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Introduction 

 On-chip capillary electrophoresis was first developed in the early 1990’s [1] and remains an 

important separation technique for microfluidic systems today.  The motivation to shrink separation 

systems comes from their increased portability, reduced consumption of expensive reagents, and more 

feasible parallel analysis of separations.  Since the separation efficiency increases with the separation 

length, serpentine channels have become a preferred design topology because of their high channel 

density.  However, introducing turns into the separation channel creates additional sources of variance 

from the new electric field structure and geometric path length differences. 

 These additional sources of dispersion have been previously modeled in [2,3,4,5].  The problem 

with each of these models is that they are based on the assumption of a linear electric field structure in a 

single-turn, which excludes many higher-order effects.  This work shows a new model of the high Peclet 

variance for entire serpentine channels using the full structure of the electric fields described by complete 

solutions to Laplace’s equation.  This model is based on closed-form algebraic expressions for rapid 

computation and possible use in gradient-based optimization.  It is a functional model type, as described 

in [6], for serpentine channels of an arbitrary number of turns.  The new variance description can be used 

in a component-based model for lab-on-a-chip systems that consist of an injector, serpentine separation 

channel, and detector, which is a common separation system topology [7]. 
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1.  Background 

 Electrophoresis is the method used for species transport in separation microchannels for this 

work.  There are four main types of electrokinetic phenomena [8,9,10]:  Electrophoresis, electroosmosis, 

sedimentation potential, and streaming potential.  The first two are the main types of transport used in 

electrokinetic separation systems.  This section will briefly introduce double layer theory, and then 

discuss its application to electroosmosis and electrophoresis in order to form the basic set of equations 

governing the dynamics of the separation systems in this report. 

1.1 The Double Layer 

In general, when two phases form an interface (such as the liquid buffer and solid insulating 

wall), a spontaneous separation of charge occurs.  The separation of the charge into two components at 

the dual-phase interface is what gives the double layer its name.  As stated by Hunter [10], there are 

several reasons for such a separation: 

1. differences between the two phases’ affinity for electrons, 

2. differences between the two phases’ affinity for ions, 

3. ionization of surface groups, and 

4. entrapment of fixed charge in one phase. 

The specific details of each of the four processes above are quite involved and Hunter describes 

the specifics in [10].  These four processes are responsible for the creation of a surface charge on the 

channel walls and the formation of the double layer between the wall and the buffer.  This surface charge 

causes dissociated ions or other charge in the buffer of opposite polarity to accumulate in a double layer 

near the wall, as seen in figure 1.  In general, there are ions of both types of charge in an electrolyte buffer 

solution.  However, the concentration of counterions (ions shielding the surface charge) is generally much 

greater than that of co-ions (ions of charge similar to the wall’s surface).  The positive and negative 

charges in the mobile half of the double layer (the diffuse portion that exists within the liquid buffer) are 

described by Boltzmann’s equation [10]: 
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where n± is the local positive or negative ion concentration, n±
o is the ion concentration in the bulk, zi is 

the valency of ion i, qe is the charge of an electron, Φ is the electric potential that goes to zero as n± goes 

to n±
o, k is Boltzmann’s constant, and T is the temperature.  When Φ is positive as with a positively 

charged surface, n+ < n+
o, i.e., positive ions are repelled from the double layer, and n- > n-

o which means 

negative ions are attracted to the double layer. 

1.2 Electroosmosis 

For electroosmosis, when an electric field is applied axially along the channel, the high 

concentration of counterions in the double layer feels a force and begins to move.  This concentration of 

counterions dominates any opposing drag of co-ions.  The net effect drags all subsequent layers adjacent 

to the double layer and this slip-boundary condition (which is a valid analogy when the double layer is 

small compared to the channel) quickly forms a plug flow in the channel [9].  Since the buffer is the 

system component that moves, this type of transport does not require that the species itself be charged. 

 

             

Figure 1 – (a) Double layer formed on channel walls in electroosmotic separation. (b) Motion of the double 
layer and resulting plug flow. 

 
 The double layer is not a well-defined boundary.  The composing ions are subject to thermal 

excitations and other free particle interactions, which cause them to diffuse and create a diffusion 

boundary around the charged surface.  One way to characterize the double layer is to apply Poison’s 

equation, ερ /2 =Φ∇ , within the layer and solve for the potential.  There will be a certain potential a 

small distance away from the charged surface where the particles in the double layer will be able to flow 

V- V+ 

loose counter-ions in the ‘shield’  slide, creating a plug flow 
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past the surface.  At this shear surface, the potential is called the zeta potential, ζ, [8,9,10].  At a certain 

distance beyond the zeta potential point, there will be a location where the double layer potential will 

decay to 1/e of its original value.  Physically, this 1/e distance is the point where the potential energy 

approximately equals the thermal energy of the shielding ions [8].  This distance is called the Debye 

length, and is frequently used to characterize the size of the double layer. 

1.3 Electrophoresis 

 For electrophoresis, the transport method used in this work, the physics are very similar to that of 

electroosmosis.  When charged particles are placed into a buffer, they begin to attract charged ions from 

the buffer to form a double layer as in figure 2.   

           

Figure 2 – (a) Double layer around charged particles in electrophoretic separation. (b) Motion of double 
layer and resulting net particle motion. 

 
 When an electric potential is applied to the channel, the double layer around these charged 

particles feels an electric force.  Since the normal component of the electric field within the double layer 

is generally much stronger than that of the applied electric field, only the tangential component of the 

applied electric field has an effect on the particle [9].  This causes the mobile charge in the double layer to 

“swim”, which exerts a viscous force on the buffer, and this propels the charged particle.  For example, in 

figure 2, a negative(positive) potential on the left and a positive(negative) potential on the right would 

cause the shielding positive charge in the double layer to migrate to the left(right), which would create the 

viscous forces with the buffer to cause the charged particle to “swim” to the right(left).  From this point of 

V- V+ 

loose counter-ions in the ‘shield’ swim 

net particle motion

(a) (b) 
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view, it becomes apparent that electrophoretic and electroosmotic flows are complements of each other, 

and their analysis is mostly interchangeable [8]. 

1.4 Equations for the Electrophoretic Dynamics of Separation Systems 

 When looking at electrophoretic motion of more than just a single particle and assuming that the 

double layers have a small Debye length and remain undistorted in the flow, and that the flow is inertia 

free, the equations describing the dynamics of the species flow reduce to three.  First, the electric field in 

the channel is described by Laplace’s equation: 

 02 =Φ∇ , (2) 

since for a small Debye length, the distance away from the charged particle before it appears completely 

shielded and charge neutral is not far.  So for any Debye length much less than the particle radius, the 

particle appears uncharged at any length scale characteristic of the channel size.  Second, the inertia-free 

motion of the species is related to the electric field through its mobility, which is described by the 

Helmholtz-Schmolochowski equation: 

 E
E

u
v

r
r

v µ
µ

εζ == , (3) 

where ε is the permittivity of the buffer, ζ is the zeta potential of the particles, µv is the viscosity of the 

buffer, and E is the electric field.  Note that the combination of ε, ζ, and µv in (3) describes the mobility of 

the particles.  Finally, with the inertia-free effects of diffusion, the field-coupled motion of the species 

concentration is described by the advection-diffusion equation:  

 cDcu
t

c 2∇=∇⋅+
∂
∂ rr

 (4) 

 The remainder of this thesis will use the previous three equations, (2), (3), and (4), to analyze and 

produce models for serpentine separation channels.  In the next chapter of this report, the field structure 

will be derived from (2) and analyzed for use in (3).  Then, chapter 3 will explore the effects of the 

velocity field from (3) on the variance of the concentration distributions of analyte bands described by 



 5

(4).  All of the models introduced in the following chapters of this thesis are verified within their chapter 

of origin.  Finally, chapter 4 will provide a conclusion for this work. 

