
1

Chapter 1.  Introduction

1.1 Synthesis of MicroElectroMechanical Systems (MEMS)

MEMS design involves the use of different device topologies in a creative way and sizing

these topologies to meet the requirements on performance. There are essentially two steps: one, to

develop an interconnection of springs, masses and actuators to perform the desired function and

second, to assign appropriate values to these components so that the performance of the device is

satisfactory. In general, there are a number of design variables (we have identified 15 for the

microresonator) and complex trade-offs between different performance specifications. Therefore,

it is difficult to design MEMS by hand. Currently, MEMS design is done with the aid of an equa-

tions-based spreadsheet or finite element analysis (FEA) to evaluate the designs. This requires

many iterations by the designer with different values assigned to the device dimensions or other

design variables in each iteration. The design procedure is, therefore, time-consuming. FEA can-

not evaluate all the performance metrics of interest, or may be restricted to certain specific

domains (like only mechanical analyses or only electrostatic analyses). The performance specifica-

tions and the design variables themselves are not restricted to discrete values and can take on a

continuum of values. This makes pre-compiled cell libraries (like digital cell libraries) ineffective

as a good design aid. In designing complex/arrayed MEMS which make use of a number of similar

devices, it is tedious to individually design each cell.

 A layout synthesis tool generates device layouts directly from high-level specifications. This

involves appropriate assignment of values to the design variables followed by device-layout gener-

ation. Prior work on layout synthesis has addressed the parameterized layout generation of

microresonators [1][2]. Optimal design techniques have been reported for simple MEMS geome-

tries [3]. However, there is no full-fledged synthesis tool for MEMS.

The goal of this work is to develop the prototype of a synthesis tool using the microresonator

as a vehicle. The tool will relieve the designer of the task of sizing the design, thus, allowing him
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to concentrate on system-level design issues and on innovative device topologies. Different parts

of the work detailed in this thesis have been published over the past two years [4][5][6][7][8].

1.2 Folded-Flexure comb drive Microresonator

The folded-flexure electrostatic comb drive micromechanical resonator shown in Figure 1

was first introduced by Tang [9]. This device has been well-researched and is commonly used for

MEMS process characterization. The microresonator consists of a movable central shuttle mass

which is suspended by folded-flexure springs on either side. The other ends of the folded-flexure

springs are fixed to the lower layer. The microresonator can be thought of, as a spring-mass-

damper system, the damping being provided by the air below and above the movable part. By

applying a voltage across the fixed and movable comb fingers, an electrostatic force is produced

which sets the mass into motion in the x-direction. The microresonator has been used in building

filters, oscillators [10] and in resonant positioning systems [11].

A simplified sequence of MUMPS [12], used to fabricate this device is shown in Figure 2.

Layers of silicon nitride and polysilicon are deposited on a silicon substrate. Following this a 2

µm-thick phosphosilicate glass (PSG) layer (which serves as the sacrificial layer) is deposited.

Cuts are made in the PSG layer where the structural layer requires to contact the bottom polysili-

con layer. A 2µm-thick polysilicon layer is deposited on top of this PSG layer and patterned to the

folded
flexure

comb
drive

shuttle
mass
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points
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FIGURE 1. Layout of the lateral folded-flexure comb drive microresonator. The black areas are the
places where the 2µm polysilicon structure is anchored to the bottom layer. The rest of the structure
is suspended 2µm above the bottom layer.
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desired shape. The underlying PSG is then released by wet etching using hydrofluoric acid (HF)

leaving the structural polysilicon suspended 2µm above the bottom layer and fixed to the bottom

layer at the regions where the contact cuts were made in the PSG layer.

1.3 Report Outline

In Chapter 2, the equations describing the behavior of the microresonator are derived. Fol-

lowing this, the synthesis approach is described in Chapter 3. In Chapter 4, the synthesis results

are evaluated by comparing the predicted behavior to finite element analyses and experimental

measurements. Finally, in Chapter 5, the work done is summarized and future directions for syn-

thesis are suggested.

