) : bar = 5;
(foo == 1) : bar = 1;
(foo < 1) : bar = 0;

endcase

Listing B-6. Full case statement examples.

case 1
(foo > 1) : bar = 5;
(foo == 1) : bar = 1;
default bar = 0;

endcase
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tion is to modify the Cadence search path so that it will find and load the customized discipline.h 

file first instead of the default discipline.h file. 

B.4 Tolerances
The tolerances defined in the default discipline.h file included with Cadence are not suit-

able for MEMS simulations. The suggested tolerances can be found in Table 2-1. The tolerances 

were selected so that they are at least 10-3 times smaller than the typical value. 

Figure B-1a shows an example of a NODAS simulation where the angular tolerance was 

set incorrectly. The test simulation was a cantilever beam with the free end displacement con-

strained. The angle pin was driven by a sinusoidal angular displacement source at t=0. The angular 

tolerance in Figure B-1a the was set to 1 radian whereas the angular tolerance in Figure B-1b was 

set to 1e-6 radians. As can be seen, Figure B-1a. does not display the ringing effect that Figure B-

1b has. Since the tolerance was set to 1 radian and the angular displacement was on the order of 2 

µradian, information about the ringing was lost

The tolerances must be set to values smaller than the typical expected values. Tolerance 

values of 1e3 to 1e6 times smaller than the typical value are suggested.

Table 2-1. Suggested Tolerance Values.
Nature Value

Position 1e-12 m

Velocity 1e-9 m/s

Acceleration 1e-6 m/s2

Force 1e-12 N

Angle 1e-6 rads

Angular Velocity 1e-6 rads/sec

Angular Acceleration 1e-6 rads/sec2

Angular Force 1e-12 N-m
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B.5 Nodal Conventions
In order to ensure inter operability between the NODAS models, a nodal convention must 

be chosen. Table 2-2 lists the conventions used in NODAS. 

Figure B-2 shows the conventions graphically. 

Table 2-2. Nodal Conventions
Type Meaning

Positive displacement Positive axial displacement

Positive angles Counterclockwise rotation around axis

Positive forces Force acts in positive axial direction

Positive moments Moment acts counterclockwise around axis

Figure B-1. Tolerance examples. 

2 µr

0 µr

-2 µr

2 µr

0 µr

-2 µr

(a) (b)

(a) Shows an angular tolerance of 1 radian. (b) Shows an angular tolerance of 1e-6 radians.

Figure B-2. Nodal conventions.

y

x

+ Force

+ Force

+ Displacement

z

+ Moment- Moment

+ Angle

(a)
(b)

(c) (d)

(a) positive displacement, (b) positive angles, (c) positive forces, (d) positive and negative moments.
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B.6 Through and Across Variables
When creating models, the choice of through and across variables must be chosen. Through 

and across are also called the flow and potential between two nodes. Electrical engineers are famil-

iar with the through variable current and the across variable voltage Figure B-3a. Other through and 

across variables are shown in Figure B-3b,c,d. The definition of these variables is set in the disci-

pline.h file. 

B.7 Analog Functions
Functions can be defined in Verilog-A to simplify the code as well as allowing for the reuse 

of user defined functions within a Verilog-A module [9]. The electrostatic gap model uses analog 

functions to define the beam shape functions, its derivatives and integrals. Listing B-7 is an example 

of a function defined in the electrostatic gap model. 

The function f11 returns a real value number which is set by the function variable f11 in the 

function block. It takes two input arguments, L and x in that order. Listing B-8 shows a call to the 

Figure B-3. Through and across variables. 

(a) (b) (c) (d)
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(a) electrical: through = current, across = voltage, (b) kinematic: through = force, across = position, (c) 
rotational: through = moment, across = angle, (d) thermal: through = power (heat), across = 
temperature.

analog function real f11;
    input L,x;
    real L,x;
    f11 = 1.0 - 3.0*pow((x/L),2) + 2.0*pow((x/L),3);
endfunction

Listing B-7. Example of Verilog-A analog function definition.
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function. The function can be called with variables (i.e. length, displacement) or by numbers (i.e 1, 

5). 

B.8 Code Performance
Two optimizations to the Verilog-A code can be used to decrease simulation time. The sim-

plest optimization is to remove redundant calculations. Listing B-9 shows an example of removing 

redundant calculations.

Not all calculations need to be executed on every iteration. Variables that have values that 

are true for all time can be placed in an initial step block. The initial step block is executed in the 

first iteration. Listing B-10 is an excerpt of the initial step block from the electrostatic gap model.