Within the scope of serpentine channel electrokinetic separation systems, there are several types 

of designs possible.  The use of modified turn geometries is proposed in [2,3], however, this thesis will 

focus on uniform 180o turn geometries since they are still very common. 
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2. Electric Field Structure in Uniform Curved Microchannels 

This chapter will introduce models of the electric field for serpentine channels, which gradually 

relax the assumptions made in [2,3,4,5].  These models will be verified with finite element software 

where necessary as they are developed.  The next chapter will use these new models to create more 

accurate models of the band variance in the separation channels. 

Previous work [2,3,4,5] makes two assumptions about the electric field in their single turn 

dispersion models. The first assumption is that the electric field’s magnitude changes linearly in the radial 

direction within the turn, which is an approximation of a field whose magnitude varies as 1/r and is 

circumferentially directed.  The second assumption is that the field changes abruptly from a constant 

value in the straight section to the linear circumferentially directed field in the turn.  These two 

assumptions result in a simple linear skew of the band after the turn, whose variance is: 

 
12

2
2 skew=σ , (5) 

where skew=2θw, which represents the length shown in figure 3, the turn angle, θ, equals π for 180o turns, 

and w is the width of the channel, [11].  An interpretive comparison of the resulting band shape with and 

without the two assumptions made in [2,3,4,5] is shown in figure 3. 

 

Figure 3 – Actual 1/r velocity profile shown on the left, linear 
approximation shown on the right.  As the width of the channel increases, 
the accuracy of the linear approximation decreases. 

 
 The assumptions of a linear circumferentially directed electric field (and the resulting velocity 

profile) with the abrupt transition in the electric field between the straight leg and curved turns make the 

skew 
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analysis of microchannel dispersion much easier.  However, such analysis is only valid for channels with 

a center radius, rc, much greater than the width of the channel.  A picture of the electric field components 

in a channel with a w/rc of 1.0, along axial lines at w/4, w/2, and 3w/4, is seen in figure 4. 

 

2.1 Abrupt-Transition 1/r (1-Assumption) Field Model 

This section will reduce the number of assumptions made in [2,3,4,5] by not linearizing the 

electric field in the curve.  Since the abrupt-transition assumption is still made, it is apparent that this 

description will also be missing information about the true structure of the electric field, as seen in the 

equipotential lines of figure 5a and 5b.  However, since the abrupt-transition 1/r field structure contains 

more information than the simple linear models and is much easier to manipulate than a full Laplacian 

solution, its derivation is provided in this section.  Note, that further on in this report the abrupt-transition 

1/r field structure is commonly referred to only as an ‘abrupt’ or ‘abrupt-transition’ field structure, since 

the abrupt transition is its only assumption.  This is different from the abrupt-transition linearized field 

structure. 

Figure 4 – Plot of the axial and transverse components of the abrupt-transition linear electric field.  Note, 
there are no transverse components as shown in the figure on the right for the abrupt description.  This is
for a channel with a width-to-center radius ratio, w/rc, of 1.0. 
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Figure 5 - (a) Abrupt-transition 1/r field equipotential lines (b) Laplacian electrostatic transition 
field equipotential lines. (c) Electric field lines corresponding to (b) 

 
By taking the line integral of the electric field along the channel axis, setting it equal to the 

voltage applied between the two leg ends, and requiring the conservation of current between the straight 

and curved sections, the following field structure is derived: 

 
πwabl

abV
E o

y +
=

)/ln(2

)/ln(
 (6a) 

 
))/ln(2( πφ wablr

wV
E o

+
= , (6b) 

 
where w, r, l, b, a, and Vo are the dimensions and applied voltage as seen in figure 5b.  These results show 

a constant field magnitude in the axial direction within the straight legs, as seen in (6a), and a 1/r 

magnitude field in the axial direction in the curved sections, as seen in (6b). 

 Figure 6 visualizes the abrupt-transition 1/r field components as described by (6a) and (6b) along 

axial lines at w/4, w/2 and 3w/4.  Note first that this abrupt description has no transverse components, 

which completely ignores the bending of the equipotential lines around the intersection of the straight and 

curved sections seen in figure 5b.  Second, note the nonphysical transition from the constant magnitude 

field in the straight legs to the 1/r circumferential field in the curved section.  These missing components 

affect the variance of an analyte band traveling under the influence of the electric field through a channel, 

(a)    (b)                                                   (c) 
Vo 

l 

w

Vo 
a b 

Ey 

Eφ 

abrupt-transition field approximations of actual
field lines shown
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as seen in the next chapter, and will be accounted for in the next section with a full Laplacian description 

of the electric field structure. 

 
 

2.2 Continuous-Transition Laplacian (0-Assumption) Field Model 

The full Laplacian solution, as seen in the equipotential lines of figure 5b, has more structure than 

the abrupt-transition 1/r solution due to the curvature of the equipotential lines before and after the 

straight section’s intersection with the curve.  Additional solutions from Laplace’s equation superposed 

with the abrupt-transition solutions from the previous section, which are valid solutions to Laplace’s 

equation, provide this additional structure, and a complete model that agrees well with full numeric PDE 

solutions of the field structure. 

To derive the additional solutions to Laplace’s equation, symmetry is utilized and only half of the 

channel is analyzed, as seen in figure 7.  The analysis on this half of the channel requires splicing of the 

solutions in the straight and curved sections, which can be achieved with suitable boundary conditions.  

To obtain the correction fields, only the solutions to Laplace’s equation that decay away from the 

intersection line will be sought, since the transition that is apparent in the equipotential lines of figure 5b 
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fades away leaving the abrupt-transition solutions in the curve and straight sections far from the 

intersection line, whose solutions we already have in (6a) and (6b). 

 

Figure 7 – The shaded region shows the only half of the channel that needs to be 
analyzed due to symmetry.  The two different sets of axes represent the 
coordinate systems for the curved section and the straight section, whose 
solutions need to be spliced together at the intersection. 

 
For the curved section in figure 7, Laplace’s equation takes the following form: 

  02 =Φ∇  (7a) 

 0
11

2

2

2
=

∂
Φ∂+








∂
Φ∂

∂
∂

φrr
r

rr
 (7b) 

Assuming that Φ(r,φ) is separable into independent functions of r and φ, and choosing the 

solution for the potential that has decaying exponentials in the φ direction, produces a potential in the 

curved section of the following form: 

 ( ) ( )]lnsinlncos][[),( 4321 rkArkAeAeAr kk ++=Φ − φφφ  (8) 

Using the fact that the electric field is the negative gradient of the potential while keeping only 

decaying exponentials, and using the boundary conditions 

 Er|r=a=0 and Er|r=b=0 (9) 

reduces the number of individual coefficients to be solved and results in the following series solutions for 

the electric field components: 

intersection line 
r 

φ
x 

y 
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The series solutions in (10) result from the boundary conditions and the periodic nature of the 

solution basis functions, each period of which is a partial solution and therefore added into the total series 

solution.  Furthermore, the remaining coefficients, Cn, will be solved when the curved and straight section 

solutions are spliced together. 

 For the straight section seen in figure 7, Laplace’s equation takes the following form: 

 02 =Φ∇  (11a) 

 0
2

2

2

2

=
∂

Φ∂+
∂
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 (11b) 

 Again, choosing the solutions that decay from the intersection line leaves us with the potential in 

the straight section: 

 kyky ekxBekxByx )cos()sin(),( 21 +=Φ , (12) 

where y is always negative as defined by the x-y coordinate system in figure 7, so the exponents in (12) 

are decaying away from the intersection line. 