1) Isolation and interconnect definition

(b)

3) Structural definition

4) Structural release from substrate

2) Contact cut for mechanical anchor

(a)

PSG

Si

SixNy
polysilicon

polysilicon

FIGURE 2. Abbreviated process flow for MCNC’s Multi-User MEMS Process service (MUMPS).
(a) Cross-sectional view. (b) Top view (layout)
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Chapter 2.  Lumped Element Modeling

2.1 Introduction

In order to evaluate the performance of a design we need models for the device behavior. The

general approach we have taken in modeling the resonator is to represent distributed elements like

plate masses and folded-flexure springs by a single lumped element having equivalenteffective

properties (like mass, stiffness, etc.) The entire device can then be regarded as an interconnection

of these lumped elements and the device behavior can be easily expressed in terms of the proper-

ties of these lumped elements. This is analogous to modeling a transmission line as a simpleπ-

connected R-L-C network witheffective values for the R, L and C (not just the total resistance of

the line substituted for R).

We have modeled the microresonator as a spring-mass-damper system in the x-direction.

Physics-based models for the effective spring stiffness of the folded-flexure suspensions, the effec-

tive masses of the shuttle mass, comb drives and the folded-flexure, and the viscous air damping

are used in the synthesis tool. The microresonator structure can also have other modes of vibration.

These modes are modeled as spring-mass systems as described in Section 2.2.

The models for the electrostatic comb drive force and the electrostatic instability force/torque

(which may arise due to an offset of the movable comb fingers away from their equilibrium central

position) are described in Section 2.3.

2.2 Modeling the Oscillation Modes of the Microresonator

The preferred direction of motion of the microresonator is the x-direction. However, the

microresonator structure can vibrate in other modes. We have modeled eight modes of vibration of

the microresonator. These modes are the three translation modes along x, y and z, three rotational

modes about x, y and z, and oscillation modes due the movement of the folded-flexure beams and

the comb drive.
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Each oscillation mode is described by a lumped second-order equation of motion. For any

generalized displacementζ, we can write:

(1)

whereFe,ζ is the external force (in thex-mode this force is generated by the comb drives),mζ is the

effective mass,Bζ is the damping coefficient, andkζ is the spring constant. Now, for example, the

x-mode frequency is given byωx = 2π fx = . The other modes are modeled similarly.

Linear equations for the spring constants are derived using energy methods [13]. A force (or

moment) is applied to the free end(s) of the spring in the direction of interest, and the displacement

is calculated symbolically (as a function of the design variables and the applied force). In these

calculations different boundary conditions are applied for the different modes of deformation of

the spring.

When forces (moments) are applied at the end-points of the flexure, the total energy of defor-

mation,U, is calculated as:

(2)

where,Li is the length of thei’th beam in the flexure,Mi is the bending moment transmitted

through beami, E is the Young’s modulus of the material of the beam (polysilicon, in our case) and

Ii is the moment of inertia of beami, about the relevant axis,Ti is the torsion transmitted through

beami, G is the shear modulus,Ji is the torsion constant of beami, andξ is the variable along the

length of the beam. The bending moment and the torsion is a linear function of the forces and

moments applied to the end-points of the flexure. The displacement of an end-point of the flexure

in any directionζ is given as:

(3)

Fe ζ, mζζ̇̇ Bζζ̇ kζζ+ +=

kx mx⁄

U
Mi ξ( )2

2EIi
-----------------

Ti ξ( )2

2GJi
----------------+

 
 
 

ξd
0

Li

∫
beam i 1=

N

∑=

δζ ∂U
∂Fζ
---------=
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where,Fζ is the force applied in that direction at that end-point [14]. Similarly, angular displace-

ments can be related to applied moments.