Variables such as the spring constant, the mass, and rotation matrix calculations have been 

put into initial blocks in the NODAS library. For any given simulation, the values of these variables 

are constant. Similarly, in the electrostatic gap model, the calculation of the layout configuration of 

the electrodes is constant and therefore is put into an initial block.

y1 = f11 (length, displacement);
y2 = f11 (1, 5);

Listing B-8. Example of Verilog-A analog function call.

foo = 2.5*cos(theta0)/(l*thickness*w*density);
bar = l*w*thickness*density*50/200.0;
x = w*thickness*l*density/50.0;

Listing B-9. Redundant calculations:

mass = l*w*thickness*density;
foo = 2.5*cos(theta0)/mass;
bar = mass*50/200.0;
x = mass/50.0;

(a)

(b)

(a) exist. (b) removed.
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B.9 NODAS Code Architecture
As discussed in Section 1.3, the current NODAS architecture uses a library of behavioral 

model submodules called NODAS_submodules. The submodules are written as three conductor 

models. The submodules contain all of the physics of the element and facilitate easy code mainte-

nance. Aside from the process parameters, the main differences between a one conductor and a three 

conductor model is that the thickness, the effective Young’s modulus, and effective density are cal-

culated differently. For a three conductor model, it is possible to have up to three metal layers, one 

poly layer, and the oxide layers between the conducting layers. The thickness, effective Young’s 

modulus, and effective density are calculated using the geometric and material properties for these 

layers. Similarly, for a one conductor model, a poly layer and an oxide layer are the only possibili-

ties, therefore the geometrical and material properties for these layers are used to calculate the thick-

ness, effective Young’s modulus, and effective density. To instantiate a submodule for a one 

conductor or three conductor module, the thickness, effective Young’s modulus, and effective den-

sity (as well as the other parameters for the element) are calculated and are passed into the submod-

ule using the syntax shown in Listing 2-1. 

Each model in the NODAS02_1C_2D (one conductor, 2D), NODAS02_1C_3D (one con-

ductor, 3D), NODAS02_3C_2D (three conductor, 2D), NODAS02_3C_3D (three conductor, 3D) 

 analog begin

@ (initial_step) begin

    offsetL2Left = bottom_electrode_offset;
    magoffsetL2Right=finger_l_t+finger_l_b-overlap-

(abs(offsetL2Left)+overlap); 

end

...
end

Listing B-10. Initial step block.
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libraries contains several sections in the Verilog-A code. The first part contains the module defini-

tion with the pin order. Next, each signal pin is assigned the proper nature (electrical, kinematic, 

rotational, etc.) and signal flow direction (input, output, inout). A list of user parameters follows. 

The thickness, effective Young’s Modulus, and effective density is calculated in this parameter list. 

Variables and analog functions are defined in next and an analog block follows if any non-constant 

values need to be calculated. Finally, the submodules are called. Currently, all of the NODAS 

models follow this coding convention. 
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Appendix C:ANSYS Scripts

C.1 Fixed-Fixed Beam
From ANSYS 7.0 tutorial [2].

/batch,list
/title, Gilbert,static,hysteresis,weighted,sparse
/com, ------------------------------------------------------
/com,          2-D Beam under electrostatic load
/com,          --------------------------------
/com,   Compare with 3-D model from the paper:
/com,   J.R.Gilbert, G.K.Ananthasuresh, S.D.Senturia, (MIT)
/com,   "3-D Modelling of Contact Problems and Hysteresis in
/com,    Coupled Electro-Mechanics", MEMS'96, pp. 127-132.
/com,
/com,                       3-D Model:
/com,   Beam is clamped at either end, suspended 0.7 um over
/com,   a ground plane with contact stop at 0.1 um above the
/com,   ground plane.   Beam dimensions and material properties:
/com,   length bl=80um, width wb=10um, height bh=.5um, E=169GPa, mu=0.25
/com,   Initial Gap: gap=0.7um , finishing gap gfi=0.1um
/com,   Maximum displacement is 0.6um (gap-gfi)
/com,
/com, Value of the pull-in voltage: 18V
/com, Both pull-in and release behaviors are modeled (hysteresis loop).