 Taking the negative gradient of (12) and using that to create a Fourier series approximation for 

the correction fields provides the x and y components of the electric field as follows: 
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where the boundary conditions  

 Ex|x=0=0 and Ex|x=w=0  (14) 
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result in the series solutions and reduce the number of coefficients, leaving only Dn, which can be solved, 

along with Cn in (10), when Ex, Ey, Er, and Eφ are spliced at the intersection line.  When the correction 

factor components in (10) and (13) are superposed with the abrupt-transition 1/r field solutions from (6) 

to provide the correct field structure far from the intersection line, the result is the following set of 

equations: 

 
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 The components in (15) represent the field in both the straight and curved sections, and are 

effectively coupled at the intersection line by solving for the remaining coefficients, Cn and Dn, using the 

boundary conditions Eφ|φ=0=Ey|y=0 and Er|φ=0=Ex|y=0.  The number of coefficients to be solved will depend 

on the number of terms kept in each of the series in (15).  Keeping the first term in the Fourier series for 

both the axial and transverse components in the straight and curved sections (represented as 1x1, where 

the first number is the number of terms kept for the curved channel’s field components and the second 

number is the number of terms kept for the straight channel’s field components) provides sufficient 

accuracy for most designs, as seen in Figures 8 and 9.   

 To find the coefficients for an arbitrary number of Fourier components in each section, the system 

of equations defining the coefficients in (15) is combined in a relational form dependent on the 

appropriate intersection line boundary conditions into a coupling block matrix.  This creates the following 

linear system, used to solve for Cn and Dn: 
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where ki are simply spatial frequency relations, iπ/w, m is the number of terms kept in the series for the 

straight section, n is the number of terms kept in the series for the curved section, and the coefficients ξ, 

η , and τ are solved for in the fairly standard method of determining the coefficients of Fourier series.  

The orthogonality of the trigonometric basis functions allows a particular coefficient to be isolated by 

multiplying the entire series by the desired basis function with the desired frequency and integrating over 

the respective period.  When the series is integrated over the period, it provides the solution for the 

desired coefficients, ξ, η , and τ, which are related to each other by the linear system in (16).  The 

generalized results for the coupling matrix coefficients are: 
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Each of the four square sub-blocks in the coupling matrix of (16) has dimensions which depend 

on the number of Fourier terms kept in each of the curved or straight sections.  The two left sub-blocks 

are mxn matrices, the two right sub-blocks are mxm, and the solution vector consists of m+n elements. 
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 As a simple example, when the number of Fourier components is equal to 1x1, the following 

results for C1 and D1 are obtained: 
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Figure 8(a) shows the magnitude of the axial electric field components for a geometry whose 

width-to-center radius ratio, w/rc, is 1.0, which is at one extreme end of the feasible design space, keeping 

one Fourier term for the electric fields in the curved and straight sections, (1x1).  Figure 8(b) shows the 

results of keeping three Fourier terms for the electric field components in the curved and straight sections, 

(3x3).  Figure 9 shows that for a width-to-center radius ratio of 0.4, which is a more reasonable upper 

limit to the design space [4], keeping only one Fourier component achieves excellent agreement with 

numeric PDE solutions for the field structure. 
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3x3 FEM/Analytical Plot of Component 'Tangent to 
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Figure 8 – For a width-to-center radius ratio (w/rc) of 1.0, figure 8(a) shows the axial component of the electric field 
using one Fourier term for curved section field components and the straight section field components (1x1).  figure 
8(b) shows the same comparison using three Fourier terms for the curved and straight section field components 
(3x3). 

 

       (a)                                                                                        (b) 
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Figure 9 – For a width-to-center radius ratio (w/rc) of 0.4, figure 9(a) shows the axial field component result for 1x1 
Fourier terms, and figure 9(b) shows the results for 3x3 Fourier terms.  For smaller w/rc ratios the accuracy of the 
analytic field expressions in (15) increases for a given number of Fourier terms. 

 
One final observation that can be made from the Laplacian derivation is the persistence of the 

transition field components away from the intersection line of the channel sections.  This persistence is 

important for measuring the turn-induced variance because the band must be outside of the transition 

fields before the turn-induced variance is complete and a measurement can be made.  Looking at (15), it 

can be seen that the transition components have exponential decay factors, which can be used to 

determine how far the transition fields persist from the intersection line.  The transition fields fall to 4% 

of their original value at about a channel’s width length into the straight section, and they fall to about 4% 

of their original value at about a channel’s width arc-length into the curved section along the center 

radius.  This decay rate is for the first harmonic of the Fourier series, which is the least attenuated of all 

the harmonics.  So after a channel’s width length in both directions from the intersection line along the 

center radius (shown in figure 10), the transition fields have decayed so that the field structure is 

essentially defined by the abrupt-transition 1/r field description. 

        (a)                                                                                        (b) 
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Figure 10 – The persistence of the transition fields from the intersection 
line, highlighted in the green boxes, for geometry with a width-to-center 
radius, w/rc ratio of 1.0 on the left and a w/rc of 0.4 on the right. 

 
 To make the final comparison with the abrupt-transition field results seen in figure 6, figure 11 

shows the axial and transverse components of the Laplacian field structure, for w/rc=1.0 along axial lines 

at w/4, w/2, and 3w/4, which now accounts for the missing field structure. 

In summary, this chapter has shown two models of the electric field structure for serpentine 

channels gradually reducing the assumptions found in [2,3,4,5].  The effect the new field structure has on 

the variance of a band will be shown in the next chapter. 
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Figure 11 – A plot of the axial (on the left) and transverse (on the right) components of the electric field as described by 
the Laplacian derivation in Eq. 8.  Compared to Figure 2, there is a smoother transition between the straight and curved
section field structure on the left, and the transverse components on the right, missing in Figure 2, are now present. 
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3. Analyte Dispersion Results 

 This chapter will use the electric field models developed in the previous chapter to create models 

of the variance of the analyte band as it travels through the serpentine separation channel, which is a 

common separation topology [3].  The serpentine channels are simply complementary connections of the 

single turns and straight sections seen in the previous chapter, as shown in figure 12.  The method of 

measuring the variance of the band will be laid out, followed by a description of the various operating 

regimes of the separation system.  A variance model using the abrupt-transition 1/r fields developed in the 

previous chapter will then be created and used to generate a model using the continuous-transition 

Laplacian fields, also developed in the previous chapter.  Comparisons to FEMLAB numerical PDE 

simulations are made as they are needed.  Finally, there are several sources of dispersion in serpentine 

separation systems, such as the injector, detector, electric field structure, geometry and diffusion.  The 

models in this chapter focus on the electric field structure and geometry as sources of dispersion, since 

such sources arise from serpentine topologies. 

 
3.1 Measuring Dispersion 

The process of measuring the dispersion of a continuous concentration distribution is essential to 

creating models of separation systems.  This section introduces the measurement method used for the 

models in this report. 

Real systems measure the dispersion of an analyte band in a channel with various sensors ranging 

from 2-dimensional (2-D) CCD arrays to laser scanning single-point optical devices [12].  These sensor 

devices have practical experimental limitations such as the resolution of the pixels in the CCD and the 

wavelength of the laser-scanning element.  These limitations are usually characterized and modeled as an 

additional source of dispersion in the system.  Since injectors and detectors are not the focus of this work, 

only the effects of the serpentine channels are included in the calculation and derivation of models of the 

band dispersion.  Injection and detector variance models will be the focus of later work. 
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For a continuous 2-D concentration distribution, the method of determining the analyte variance 

is summarized in figure 12.  The concentration distribution is reduced to a y-dependent 1-dimensional (1-

D) concentration profile by averaging along the x-axis.  Then the variance of this 1-D profile is found 

using the standard formula shown in figure 12. 

 

 

 

 

 

 

 

 

 

3.2 Non-Dimensional Serpentine Channel Parameters 

This section will first show a non-dimensionalization of the advection-diffusion equation, which 

describes the dynamics of the separation channels.  Then a complete set of non-dimensional characteristic 

parameters will be derived using the Buckingham π-Theorem.  These steps are useful for gaining an 

intuitive understanding of how the separation systems operate. 