Our aim here is to obtain the displacement in the direction of interest as a function of the

applied force in that direction. Applying the boundary conditions, we obtain a set of linear equa-

tions in terms of the applied forces and moments and the unknown displacement. Solving the set of

equations yields a linear relationship between the displacement and applied force in the direction

of interest [13]. The constant of proportionality gives the spring constant as a function of the phys-

ical dimensions of the flexure.

The effect of spring mass on resonance frequency is incorporated in effective masses for each

lateral mode. Effective mass for each mode of interest is calculated by normalizing the total maxi-

mum kinetic energy of the spring by the maximum shuttle velocity,vmax.

(4)

wheremi andLi are the mass and length of the i’th beam in the flexure. Analytic expressions for

velocities,vi, along the flexure’s beams are approximated from static deformation shapes, and are

found from the spring constant derivations.

2.2.1 Models for x-translation Mode

The spring constant of the folded-flexure in the x-direction is [13]:

(5)

whereE is the Young’s modulus of polysilicon,t is the polysilicon thickness, and .

The geometrical layout parametersLt, Lb, wt andwb are as shown in Figure 3.

meff

mi

Li
-----

vi ξ( )
vmax
------------

 
 
  2

ξd
0

Li

∫
beam i 1=

N

∑=

kx

2Etwb
3

Lb
3

----------------
Lt

2
14αLtLb 36α2

Lb
2

+ +

4Lt
2

41αLtLb 36α2
Lb

2
+ +

---------------------------------------------------------------=

α wt wb⁄( )3=



7

In order to calculate the effective mass accurately, it is not only necessary to take into account

the velocities of the beams in the folded-flexure in the x-direction, but also the velocities of the

truss beams in the y-direction. With this, the net effective mass of the microresonator in the x-

direction (mx) can be written as:

(6)

(7)

(8)

wheremshuttle is the shuttle mass,mt,eff is the effective mass of all truss sections,mb,eff is the effec-

tive mass of all the long beams,mtrussis the total mass of all truss sections,mbeams is the total mass

of all the long beams.

Viscous air damping dominates the energy dissipation mechanisms in microresonators at

atmospheric pressure. The total damping force in the x-direction is mainly composed of the forces

due to Couette flow below the resonator, Stokes flow above the resonator, and air flow in the gap

between comb fingers. The expression for the damping coefficient is [15]:

wsa

wsy

L sa

L sy

L b

Lt

wb
wt

wba

wca

Lcy

wcy

xo

g

wc

L c

(a)                                       (b)

(c)                                          (d)

FIGURE 3. Dimensions of the microresonator elements. (a) shuttle mass, (b) folded-flexure, (c)
comb drive with N movable ‘rotor’ fingers, (d) close-up view of comb fingers.

mx mshuttle mt eff, mb eff,+ +=

mb eff,
mbeams
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2
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2
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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280
--------------- 57Lt

6
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3
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3
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4
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+ +

(
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2
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2
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(9)

whereµ is the viscosity of air,d is the fixed spacer gap between the ground plane and the bottom

surface of the comb fingers,δ is the penetration depth of airflow above the structure,g  is the gap

between comb fingers, andAs, At, Ab, andAc are layout areas for the shuttle, truss beams, flexure

beams, and comb finger sidewalls, respectively. It has been suggested [15] that, for calculating the

viscous damping force, small cross-section elements (like comb fingers) should be weighted thrice

as much as large plate masses to take into account edge and finite-size effects. Instead of weighting

the damping force on different elements differently, the same phenomena are modeled in this work

by extending each device dimension by 4µm. The damping factors of the modes of vibrations

other than the x-direction are not modeled.