!-------------- Control parameters ----------------------

vltg1 = 11.0   ! Bias voltage 1
!vltg2 = 14.5   ! Bias voltage 2
!vltg2 = 16.5
vltg2 = 14.5
vltg  = 18.0      ! Pull-in voltage

esize=0.5        ! element mesh size

!---------------- Geometry parameters ---------------

bl=40    ! beam length
bh=.5    ! beam height
gap=.7    ! maximum gap
gap0=.6    ! air gap
eps0=8.854e-6
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!---------------------- Model ---------------

/prep7

emunit,epzro,eps0

et,1,42,,,0
et,2,109,1,         ! weighted transducer
et,3,12,,,,1

mp,ex,1,169e3
mp,nuxy,1,0.25
mp,perx,2,1
mp,mu,3,0

r,1,c0,eps0
r,2,,1690 

rect,,bl,gap,gap+bh
rect,,bl,,gap+bh
aovlap,all
nummrg,kp

ASEL,S,loc,y,gap+bh/2
AATT,1,,1
ASEL,INVERT
aatt,2,1,2
cm,area1,area

alls
esize,esize

asel,s,mat,,1
mshape,0,2
mshkey,2
amesh,all

asel,s,mat,,2
mshape,1,2
mshkey,1
amesh,all

type,3    ! gap element mesh
mat,3
real,2
*get,nomax,node,0,num,max
kn=bl/esize
k8=nomax+1
xl=0
*do,i8,1,kn+1
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 n52=k8
 n53=n52+1
 n,n52,xl,gap
 n,n53,xl,gap-gap0
 e,n53,n52
 k8=k8+2
 xl=xl+esize
*enddo
nummrg,node
alls

!--------------- Boundary Conditions -----------------

esel,s,type,,2
nsle,s
nsel,r,loc,y,gap
cm,bnode,node

nsle,s
nsel,r,loc,y,0
d,all,volt,0   ! ground 

alls
nsel,s,loc,x,0       !  fix left end
nsel,a,loc,y,0       !  fix bottom
d,all,ux,0
d,all,uy,0

alls
nsel,s,loc,x,bl      !  symmetry line
d,all,ux,0

esel,s,type,,3
nsle,s
nsel,r,loc,y,gap-gap0    ! fix gap elements
d,all,all

allsel,all
fini
save

/solu

!------------------ Loading (below pull-in) ---------------------

/solu

eqslv,sparse
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cnvtol,f,1,1.0e-4
AUTOTS,ON
NSUBST,1
outres,all,all
neqit,100
nlgeom,on

cmsel,s,bnode   ! Bias 1
d,all,volt,vltg1
alls

solve

cmsel,s,bnode   ! Bias 2
d,all,volt,vltg2
alls

solve
fini

C.2 Beam Lateral Bending Moment
This tutorial will demonstrate how to create a model of a multimorph beam in ANSYS for thermal 

simulation.  It is a M1, M2, M3 stack where the metal layers are offset to the right. .

l = 100 µm
w = 10 µm

1. Add the SOLID45 elements
Preprocessor - Element Type - Add/Edit/Delete
a. Click the Add… button
b. Select Structural Mass - Solid - Brick 8node  45
c. Click OK
d. Click Close

M3

M2

M1

w
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2. Define the material properties to be used in this simulation
Preprocessor - Material Props - Material Models
a. Click on Material Model Number 1
b. Select Structural - Linear - Elastic - Isotropic

i. EX (Young's Modulus) = 62e9
ii. PRXY (Poisson's Ratio) = 0.3
iii. Click OK

c. Select Structural - Thermal Expansion - Secant Coeffi-
cient - Isotropic

i. ALPX = 8.1e-6
ii. T = 294
iii. Click OK

d. Copy the material property
Select Edit - Copy from the Define Material Model Behav-

ior window
i. Set "from Material number" to 1
ii. Set "to Material number" to 2
iii. Click OK

e. Double Click on Material Model Number 2
f. Select Thermal Expansion (secant-iso) 

i. ALPX = 23 e-6
ii. T = 294
iii. Click OK

g. Exit the Define Material Model Behavior window by se-
lecting the menu item Material - Exit.
3. Create the geometry

Preprocessor - Modeling - Create - Volume - Block - By Dimen-
sions

a. Create each beam segment
i. X1, X2 = 0, 5e-6
ii. Y1, Y2 = 0, 100e-6
iii. Z1, Z2 = 0, 1.3e-6
iv. Click Apply
v. X1, X2 = 0, 5e-6
vi. Y1, Y2 = 0, 100e-6
vii. Z1, Z2 = 1.3e-6, 1.665e-6
viii. Click Apply
ix. X1, X2 = 0, 5e-6
x. Y1, Y2 = 0, 100e-6
xi. Z1, Z2 = 1.665e-6, 2.615e-6
xii. Click Apply
xiii. X1, X2 = 0, 5e-6
xiv. Y1, Y2 = 0, 100e-6
xv. Z1, Z2 = 2.615e-6, 3.25e-6
xvi. Click Apply
xvii. X1, X2 = 0, 5e-6
xviii.Y1, Y2 = 0, 100e-6
xix. Z1, Z2 = 3.25e-6, 4.2e-6
xx. Click Apply
xxi. X1, X2 = 0, 5e-6
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xxii. Y1, Y2 = 0, 100e-6
xxiii.Z1, Z2 = 4.2e-6, 4.835e-6
xxiv. Click OK