The dynamics of the analyte band traveling through a channel are described by the advection-

diffusion partial differential equation, repeated from (4) here: 

 cDcu
t

c 2∇=∇⋅+
∂
∂ rv

 (19a) 

Non-dimensionalizing (19a) gives 

 *2****
*

* 1
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∂
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Figure 12 – The process of converting a concentration distribution into a measure of variance. 
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In the non-dimensional form of (19b), the balance between the advection and diffusion terms 

more evidently describes the dynamics of a system.  In this case, the Peclet number describes this balance 

between advection and diffusion, where 

 
D

wu
Pe o= , (21) 

and the concentration, length, and time dimensions have been scaled by characteristic parameters, shown 

in (20), such as the initial concentration, co, the width of the channel, w, and the ratio of the channel width 

to mean velocity, w/uo, respectively.  Here the mean velocity, uo, is the mobility times the abrupt-

transition 1/r field value in the straight sections, Ey, which is the mean field strength for the entire 

channel, including the curves.  This type of dimensional analysis in (19) can be used to identify four basic 

regimes in which the system can operate, depending on its characteristic non-dimensionalized parameters.  

In this case, the Peclet number is one of the characteristic non-dimensional parameters. 

To discover any additional non-dimensional parameters that characterize the operating regime, 

the Buckingham π-Theorem can be utilized, as shown in the Appendix.  Based on the physical parameters 

describing the band variance of a serpentine microfluidic system, such as the channel width (w), turn 

center radius (rc), length between complementary turns (Lbt), the electric field strength (Eo), diffusivity 

(D), and species mobility (µ), the following maximal set of three non-dimensional terms fully 

characterize the system:  rc/w, Lbt/w, and uow/D.  Where uow/D is recognized as the Peclet number based 

on channel width.  Defining the non-dimensional parameters Tbt=wPe/Lbt (the ratio of the time it takes a 

particle to travel the width of the channel to the time it takes a particle to travel the length between turns) 

and Tt=wPe/(πrc) (the ratio of the time it takes a particle to travel the width of the channel to the time it 

takes a particle to travel the length of the turn along rc), three equivalent non-dimensional parameters are: 

Tbt, Tt, and w/rc.  These parameters can be used to fully characterize the regimes in the problem space of 

the separation system, as seen in the next section.  
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3.3 System Dispersion Regimes 

This section will introduce the various regimes in which the separation system can operate, 

followed by several examples using FEMLAB. 

 

Figure 13 – FEMLAB simulations created that span the Tbt space crossing four 
identifiable regimes, which go from left to right, red to blue, as the pure 
diffusion, advection-diffusion transition, pure advection, and high-pure 
advection regimes. 

 
 The four regimes are easily identified in the graph by the three knees separating the regimes with 

four different characteristic slopes.  The four regimes from left to right are:  Pure diffusion, advection-

diffusion transition, pure advection, and high-pure advection.  The pure diffusion regime is characterized 

by the band being always homogenous orthogonal to the channel axis and widening along the channel 

axis.  The advection-diffusion transition region is characterized by the band being mostly homogenous, 

but experiencing some skewing from advection around the turns.  However, in this regime there is not 

enough advection dominance to permit unskewing after complementary turns.  In the pure advection 

regime, the band strongly expresses skewing and advection is now dominant enough to permit some 

unskewing of the band, i.e., some dispersion reduction, however, axial band widening is still present.  In 

the high-pure advection regime, the analyte bands strongly express skewing and unskewing after turns, a 

characteristic parabolic-like shape after complementary turns, and no significant widening of the band 

from diffusion.  Figures 14a through 14d show examples of bands traveling in each of these regimes. 

Pure Diffusion 

Pure Advection 

Advection-Diffusion Transition 

High Pure Advection 
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Figure 14a – Examples of the various regimes.  This figure shows the pure diffusion regime in the red section of 
figure 13.  The band shows no skewing after turns and maintains essentially a 1-D concentration gradient along the 
channel axis.  Note the band has traveled from the middle of the first leg to the middle of the last leg. 

 

Table 1 – System parameters for figure 14a. 

b a w µ Ey D Linj Lbt Ldet 
Outer 
radius 

Inner 
radius 

Channel 
width 

Species 
mobility 

Straight leg 
electric field 

Diffusivity First 
straight 
leg length 

Length 
between 
turns 

Last 
straight 
leg length 

15 µm 10 µm 5 µm 1.5⋅10-7 m2/Vs 8420.17 V/m 3.9470⋅10-10 m2/s 40 µm 80 µm 80 µm 
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Figure 14b – Examples of the various regimes.  This figure shows the advection-diffusion transition regime in the 
yellow section of figure 13.  There is skewing after a turn, but significant transverse diffusion remains that keeps the 
band fairly homogeneous across the channel width and significant axial diffusion spreads the band axially.  
Therefore, complementary turns cannot unskew the band, but instead “overskew” the band.  Note the band has 
traveled from the middle of the first leg to the middle of the last leg. 

 

Table 2 - System parameters for figure 14b. 

b a w µ Ey D Linj Lbt Ldet 
Outer 
radius 

Inner 
radius 

Channel 
width 

Species 
mobility 

Straight leg 
electric field 

Diffusivity First 
straight 
leg length 

Length 
between 
turns 

Last 
straight 
leg length 

15 µm 10 µm 5 µm 1.5⋅10-7 m2/Vs 8420.17 V/m 1.3085⋅10-10m2/s 40 µm 80 µm 80 µm 
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Figure 14c – Examples of the various regimes.  In the pure-advection regime shown here, representing the green 
region of figure 13, there is significant skewing of the band after a turn and transverse diffusion is small enough to 
prevent the band from homogenizing across the channel width.  The field effects are dominant enough over 
diffusion to allow some unskewing after complementary turns, some “overskewing” is still present, and axial 
diffusion is still present enough to spread the band axially.  Note the band has traveled from the middle of the first 
leg to the middle of the last leg. 

 

Table 3 - System parameters for figure 14c. 

b a w µ Ey D Linj Lbt Ldet 
Outer 
radius 

Inner 
radius 

Channel 
width 

Species 
mobility 

Straight leg 
electric field 

Diffusivity First 
straight 
leg length 

Length 
between 
turns 

Last 
straight 
leg length 

15 µm 10 µm 5 µm 1.5⋅10-7 m2/Vs 8420.17 V/m 1.7935⋅10-11 m2/s 40 µm 80 µm 80 µm 
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Figure 14d – Examples of the various regimes.  The last regime, shown in this figure and representing the blue 
region in figure 13, is the high-pure advection regime.  In this regime, the effects of diffusion are negligible, so there 
is no significant widening of the band axially or transversely.  The effects of the geometry and field structure define 
the skew and unskew of the band.  The unskewing of the band after complementary turns results in the characteristic 
parabolic shape.  Note the band has traveled from the middle of the first leg to the middle of the last leg. 

 

Table 4 - System parameters for figure 14d. 

b a w µ Ey D Linj Lbt Ldet 
Outer 
radius 

Inner 
radius 

Channel 
width 

Species 
mobility 

Straight leg 
electric field 

Diffusivity First 
straight 
leg length 

Length 
between 
turns 

Last 
straight 
leg length 

15 µm 10 µm 5 µm 1.5⋅10-7 m2/Vs 8420.17 V/m 8.9570⋅10-14 m2/s 40 µm 80 µm 80 µm 
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Most microfluidic designs lie within the pure and high-pure advection regimes (green and blue) 

[3].  Out of these two regimes, the majority of systems would fall into the pure-advection regime.  