2.2.2 Models for the y-translation Mode

The spring stiffness of the folded-flexure in y-direction is [13]:

(10)

However, this model does not take into account the compression of the beams. The spring stiffness

due to compression alone is given by Hooke’s law as:

(11)

The effective spring constant in the y-direction is given as a combination of the two springs:

(12)

The effective mass in the y-direction is given as:

(13)

Bx µ As 0.5At 0.5Ab+ +( ) 1
d
--- 1

δ
---+ 

  Ac

g
------+=

ky flexure,
2Etwt

3

Lt
3

----------------
8Lt

2
8αLtLb α2

Lb
2

+ +

4Lt
2

10αLtLb 5α2
Lb

2
+ +

------------------------------------------------------------=

ky beamcomp,
2Etwb

Lb
----------------=

ky eff,
ky flexure, ky beamcomp,⋅
ky flexure, ky beamcomp,+
-------------------------------------------------------------=

my mshuttle mt yeff, mb yeff,+ +=
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(14)

(15)

wheremt,yeff is the effective mass of all truss sections,mb,yeff is the effective mass of all the long

beams in the y-direction of motion.

2.2.3 Models for the z-translation Mode

The spring stiffness in the z-translation mode is derived in [13] and is not listed here for the

sake of brevity. The effective mass in the z-direction is:

(16)

2.2.4 Models for the Rotation-about-z Mode

To calculate the spring stiffness of the folded-flexure in the rotation-about-z mode, a moment

mAz is applied to the half folded-flexure, as shown in Figure 4 [16]. This moment produces reac-

tion forcesfAx, fAy, fBx, fBy and a reaction momentmBz. From symmetry considerations,mBz andfBx

have to be zero. This leaves us with 3 unknowns,fAx, fAy andfBy. In this mode the flexure move-

mb yeff, mbeams
1
2
--- 3Lb

4α2
2Lt αLb+( )2( ) 14Lt

2
4Lt

2
10αLtLb 5α2

Lb
2

+ +( )
2

⁄( )+ 
 =

mt yeff,
mtruss

1120
---------------

3328Lt
4

16064αLt
3
Lb 26868α2

Lt
2
Lb

2
17828α3

LtLb
3

4077α4
Lb

4
+ + + +( )

4Lt
2

10αLtLb 5α2
Lb

2
+ +( )

2
[ ]

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

mz mshuttle
1
4
---m

truss

12
35
------mbeams+ +=

fAx

fAymAz

A B

fBx

fBy mBz

x

y
θz

δxA = 0
δyA = 0

δyB = 0

fBx = 0
mBz = 0

FIGURE 4. Forces and moments applied on the free ends of a half folded-flexure (withy-axis of
symmetry) for in-plane rotation. Boundary conditions to calculate the spring constant in the
rotation-about-z mode are also shown.
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ment is such that the boundary conditions are as follows. The point A does not translate in the x or

y directions. Therefore,δxA = 0 and δyA = 0. The point B does not translate along the y-axis.

Therefore,δyB = 0. These boundary conditions are summarized in Table I. Beam compression

effects are found to be significant for this mode. Therefore, for calculation of the spring stiffness,

an additional energy term is included in the right hand side of (2), which takes into account the

energy due to axial compression in the folded-flexure beams. The spring stiffness is then calcu-

lated as explained previously (using (3)). The expression for the spring constant is extremely long

and is not listed here in full detail. A first-order approximation when ,  and beam

compression effects are neglected is:

(17)

where,Lx is the distance of the center of the outer folded-flexure beam from the center of the shut-

tle mass along the x-axis. It is seen thatkθz, flexure is very sensitive to variations in the width and the

length of the truss-beam.

The moment of inertia about the z-axis,Iz, is calculated as if the entire structure rotates by the

same angle, as: .

(18)

where,mi is the mass of thei’th rectangular block,wi andLi are the width and the length respec-

tively, of that face of thei’th block which is normal to the z-axis (in general, the face normal to the

axis of rotation),ri is the distance of the center of mass of the block from the z-axis and the

microresonator is made up ofN blocks.