4. Copy the shapes and offset it by 5 mm
Preprocessor - Modeling - Copy - Volumes
a. Click the Pick All button
b. Set DX to 5e-6

5. Glue the volumes together
Preprocessor - Modeling - Operate - Booleans - Glue - Volumes
a. Click the Pick All button

6. Rotate the model to show the cross section view
7. Menu Item - PlotCtrls - Pan Zoom Rotate

a. Click Bot
8. Set the properties for each volume element

Preprocessor - Meshing - Mesh Attributes - Picked Volumes
a. Pick the oxide layers, click Apply

i. Select Material 1
ii. Click Apply

b. Pick the metal layers, click OK
i. Select Material 2
ii. Click OK

9. Set the mesh divisions of the cross section view
Preprocessor - Meshing - Size Cntrls - Lines - Picked Lines
a. Click the Box option
b. Pick all of the horizontal lines making sure to not pick 

any of the vertical lines
i. Do this by drawing a box with the mouse that over-

laps the lines you want to pick
ii. Click OK

c. Set NDIV to 10
d. Click OK

10. Using the Pan-Zoom-Rotate window, click the Front button
11. Set the mesh divisions of the top view

Preprocessor - Meshing - Size Cntrls - Lines - Picked Lines
a. Click the Box option
b. Pick all of the vertical lines making sure to not pick 

any of the horizontal lines
i. Do this by drawing a box with the mouse that over-

laps the lines you want to pick
ii. Click OK
c. Set NDIV to 30
d. Click OK

12. Mesh the model
Preprocessor - Meshing - Mesh - Volumes - Mapped - 4 to 6 sided
a. Click Pick All

13. Change the view type to Area and turn numbering on
a. Plot - Areas
b. PlotCtrls - Numbering 

i. Click the box next to AREA Area Numbers
14. Apply displacement constraint
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Preprocessor - Loads - Define Loads - Apply - Structural - 
Displacement - On Areas

a. Type in the area numbers into the box in the "Apply U,Rot 
on Areas" 

i. For instance 
"93,115,89,111,85,107,81,103,73,99,3,79"

ii. Click OK
iii. Select All DOF and set VALUE to 0
iv. Click OK

15. Apply the temperature settings
Preprocessor - Loads - Define Loads - Settings - Uniform Temp
a. Set TUNIF to 350
b. Click OK
Preprocessor - Loads - Define Loads - Settings - Reference 

Temp
c. Set TREF to 294
d. Click OK

16. Save the model
a. File - Save as… and save the file as beam_thermal.db

17. Solve the problem
a. Setup the Analysis Options

Solution - Analysis Type - Sol'n Controls
i. Select Large displacement static for Analysis Op-

tions
ii. Click OK

b. Solve the problem
Solution - Solve - Current LS
i. If the solution does not converge, refine the mesh 

further and resolve the problem.
18. Plot the results

a. Select the last dataset
General Postproc - Read Results - Last Set

b. Plot the deformed Shape
i. General Postproc - Plot Results - Deformed Shape
ii. Select Def + undeformed
iii. Click OK

c. Create a 2D line plot of the displacement using paths
i. Define the path

General Postproc - Path Operations - Define Path - 
By Location

1. Set Name to dispx (or any other name)
2. You can also modify the nDiv to look at more 

internal points.  The default is 20.
3. Click OK
4. Set NPT to 1  (point 1)
5. Set X,Y,Z to 10e-6, 0, 0
6. Click OK
7. Set NPT to 2  (point 2)
8. Set X,Y,Z to 10e-6, 100e-6, 0
9. Click OK
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10. Click Cancel
ii. Map the path to a degree of freedom

General Postproc - Path Operations - Map onto Path
1. Set Lab to dispx (or any name)
2. Select DOF Solution, Translation UX
3. Click OK

iii. Plot the Path Item
General Postproc - Path Operations - Plot Path Item 

- On Graph
1. Select DISPY
2. Click OK
3. You can also get a text output by selecting 

List Path Items instead of On Graph
4. The tip deflection at (x,y,z) = (10e-6, 100e-

6, 0) is -249nm

C.3 Electrothermal Conduction
This tutorial will demonstrate how to create a model the thermal conduc-
tance and electrothermal heating of a poly beam.