However, there are still some very important examples that fall into the high-pure advection regime.  For 

example, a typical example of a system found in the high-pure advection regime is DNA electrophoresis 

where a sieving matrix is employed, as seen in [12].  A typical Peclet number for such systems is around 

15,000.  Within the scope of these regimes, the next section will present analysis starting with the abrupt-

transition 1/r field structure to analytically determine the variance of a band as it travels through 

serpentine channels within the high-pure advection regime.  Further sections will begin to look at the 

regimes with where diffusion is more important. 

 
3.4 High-Pure Advection Analytical Dispersion with 1-Assumption Field Model 

Using the concepts introduced in the previous sections of this chapter, this section will produce an 

analytical model of the high Peclet dispersion in serpentine channels with any number of turns and the 

abrupt-transition 1/r electric field structure.  This model will then be used to explore several previously 

unpredicted physical phenomena. 

For bands traveling though the serpentine channels in the high-pure advection regime, we can 

ignore the effects of diffusion.  Band variance is therefore determined only by the channel geometry and 

field structure.  To analyze the abrupt-transition field dispersion, only the curved sections need to be 

considered, since the uniform fields in the straight sections do not contribute to the dispersion when 

diffusion is ignored.  To find the variance of a band traveling through a serpentine channel, the band can 

be thought of as individual ‘particles’ following an axial path through the channel.  The differences in the 

travel time through the curves for ‘particles’ spread across the width of the channel will serve as a 

measure of the band variance after traveling through the channel. 
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Figure 15 – The difference in times of outer and inner particles traveling through a single turn. 

 
The time it takes a particle at radius r to travel through the channel is the distance divided by the 

velocity, 

 
)(

)(
rE

r
rT

φµ
π= , (22) 

where µ is the particle mobility and Eφ is the circumferential field in the curve using the abrupt-transition 

description in (6b), which also depends on r.  So the particle along the inner most radius, a, takes 

Ti=πa/[µEφ(a)] seconds and the particle along the outer most radius takes To=πb/[µEφ(b)] seconds.  Their 

difference is To-Ti=[π/µ][b/Eφ(b)-a/Eφ(a)], which is the time spent by the band traveling in the straight 

section immediately after the curve.  Therefore, the time any given particle spends in the straight section 

after the curve is given by: 
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 (23) 

This ∆T, in (23), multiplied by the uniform velocity in the straight section gives the distance traveled by 

each particle in the uniform straight section: 

 ][
)/ln(

)()( 22 rb
w

ab
rTErL y −=∆=∆ πµ , (24) 

 
where a, b, and w are the dimensions as defined in figure 5b. 

 
Using (24), the variance of the profile about its mean using the sample variance, 
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gives the following result for a single 180o turn with zero initial variance: 
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A similar procedure as above can be used to derive the variance for any number of turns.  For this 

derivation, however, the absolute time spent in the curve, (22), and its effect on the displacement in the 

straight section after the turns is used to calculate the variance.  Since the variance is a centered moment, 

whether or not the outer radius length or time is subtracted out has no effect on the resulting variance.  

This greatly simplifies the algebra, but does not give physical significance to the real displacement of the 

particles, since using the time spent in the curves will result in a displacement in the straight section 

appearing inverted.  For example, for a single turn, an inner radius particle has the shortest travel time 

through the turn, so it will have the shortest length afterwards if this time spent in the curves is used to 

extend the particles into the straight section.  This is obviously inverted from the physical result, since the 

innermost particle should be the furthest ahead in the straight section.  So, a physical interpretation of the 

particle displacements requires that the time used to extend the particles into the straight section is the 

outer radius particle time minus the particle time traveling at a desired radius, as mentioned for the results 

in (24)-(26).  For the general case of n turns, the physical displacements of the particles is given by: 
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 However, to find the variance using a simpler form of displacement, the time spent in the curves 

is utilized to find the distance traveled in the straight section, which results in the following: 
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Since (28) is simply a constant minus (27), they both have the same variance.  (28) is then used in the 

sample variance equation: 
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which gives the following result for the variance with the abrupt-transition 1/r electric fields for n 

complementary turns: 

 dr
w

aawNN
rawNrN

w

ab b

a

ab

233
212

2
2

13

22
2

3

)))(((
)2(

)/(ln
∫ 







 −++
−−++= πσ , (30) 
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and r is the radius starting in the first curve, n is the number of turns, and mod(n,2) is the modulus after 

division function that gives the remainder of n/2.  To see the complete expanded solution of (30), refer to 

the Appendix. 

 A quick example of (30) shows that for a single set of complementary turns the following fairly 

simple result is produced: 

 )/(ln
45

1 2222 abwab πσ =  (33) 

Several interesting results are now apparent.  First, figure 16 shows the resulting band edge after a 

single set of complementary turns.  It shows that with the 1-assumption electric field model with the 

abrupt transition in the field structure between channel sections, unskewing is not complete and leaves a 

parabolic-like shape after complementary turns.  Whereas the 2-assumption models in [2,3,4,5] with the 

abrupt transition in the field between channel sections and the linear electric field in the turn, predict a 

complete unskewing of the band after complementary turns. 
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Figure 16 - Band shape after a set of complementary turns, traveling 
from left to right.  A distorted band results, unlike when using a linear 
description of the field structure.  A Matlab particle simulation created 
these results, which will be fully described in the next section. 

 
The resultant band shape is symmetric about the center of the channel, but part of what 

contributes to the parabolic shape is the non-symmetry of the electric field in the turn about the central 

channel axis and such interaction from turn to turn.  This non-symmetry occurs because the field’s mean 

value is not precisely in the center of the channel, but at a radius less than the center.  Since the 

complementary turns mirror the curvature of the previous turn, but the fields are different at the center of 

the channel, the center of the band gets and stays further ahead than the two band edges, which both 

symmetrically experience the long path-length and lessened field-strength of the outer radius of the 

channel.  If the field were symmetric about the center of the channel, then each particle would have 

experienced the same electric field as its mirrored partner from the previous channel, thereby equalizing 

the effects from the previous turn and flattening the band.  This is the case with any linear velocity 

profile, as opposed to any non-linear profile that is not symmetric about its mean. 

Another interesting observation, shown in figure 17, is that as the number of complementary turns 

continues to grow, the resulting variance from the parabolic-like band shape after each set of 

complementary turns grows quadratically.  This is for the high-pure advection regime, where the effects 

of diffusion are negligible. 
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The source of this quadratic growth is apparent in the expanded form of (30), seen in (a19) in the 

Appendix. Every term of (a19) contains an n2, which indicates that the variance grows quadratically with 

both even- and odd-numbered turns.  An example of this is shown in figure 18. 

 The variance grows quadratically for either even or odd sets of turns.  However, when following 

the variance after both sets of turns, it alternates high and low, since the variance grows after odd turns 

and is subsequently reduced after even-complementary turns.  Figure 18 makes it apparent why odd-

turned designs are not practical, since they always produce more variance than an even-turned design. 

In reality, since the system is limited in size, the variance cannot continue to grow to an 

arbitrarily large quantity. However, until a physical limit is reached, the growth rate, since quadratic, will 

be significantly large.  Such effects will be discussed further in section 3.6.  The variance results in 

figures 17 and 18 are all valid for high Peclet regimes (the high-pure advection region in figure 13).  In 

the next section, diffusion will be considered to examine the pure advection (green) regime of figure 13, 

where many microfluidic designs lie [3,4].  Even with diffusion, super-linear growth rates for dispersion 

can be observed. 

… 

Figure 17 – Variance growth with increasing number
of complementary turns in system.  w/rc=0.4, a=10µm. 