The straight-forward calculation explained above results in an over-estimation of the moment

of inertia, since portions of the folded-flexure closer to the anchor do not rotate as much as the

α 1» Lb Lt»

kθz flexure,
2Etwt

3

3Lt
3

----------------Lx
2

=

I z mi

wi
2
Li Li

2
wi+( )

12
----------------------------------- mir i

2
+

 
 
 

rec gletan i 1=

N

∑=
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shuttle mass rotates. Therefore, the predicted resonant frequency for this mode will be lower than

the actual frequency. This is acceptable for the synthesis, since we are only interested in keeping

the frequency of this mode well-separated from the frequency of the x-mode.

2.2.5 Models for the Rotation-about-x Mode

A momentmAx is applied to the half folded-flexure, as shown in Figure 5. The relations are

summarized in the first row of Table I. The spring stiffness is then calculated as explained previ-

z

y

x

y

θx

fAz

mAx A B

BA

mAy mBy

δzA = 0
δθAy = 0

δθBy = 0
mBx = 0

Calculation ofkθx

δzA = 0
δθAx = 0

δθBx = 0
mBy = 0

Calculation ofkθy

θz

mBx

fBz

fBz = 0

δzB = 0
FIGURE 5. Forces and moments applied on the free ends of a half folded-flexure (withy-axis of
symmetry). Boundary conditions to calculate the spring constants in the two out-of-plane
rotational modes are also shown.

Table I Calculation of spring-constants for the rotational modes

Axis of
Rotation

Applied
Moment

Reaction
Forces/
Moments

Symmetry
Considerations Unknowns

Boundary
Conditions

x mAx fAz, mAy,

fBz,mBx,

mBy

mBx=0
 fBz=0

fAz, mAy,
mBy

δzA = 0

δθAy = 0

δθBy = 0

y mAy fAz, mAx,

fBz, mBx,

mBy

mBy=0; fAz, mAy,
fBz, mBy

δzA = 0

δθAx = 0

δzB = 0

δθBx = 0

z mAz fAx, fAy,

fBx, fBy

mBz

mBz=0
fBx=0

fAx, fAy, fBy δxA = 0

δyA = 0

δyB = 0
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ously (using (2) and (3)). If the central shuttle yoke is assumed to be highly rigid, an approximate

expression for the spring stiffness is:

(19)

where,Ly = Lsy/2 and , Ix,b is the moment of inertia of a long folded-flexure beam

about the x-axis andJt is the torsion constant for a truss beam. The expression for the torsion con-

stant for a rectangular beam is listed in [13].

The moment of inertia about the x axis is calculated as if the entire structure rotates by the

same angle, similar to the calculation of the moment of inertia about the z-axis.

2.2.6 Models for the Rotation-about-y Mode

To calculate the spring stiffness of the folded-flexure in the rotation-about-y mode, a moment

mAy is applied to the half folded-flexure, as shown in Figure 5. The relations are once again sum-

marized in Table I and the spring stiffness is calculated via (2) and (3). The expression for the

spring constant is extremely long and is not listed here. If the truss is assumed to be very stiff (i.e.,

very wide), and the length of the beams is much greater than the length of the truss sections, (i.e.,

Lb >> Lt) the dominant terms in the expression reduce to:

(20)

where, ,Jb is the torsion constant for the folded-flexure beams.

The moment of inertia about the y-axis is calculated similar to the other two rotation modes.