l = 100 µm
w = 5 µm
t = 0.28 µm

1. Add the SOLID5 elements
Preprocessor - Element Type - Add/Edit/Delete
a. Click the Add… button
b. Select Coupled Field - Scalar Brick 4
c. Click OK
d. Click the Options… button
e. Select Temp Volt Mag
f. Click OK
g. Click Close

2. Define the material properties to be used in this simulation
Preprocessor - Material Props - Material Models
a. Click on Material Model Number 1
b. Select Thermal - Conductivity - Isotropic

i. KXX (Themal Conductivity) = 30
ii. Click OK

c. Select Electromagnetics - Resistivity - Constant
i. RSVX = 0.28e-4
ii. Click OK

d. Exit the Define Material Model Behavior window by selecting 
the menu item Material - Exit.
3. Create the geometry
Preprocessor - Modeling - Create - Volume - Block - By Dimensions
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a. Create each beam segment
i. X1, X2 = 0, 5e-6
ii. Y1, Y2 = 0, 100e-6
iii. Z1, Z2 = 0, 0.28e-6
iv. Click OK

4. Set the properties for each volume element
Preprocessor - Meshing - Mesh Attributes - All Volumes
a. Pick the oxide layers, click Apply

i. Select Material 1
ii. Click OK

5. Rotate the model to show the cross section view
Menu Item - PlotCtrls - Pan Zoom Rotate
a. Click Bot

6. Set the mesh divisions of the cross section view
Preprocessor - Meshing - Size Cntrls - Lines - Picked Lines

a. Click the Box option
b. Pick all of the horizontal lines making sure to not pick any 

of the vertical lines
i. Do this by drawing a box with the mouse that overlaps 

the lines you want to pick
ii. Click OK

c. Set NDIV to 10
d. Click OK

7. Using the Pan-Zoom-Rotate window, click the Front button
8. Set the mesh divisions of the top view

Preprocessor - Meshing - Size Cntrls - Lines - Picked Lines
a. Click the Box option
b. Pick all of the vertical lines making sure to not pick any of 

the horizontal lines
i. Do this by drawing a box with the mouse that overlaps 

the lines you want to pick
ii. Click OK

c. Set NDIV to 30
d. Click OK

9. Mesh the model
Preprocessor - Meshing - Mesh - Volumes - Mapped - 4 to 6 sided
a. Click Pick All

10. Change the view type to Area and turn numbering on
a. Plot - Areas
b. PlotCtrls - Numbering 

i. Click the box next to AREA Area Numbers
11. Apply temperature constraint to bottom and top areas (3 and 4 re-
spectively)

Preprocessor - Loads - Define Loads - Apply - Thermal - Temperature 
- On Areas

a. Type in the area numbers into the box in the "Apply TEMP on 
Areas" 

i. Area "3"
ii. Click OK
iii. Select TEMP and set VALUE to 300
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iv. Click Apply
v. Select VOLT and set VALUE to 5
vi. Area "4"
vii. Click OK
viii. Select TEMP and set VALUE to 500
ix. Click Apply
x. Select VOLT and set VALUE to 0

12. Save the model
a. File - Save as… and save the file as beam_elec_thermal.db

13. Solve the problem
a. Solve the problem

Solution - Solve - Current LS
i. If the solution does not converge, refine the mesh fur-

ther and resolve the problem.
14. Plot the results

a. Select the last dataset
General Postproc - Read Results - Last Set
b. Create a 2D line plot of the displacement using paths

i. Define the path (center of the poly beam)
General Postproc - Path Operations - Define Path - By 

Location
1. Set Name to ty (or any other name)
2. You can also modify the nDiv to look at more in-

ternal points.  The default is 20.
3. Click OK
4. Set NPT to 1  (point 1)
5. Set X,Y,Z to 2.5e-6, 0, 0.14e-6
6. Click OK
7. Set NPT to 2  (point 2)
8. Set X,Y,Z to 2.5e-6, 100e-6, 0.14e-6
9. Click OK
10. Click Cancel

ii. Map the path to a degree of freedom
General Postproc - Path Operations - Map onto Path
1. Set Lab to ty (or any name)
2. Select DOF Solution, Temperature TEMP
3. Click OK

iii. Plot the Path Item
General Postproc - Path Operations - Plot Path Item - On 

Graph
1. Select ty
2. Click OK
3. You can also get a text output by selecting List 

Path Items instead of On Graph
4. The temperature at (x,y,z) = (2.5e-6, 50e-6, 

0.14e-6) is 4120.2K
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