Figure 18 – Plot of the turn dispersion after even and odd 
turns for w/rc=0.4.  The top line represents the dispersion after 
only the odd numbered turns.  The bottom line represents the
dispersion after only the even numbered turns.  The zig-
zagging line represents the variance after both sets of turns. 
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3.5 Particle Simulation Results with 0-Assumption Field Model 

With the full Laplacian field structure, a direct first-principles derivation of a closed-form 

algebraic expression for the high-Peclet band dispersion is not possible using the analysis from the 

previous section due to the non-fully developed flow patterns created by the transition electric fields.  So 

in this section, a particle simulator was created in Matlab, [13], using numerical solutions of the full 

Laplacian field equations, (15), to determine the dynamics of particles placed in the channel.  These 

dynamics are described by the Helmholtz-Smoluchowski equation, re-written from (3) here: 

 E
dt

xd rr

µ= , (34) 

where x
r

is the position vector, µ is the species mobility, and E
r

 is the electric field, which can be 

represented by the full Laplacian solution, (15), or the abrupt-transition solution, (6). 

 The particle simulator is fed the geometry and physical properties of the system such as the inner 

and outer radii, a and b, the straight leg lengths, L, the number of curves, n, the particle mobility, µ, the 

applied electric potential, Vo, and the number of particles, pts.  Then, the simulator numerically solves 

(34) to provide the particle trajectories.  Figure 19 shows the geometry input for the simulator. 

 

 

Figure 19 – Geometry input to the particle simulator. 

 
After running the time necessary for the mean of the band to reach the defined end of the 

serpentine channel, the particle simulator produces an array of particle locations.  Then, by using the 

a 

b 

L 

L 
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discretized form of (25), implemented through the Matlab var() function, the sample variance is 

calculated, which represents the variance of the band in the channel. 

Now, the particle simulator will be used to verify the analytical abrupt-transition 1/r field 

variance.  Then, simulation results can be generated for the full Laplacian transition field, and new 

comparisons can be made between the abrupt and Laplacian transition field variance predictions. 

 

Figure 20 – (a) Comparison of the abrupt-transition field particle simulation variance to the analytical expression of 
the variance for a single turn with w/rc ranging from 0.1 to 1.0.  (b) Comparison of the particle abrupt-transition field 
particle simulation variance to the analytical expression of the variance for complementary turns with w/rc from 0.1 
to 1.0.  In both cases, agreement is excellent. 

 
Figures 20a and 20b compare and verify the particle simulator’s abrupt-transition 1/r field 

variance results to the analytical expressions from the previous section.  Since w/rc is the only non-

dimensional variable for infinite-Peclet dispersion, which can be verified with the Buckingham π-

Theorem in the Appendix, the first graph shows the results for a range of w/rc values from 0.1 to 1.0, 

which more than encompasses the majority of the practical design space which lies in the range 0.1 to 0.4, 

as previously mentioned.  From these figures, the analytical expressions from the previous section can be 

seen to be in excellent agreement with the particle simulator across the entire range of w/rc, with the error 

consistently near the floor of the computer’s precision.  

Next, dispersion results for the full Laplacian transition fields can be generated for the same range 

of w/rc values (0.1 to 1.0) and compared to the abrupt-transition field dispersion.  Figure 21 shows the 

(a) (b) 
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results of a particle simulation at a single w/rc value, 0.667, which runs with abrupt-transition (red) and 

full Laplacian transition (blue) electric fields.  They are compared with the variance results from a linear 

(green) electric field in the curve, which comes from the expression skew2/12.   

 

Figure 21 – Particle simulations traveling left to right for w/rc=0.667 with 
the full Laplacian transition field (blue) and the abrupt-transition 1/r field 
(red) compared with the linear field approximation skew (green). 

 
Figure 22a compares the abrupt-transition 1/r and Laplacian field variance results with the skew 

variance resulting from the 2-assumption linear field model for w/rc ranging from 0.1 to 1.0 for a single 

turn.  Figure 22b shows the two results compared with the 2-assumption linear field model for a set of 

complementary turns for the same w/rc range.  In figure 22a, the difference between the two descriptions 

is not that significant or that different from the linear field variance, skew2/12, for small w/rc.  This region 

of w/rc is where the error of the linear approximation for the field in the curve is becoming smaller, so the 

agreement of the three becomes fairly good.  However, for complementary turns, even at low w/rc the 

linear and 1/r abrupt-transition approximations miss vital contributions to the dispersion and therefore do 

not agree well with the full Laplacian transition electric field model.  
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Figure 22 – The figure on the left shows the resulting variance for single turn channels with a w/rc from 0.1 to 
1.0.  The figure on the right shows the resulting variance for complementary turns for the same range of w/rc. 

 
 In the previous section with abrupt-transition 1/r fields, a quadratic growth was discovered in the 

variance after traveling through n complementary sets of turns using the analytical equations for abrupt-

transition field dispersion.  Using the particle simulator, the same test can be run using the Laplacian 

transition fields.  Figure 23a shows the results of a particle simulation for the abrupt-transition 1/r and 

Laplacian fields through three sets of complementary turns.  The increase in band variance is apparent 

after each individual turn and particularly after each set of complementary turns.  Even after the odd turns 

that come after at least one set of complementary turns, the mid-section of the band begins to outrun the 

edges, which occurs when the mid-section gets far enough ahead of the band edges so that not even the 

larger velocity of the inner radius particles is enough to catch up with the forward stretched mid-band 

particles.  Figure 23b shows the results of this test for six complementary sets of turns, or twelve turns 

total.  Again, quadratic growth is apparent.  Of course, the linear field approximations would predict 

exactly zero variance after each set of complementary turns. 

(a) (b) 
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Figure 23 – (a) Three complementary turns simulated with the particle simulator for w/rc=0.4. (b) Variance 
after multiple complementary turns for Laplacian and abrupt-transition 1/r fields, showing quadratic growth 
in both cases.  w/rc=0.4, a=10µm. 

 
 One observation from figure 23b is that since both Laplacian and abrupt-transition 1/r field 

variance descriptions have quadratic growth in this high-pure advection regime, they differ only by a 

constant, which in the case of figure 23b is slightly less than four.  This fact will be used in section 3.7 to 

determine a relationship between analytical variance descriptions using the abrupt-transition electric field 

in (30) and the variance descriptions using the Laplacian electric field determined by the particle 

simulator in order to create a closed form analytical description of the Laplacian variance in the high-pure 

advection regime. 

 To validate some of the Laplacian particle simulation results and to extend them to include 

diffusion in the other three regimes, FEMLAB simulations will be shown in the next section. 

 
3.6 Multi-Regime FEMLAB Validation Results 

 FEMLAB can be used to numerically solve the partial differential advection-diffusion equation 

and the electrostatic field structure necessary to solve the dynamics of a separation system [14].  In this 

section, FEMLAB will be used to provide validation results for the models shown in previous sections 

and self-validation compared to published experiments.  The FEMLAB simulations involve an 

unsymmetric coupling, where the advection part of the advection-diffusion equation, (4), is coupled to the 

Laplacian 
Abrupt 

(a) (b) 
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electric field through the Helmholtz-Schmolochowski relation, (3), but according to the electroneutrality 

condition previously assumed, the species concentration has no effect on the electric field.  FEMLAB can 

also be used to couple any number of custom-input equations.  Using this feature, FEMLAB can be used 

to verify the abrupt-transition field results as well. 

The first simulation run with FEMLAB is a complementary turn, with w/rc=0.4, in the high-pure 

advection regime that compares to the particle simulations for abrupt-transition and Laplacian fields. 

 

Figure 24 – FEMLAB validation of abrupt-transition and Laplacian 
field particle simulations, where FEMLAB used a diffusion 
coefficient of zero.  This simulation uses a center radius, rc=12.5µm, 
length between turns, Lbt=80µm, mobility, µ=1.5⋅10-7m2/Vs, straight 
leg electric field, Ey=8420.17V/m, and diffusivity, D=0. 