2.2.7 Models for the Folded-flexure Beam Mode

Two vibration modes are observed due to the movement of the folded-flexure beams, one in

which the two springs on either side are in phase (symmetric) and the other mode in which the two

kθx flexure,
Et3wt

3Lb
3

--------------
2βLb

3
3Lb

2
Lt 6βLb

2
Ly 6LbLtLy 6βLbLy

2
3LtLy

2
+ + + + +

βLb 2Lt+
--------------------------------------------------------------------------------------------------------------------------------------=

β
GJt

EIx b,
-------------=

kθy flexure,
Et3wb

6Lb
3

---------------
γ 2Lb

4 6γ Lb
2Lt

2 12γ Lb
2LtLx 15γ Lb

2Lx
2 9Lt

2Lx
2+ +–+

γ Lb
2

3Lt
2

+
----------------------------------------------------------------------------------------------------------------------------⋅=

γ
GJb

EIx b,
-------------=
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springs are  out-of-phase (anti-symmetric). The frequencies of these two modes are usually

very close. We have modeled the symmetric mode with the one-dimensional half-resonator system

shown in Figure 6 [16]. The flexure behavior is lumped into an effective mass,mfl, and a flexure

spring,kfl, which is split into an anchored component and a component connected to the shuttle

mass. The second modal frequency of this system is

(21)

where, assuming an infinitely stiff truss, the flexure effective mass is

(22)

In this vibration mode, the truss beams oscillate with the maximum amplitude. Therefore, their

masses appear directly in (22) (Note:mtruss is the mass of all the truss beams intwo folded flexure

springs), while the contribution of the beams is calculated using (4).

The flexure spring constant is obtained by treating each beam as a guided-end beam [13] and

summing the individual spring constants.

(23)

2.2.8 Models for the Comb Drive Oscillation Mode

The comb drive is stiff in the in-plane directions since it is usually more wide than thick.

However, it is typically not very stiff in the z-direction. Therefore, there will be a vibration mode

180°

mshuttle

2
mfl

kflkfl

x

2 2

FIGURE 6. One-dimensional model for determining resonant frequency of the flexure modes, where
mshuttle is the shuttle mass,kfl is the flexure spring constant, andmfl is the flexure effective mass. Only
half of the resonator is modeled, taking advantage of symmetry.

ω fl 2πf fl

k fl

mfl
-------- 1

mfl

2mshuttle
----------------------

mfl

2mshuttle
----------------------

 
 
  2

+ +
 
 
 

= =

mfl

mtruss

2
---------------

6
35
------mbeams+=

k fl 4Et
wb

Lb
------

 
 
  3

=
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due to motion of the comb drive in the z-direction. In this mode, the portion of the comb drive

extending along the y-direction, outside the shuttle mass, oscillates in the z-direction, while, the

rest of the structure, including the central portion of the comb drive which is attached to the shuttle

mass, is almost stationary. This mode is also modeled as a spring-mass system. The spring stiff-

ness of the comb drive in the z-direction is equal to that of a cantilever beam whose length is equal

to Lcomb, shown in Figure 7.

(24)

where,Lcomb=(1/2) (Lcy-Lsy).

The effective mass of the comb drive is calculated using (4). The velocity is zero at the end of

the comb drive which is near the shuttle and is maximum at the position of the outer-most finger.

The comb drive mode shape is assumed to be cubic. The effective mass is then given by:

(25)

where,mcomb is the mass of the portion of the comb drive of lengthLcomb.

kz comb,
Ewcyt

3

4Lcomb
3

------------------=

Lcomb

wcy

Lcomb

t

mz,comb

kz,comb

(a) (b) (c)

FIGURE 7. Modeling the vibration mode of the comb drive. (a) comb drive (b) Equivalent
cantilever beam (c) Spring-mass model

mz comb,
23
140
---------mcomb=
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2.3 Electrostatic Force Models

2.3.1 Comb Drive Force in x

General analytic equations for the lateral comb drive force,Fx, as a function of comb finger

width, wc, air gap between comb fingers,g, structure thickness,t, and sacrificial spacer thickness,

d, are derived in [17]. For the special case of equal comb finger width, gap, thickness, and spacing

above the substrate (wc = g = t = d), each comb drive generates a force that is proportional to the

square of the voltage,V, applied across the comb fingers.

(26)

whereεo is the permittivity of air,N is the number of fingers in the movable comb drive,V is the

instantaneous voltage applied across the comb drive.