 
 Figure 24 shows this validation by using a diffusion coefficient of zero to obtain an infinite Peclet 

number, or as close to infinite as the solver tolerances allow.  The FEMLAB simulation confirms the 

different shapes after a set of complementary turns, indicating that the Laplacian fields provide a 

significant increase in variance over the simpler abrupt-transition fields, and an infinite increase compared 

to the linear fields, which would completely unskew the band.  The spreading of the band apparent in the 

FEMLAB figures is a result of the initial Gaussian band that was injected into the channels, in contrast to 

the uniform initial band that is implicit in the particle simulation. 

FEMLAB 
Particle 

Abrupt-Transition 1/r 

Laplacian 
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 Now to compare FEMLAB with experimental results, a simulation can be run that replicates the 

system in Ramsey’s experiment in [4].  This involves measuring the dispersion as the band moves 

through the channel, excluding the curved sections.  The system has an rc=125µm, a w=60µm, an 

Lbt=6mm, an average electric field intensity of 60V/cm, a mobility of 1.195⋅10-8 m2/Vs, and a Peclet 

number of 138.  The geometry is shown in figure 25a, and the results of the simulation are shown in 

figure 25b. 
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Figure 25 – (a) The geometry corresponding to Ramsey’s experiment in [4]. (b) 
FEMLAB simulation of a separation based on Ramsey’s experiment using the geometry 
in figure 25a for a Pe=138. 

 
The slope of the lines in figure 25b corresponds to 2D, where D is the diffusion coefficient and 

2D is the rate of variance growth, and the jumps after the curves, represented by the vertical bars, are the 

variance added due to the turn.  The slope results in a diffusion coefficient of 3.12⋅10-10m2/s and the jumps 

in the plot correspond to turn-induced variance of 1.01⋅10-8m2, both of which are in good agreement with 

Ramsey’s experimental results.   

Finally, FEMLAB can be used to verify the quadratic variance growth seen with both abrupt-

transition 1/r and Laplacian fields by using the geometry shown in figure 26a with an increasing Peclet 

number.  The results in figure 26b are for Peclet numbers ranging from 500 to 10,000, where the diffusion 

coefficient was varied while the geometry was held constant. 

(a) (b)

Lbt=6mm 

rc=125µm 
w=60µm 
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Figure 26 – (a) Geometry for FEMLAB results in figure 26b.  w=50µm, 
rc=125µm, Lbt=1000µm. (b) FEMLAB variance results for the multi-turn 
channel geometry in figure 26a for Pe=500 to 10,000. 

 
Figure 26b shows the growth rate approaching the quadratic infinite Peclet growth as the Peclet 

number is increased.  It also shows the effects of the other regimes on the growth rate, where diffusion is 

more prevalent.  As diffusion is increased, it shows the movement from the high Peclet super-linear to 

lower Peclet linear and sub-linear growth.  While the high Peclet super-linear growth is well understood 

to be due to the quadratic dependence on the number of turns traversed, as seen in (a19) and (a24) in the 

Appendix, the reason for the trend to sub-linear growth is not as apparent.  This trend in the growth rate 

involves the interaction of field and geometry based dispersion, axial diffusion, and transverse diffusion, 

which all interact differently as the Peclet number is changed.  At first, this transition from super-linear to 

sub-linear might be from the measurement limitations mentioned in section 3.4.  However this is not the 

case.  Such measurement limitations come from the fact that it is impossible for the variance to grow 

beyond the square of the length of the straight section where the band variance is measured.    However, 

in this case the late-time asymptote of such a limitation in the measurement is at 1⋅10-6 m2, which is 

several orders of magnitude above the current set of results, and is therefore not limiting the growth of the 

variance measurements.  It is interesting to note, however, that all regimes will eventually approach the 

late-time asymptote, and it is something that should not be ignored when making such measurements. 

 

(a) (b) 
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3.7 High-Pure Advection Analytical Dispersion with 0-Assumption Field Model 

In this section, some of the results gathered from the analytical abrupt-transition 1/r field variance 

and particle model Laplacian field variance simulations in the previous section will be used to obtain a 

high-Peclet analytical description with the full Laplacian transition field structure. 

Since a first-principles derivation is not possible to develop the analytical expression for the full 

Laplacian field variance, the relationship between the abrupt-transition and Laplacian field variances 

needs to be characterized.  From this characterization a relational factor dependent on the problem space 

can be defined to correct the abrupt-transition field analytical variance descriptions to form a complete 

Laplacian analytical description of the band variance. 

From section 3.5 it is known that there is a constant factor between the two descriptions for any 

number of turns for a given w/rc.  So, the only thing that needs to be characterized is the factor between 

the two expressions for a w/rc range for even- and odd-numbered turns.  To do this, a series of particle 

simulations were run to determine the Laplacian variance results, which were then compared with the 

analytical expression for the abrupt-transition field variance.  The factors for even- and odd- numbered 

turns are shown in Figures 27a and 27b. 
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Figure 27 – Correction factors for the abrupt-transition field variance equations in (30) for even-numbered turns, (a), 
and odd-numbered turns, (b). 

 
Using the correction factors in figure 27, which are weak functions of w/rc, a new expression for 

the variance using the Laplacian transition field structure can be created, and this is shown here with an 

expanded version in the Appendix: 

(a) (b) 
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Figure 28 – A surface representing the variance of a band after traveling through a channel, with 
w/rc ranging from 0.1 to1.0 and n ranging even numbered from 2 to 20, as described by the 
particle simulation in (a) and (35) in (b). 

 

 

Figure 29 – The error between the two surfaces seen in figure 28. 

  

(a) (b) 
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 To verify the new expression in (35), a surface was created over a parameter space consisting of 

w/rc and the number of turns using the particle simulator.  The number of turns is the even-numbered 

turns up to 20 and w/rc ranges from 0.1 to 1.0, a superset of the typical w/rc design space for serpentine 

channels which goes up to 0.4.  The surfaces are seen in figure 28 and the error between the two is 

illustrated in figure 29. 

The error in figure 29 is computed from the difference of the two surfaces normalized by the 

surface described by the particle simulation.  Over nearly the entire surface, the error remains less than 

1%.  Only in the corner defined by w/rc values near 1.0 does the error begin to increase to approximately 

6%.  The source of this slightly increasing inaccuracy remains to be investigated.  However, since this is 

an area of the parameter space that would rarely, if ever, be used for useful designs, the error has no real 

effect on the performance of the model.  Further, since the assumptions appear to hold for the entire 

feasible design space, w/rc equals 0.1 to 0.4, the performance is considered acceptable.  If needed, the 

error could be removed by renormalizing the analytical variance surface. 
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4.  Conclusion 

 This report has presented a new model of the high Peclet variance from the electric field and 

channel geometry using the full structure of the electric fields described by complete solutions to 

Laplace’s equation.  This is a functional form, as described in [6], that can be used as a component model 

in a separation system when combined with other subsystems such as the injector and detector.  As a 

closed-form algebraic expression this model can be used for rapid computation and gradient-based 

optimization. 

To create this model, this report first presented additional solutions to the field structure in the 

serpentine turns, which gradually relaxed the two main assumptions of linear fields in the curves with an 

abrupt transition to the straight sections made in [2,3,4,5].  The first field solution presented in chapter 2, 

removed the assumption of linear field structure using a 1/r field in the curves while still using an abrupt 

transition to the straight sections.  The second field solution presented in chapter 2 used complete 

solutions to Laplace’s equation to have a continuous transition between sections with the correct structure 

in straight and curved sections, as verified with finite element software.  In chapter 3, an analytical model 

of the variance of a band traveling through the serpentine channels was created using the abrupt-transition 

1/r 1-assumption field structure.  Using this variance model, new effects were predicted, such as 

incomplete unskewing after complementary turns and quadratic growth of the variance after n even or 

odd turns, which were confirmed in FEMLAB simulations.  Finally, this abrupt-transition model was 

combined with results from the Matlab particle simulations using the 0-assumption full Laplacian field 

structure to create the complete high Peclet variance model. 