2.3.2 Electrostatic Instability Models

If the comb fingers are not perfectly centered, ay-directed electrostatic force is also present.

In the absence of restraining springs, this force will result in snapping of the movable comb fingers

and the stationary comb fingers. Assuming a small perturbationδy in the y-direction, the destabi-

lizing force,Fe,y, is proportional to displacement such thatFe,y= ke,yδy, whereke,yis an ‘electrical

negative spring constant.’

(27)

If there is a small rotationδθ, about the z-axis, a destabilizing electrostatic torque,

τe,θ = ke,θ δθ is generated by the comb drive. The rotational spring constant is found by realizing

that the destabilizing force acts through a moment arm,Xc, on the center of the resonator, giving

[16]:

Fx 1.12εoN
t
g
---V 2≅

ke y, 2εoNV 2 xo
t

g 3
-----≈
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(28)

whereXc = 0.5Lsa +wcy + Lc - 0.5xo (Refer to Figure 3 and Table II for definitions of the geomet-

ric design variables).

2.4 Summary

The microresonator has been modeled in detail and equations predicting the modes of the

microresonator as functions of the geometrical parameters have been derived. Models have also

been derived for the comb drive electrostatic forces. These lumped-element models are used by the

synthesis tool for rapidly evaluating candidate designs.

ke θ, ke y, Xc
2

2εoNV 2xo
t

g 3
-----Xc

2≈=
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Chapter 3.  Synthesis Methodology

The synthesis methodology involves the identification of all the degrees of freedom and the

constraints on the design problem. The development of the synthesis tool is initiated by identifying

the design variables that capture the degrees of freedom in the design space. Following this, we

define the design space by limiting each design variable to lie between a maximum and minimum.

Constraints, which the design variables should satisfy in order for the design to be acceptable, are

then formulated. Different objective functions such asminimize area, are implemented in order to

drive the synthesis towards preferred types of designs (smaller designs, in the case of theminimize

area objective function). The synthesis is achieved through an optimization algorithm which seeks

to minimize a cost function and simultaneously satisfy the constraints.

3.1 Design Variables

Fifteen design variables are identified for the microresonator. The design variables are listed

in Table II and shown in Figure 3. These include 13 geometrical parameters (shown in Figure 3),

the number of fingers in the comb drive,N, and the effective voltage,V, applied to the comb drive.

When the resonator is operated with a dc voltageVdc applied to the shuttle, and a sinusoidal volt-

Table II Design and style variables for the microresonator. Upper and lower
bounds are in units ofµm exceptN and V.

DESIGN VARIABLES
Var. Description Min Max Var. Description Min Max
Lb length of flexure beam 2 400 wcy width of comb yoke 10 400
wb width of flexure beam 2 20 Lcy length of comb yoke 2 700
Lt length of truss beam 2 400 Lc length of comb fingers 8 400
wt width of truss beam 2 20 wc width of comb fingers 2 20
Lsy length of shuttle yoke 2 400 g gap between comb fingers 2 20
wsy width of shuttle yoke 10 400 xo comb finger overlap 4 400
wsa width of shuttle axle 10 400
N number of rotor comb fingers 1 100 V voltage amplitude 1 V 50V

STYLE VARIABLES
wba width of beam anchors 11 11 wca width of stator comb anchors 14 14
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age source with amplitudeVac applied to only one of the actuators, we can simplify the applied

voltage as an effective sinusoidal voltage with amplitude . Technology-driven

design rules set minimum beam widths and minimum spaces between structures. Maximum beam

lengths are constrained to 400µm to avoid problems with undesirable curling due to stress gradi-

ents in the structural film and possible sticking and breakage during the wet release etch [18].