 
4.1 Future Work 

In its current functional form, the high Peclet variance model will be combined with the method 

of moments, M.O.M., model developed at CMU [to be published] to describe the variance produced by a 

serpentine of any number of turns in any regime of figure 13.  Ultimately, the variance descriptions and 

insight gained from the high Peclet variance expressions in this work will be used to create a component 
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based model for serpentine channels, which will be useful for creating any general serpentine geometry 

with uniform width.  This component model will be only for the turns in serpentine channels combined 

with the straight section model of the M.O.M., which will allow general serpentines to be constructed 

piece by piece.  The challenge in converting the functional variance descriptions in this report will be 

modifying them to accept various initial conditions, since the input to the component model will be the 

output of the previous straight section after an arbitrary number of turns, rather than a well-defined 

injector. 
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Appendix 

A.1  Buckingham ππππ-Theorem 

Background: See Harald Hanche-Olsen’s notes in [15] for further details.  Provided below are a 

partial proof and examples of the Buckingham π-Theorem from previous sections of this report: 

Assuming variables with values and units that describe a physical function, Φ(R1,…,Rn), 

according to the following notation: 

 ])[( jjj RRvR = , (a5) 

where Rj is the variable with value v(Rj) and units [Rj] 

 Further, it is assumed the units of the variable(s) can be broken down into fundamental 

units such as m, kg, s, K, using a consistent set such as MKS.  These units can be represented as 

F1,…,Fm.  This allows representation of the units of the variable(s) as a product of powers: 
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 Now a matrix of the powers in the product series is constructed, whose dimensions 

depend on the number of variables, n, and the number of fundamental units used, m. 
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 Using these properties we can define a non-dimensional group from the original 

variables.  Such a group is constructed out of a series of products of the original variables of the 

system, Rj, raised to the necessary powers, λn.  Such a group would have units defined as: 
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 For this group of units to be dimensionless, or for (a9) to equal one, the power of the 

product series must equal zero, which is equivalent to Aλ=0, where λ=[λ1,…,λn]
T.  Therefore, 

finding the null-space of A, N(A), will provide the set of powers necessary to have a set of non-

dimensional variables.  It can provide the maximal set of non-dimensional variables [π1,…,πn-r(A)] 

without knowledge of the underlying physical equations that are the source of the dimensional 

analysis.  r(A) is the rank of A, therefore, n-r(A) is the number of free variables, which set the 

number of independent vectors in the null space of A for our under-specified linear system.  The 

vectors that compose N(A) then define the form of the non-dimensional variables. 

 
Example 1 (from section 3.1) 

 
 An example, based on the non-dimensionalization of the function describing the variance 

of a band traveling through serpentine channels in any of the four regimes shown in figure 13 

begins with the function describing the variance: 

 ),,,,,( µDElrw cbtcΦ  (a10) 

where w is the channel width, rc is the center radius of the turn, Lbt is the length between turns, Ec 

is the constant field strength in the straight sections, D is the diffusion coefficient, and µ is the 

mobility of the separation species.  Each of these variables, Rj, contributes to the set of 

fundamental units Fi, to create the set of F={m,kg,s,A}.  This allows the matrix of variable unit 

powers A to be constructed: 
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where the columns represent variables, [w,rc,Lbt,Ec,D,µ], and the rows represent fundamental 

units, [m,kg,s,A]T. 

 Finding the nullspace of A, N(A) provides the following result: 
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 The powers of the variables in each of the non-dimensional groups are represented in the 

chosen basis of N(A).  For this example, the three non-dimensional groups are therefore: 
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Example 2 (from Section 3.5) 

 
 Following the same procedure for the analysis of high-pure advection regime results in 

the following trivial example: 

 ),( crwΦ , (a14) 

where the triviality lies in the fact that there are no time-dependent parameters, since diffusion is 

not an issue.  Therefore the variance fundamentally only depends on w and rc.  This gives the 

following results for the non-dimensional parameters of which there will be one, n-r(A)=1: 
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A.2  Expanded Algebraic Form of Equation 30. 

 Expanding Equation 30 from the text, repeated here:  
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creates the following closed form algebraic for the high-pure advection variance using the abrupt 

1/r fields in the turns: 
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A.3  Expanded Algebraic Form of Equation 35. 

 The expanded form of 35 is identical to (a19) except for the correction factor in (36), 

which results in the following: 
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where G, N1, and N2 are the same as in (a20), (a21), and (a22) respectively, and from (36), (37), 

(38), and (39): 
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 )23867.0))(2,mod(1()12945.0)(2,mod( −−+−= nnα , (a26) 

 )83142.0))(2,mod(1()02408.0)(2,mod( −−+= nnβ , (a27) 

 )28054.4))(2,mod(1()99705.0)(2,mod( nn −+=γ  (a28) 
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Symbol Glossary 
 
a inner turn radius 
b outer turn radius 
c concentration 
cavg average concentration 
Cn series coefficients for the Laplacian solutions in the curved sections 
D diffusion 
Dn series coefficients for the Laplacian solutions in the straight sections 
Ex

curve transverse electric field component in the straight section  (Laplacian transition field) 
Ey axial electric field component in the straight section (abrupt-transition 1/r field) 
Ey

straight axial electric field component in the straight section (Laplacian transition field) 
Er

curve radial electric field component in the curved section (Laplacian transition field) 
Eφ circumferential electric field component in the curved section (abrupt-transition 1/r field) 
Eφ

curve circumferential electric field component in the curved section (Laplacian transition field) 
G common factor found in the abrupt and Laplacian analytical variance equations 
k Boltzmann’s constant 
k wave number in the Laplacian series solutions 
l straight channel length for uniform symmetric single turns 
Lbt length between turns for serpentine channels 
Ldet length of the last leg of serpentine going to the detector 
Linj length of first leg of serpentine coming from the injector 
n number of turns in the serpentine channel 
n± ion concentration in the double layer for positive(+) and negative(-) ions 
n±

o ion concentration in the bulk for positive(+) or negative(-) ions 
N1 indexing modulo function for odd turns found in analytical variance expressions 
N2 indexing modulo function for even turns found in analytical variance expressions 
Pe Peclet number based on width 
pts number of particles in the Matlab particle simulation 
qe charge of an electron 
r radial position in the curved section of the channels 
rc mean channel width 
skew the skew of a band traveling in a linear electric field in a turn 
t time 
T temperature 
Tbt travel time ratio of width to length between turns 
Ti time for a particle to travel the inner most radius in the turn 
To time for a particle to travel the outer most radius in the turn 
Tt travel time ratio of width to length of turn along center radius 
u
v

 channel velocity field 
uo  mean channel velocity 
Vo applied electric potential 
w channel width 
x transverse direction in the straight section of the channels 
y axial direction in the straight section of the channels 
z ion valency 
α component of the correction factor λ 
β component of the correction factor λ 
ε buffer permittivity 
Φ electric potential 
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φ angular position in the curved section of the channels 
γ component of the correction factor λ 
η Laplacian series, coefficient coupling block matrix component 
λ correction factor for the abrupt analytical variance to produce the Laplacian analytical variance 
µ species mobility 
µv viscosity of the buffer 
θ turn angle 

ρ free-charge density 
σab

2 abrupt-transition 1/r field analytical variance 
σlap

2 full Laplacian transition field analytical variance 
τ Laplacian series, coefficient coupling block matrix component 
ξ Laplacian series, coefficient coupling block matrix component 
ζ zeta potential 
 
 
Normalized Variables 
 
c* concentration, c*=c/co 
t* time, t*=t/(w/uo) 
u* velocity, u*= u

v
/uo 

x* transverse position, x*=x/w 
y* axial position, y*=y/w 
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