Maximum width of beams is constrained to 20µm by the limited undercut of PSG to release the

structures. The shuttle axle, the shuttle yoke and the comb yoke are at least 10µm wide so that,

they are relatively more rigid than folded-flexure beams. The comb yoke is allowed to extend up to

700µm, to fill up the entire flexure length allowed for the resonator, even if the comb fingers

occupy only a fraction of a length of the comb yoke.

Geometric “style” variables are necessary to completely define the layout, but do not affect

the resonator behavior. Therefore, they are not part of the set of design variables. They usually

define the stationary parts of the device, such as the anchors for the stationary comb fingers and the

folded-flexure beams. While setting these variables the design rules should be followed. These

variables are set to fixed values and include the width of the anchor supports,wba andwca, the off-

set of attachment points of the flexure beams to the anchor edge, and the overlap around anchor

cuts.

3.2 Constraints

The constraints can be classified into two kinds: geometrical constraints which are directly

related to the physical dimensions of the microresonator and functional constraints which are

related to the behavior of the microresonator.

V 2VacVdc=
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3.2.1 Geometrical Constraints

The geometric constraints illustrated in Figure 8 are necessary to ensure a functional resona-

tor. The constraints are detailed in Table III. The resonator width and length must not exceed an

arbitrary fixed size, set at 700µm in the example presented. Depending on the design, either the

flexure or the comb drive actuator may define the overall resonator length. Therefore, both con-

straints need to be simultaneously satisfied. The actuator length constraint is linear (an alternative

non-linear form of the constraint would have been ). Choosing a linearized

version of any constraint aids in the efficiency of the optimization-based synthesis. With the intro-

duction a design variable,Lcy, for the length of the comb finger yoke there is an extra degree of

freedom, which allows the comb drive yoke to be longer than the minimum length required to

accommodate all the comb fingers. However, there is a possibility that the comb drive length may

not be sufficient to hold all the fingers. To avoid this there is a comb-fill constraint:

.

Gaps between the comb fingers and between the shuttle and beam anchor must allow the

shuttle to move freely and must accommodate the maximum possible stroke. The maximum

shuttle
clearance

shuttle
gap in y

comb

flexure
length

actuator
length

< 700µm

< 700µm

resonator
width

clearance

< 700µm > 2 µm

> 4 µm

> 4 µm

FIGURE 8. Geometric constraints. These constraints limit the overall size of the microresonator
and also prevent the moving parts from colliding into the fixed parts of the microresonator.

2N 1+( )wc 2Ng+

2N 1+( )wc 2Ng+ Lcy≤
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expected displacement of the shuttle mass will be at resonance, and is encoded in the motion limit

constraints usingxdisp. First, we ensure that the comb fingers do not crash into each other at the

maximum displacement. Next, we constrain the minimum comb overlap at the maximum displace-

ment, to maintain linearity of the comb drive actuation. We also constrain the resonator geometry

to ensure an adequate shuttle clearance during movement of the shuttle. Finally, a shuttle gap con-

straint is defined to encode the technology-driven design rule for gaps between moving and

anchored parts.

3.2.2 Functional Constraints

Constraints on the design specifications are assigned realistic values for synthesizing a valid

resonator for use as a characterization structure. Alternative constraint values can be readily

assigned in the implementation.

An essential specification is resonant frequency of the lowest (preferred) mode. A valid lay-

out must have a resonant frequency within 1% of the desired value (fspec). Resonant frequencies of

the other in-plane modes,ffl, fθz andfy, (collectively represented byfi in Table IV) must be at least

three times greater thanfx to decouple the modes adequately. For the out-of-plane modes of vibra-

tion, the quality factor is expected to be much lower than for the in-plane modes, since squeeze-

Table III Geometric Constraints

Constraint Description Expression
min
[µm]

max
[µm]

actuator length I Lcy+2g+2wc 0 700

comb-fill (2N+1) wc + 2Ng - Lcy 700 0

flexure length Lsy+2Lb+2wt 0 700

total resonator width

3Lt+wsy+4Lc -
2xo+2wcy+2wca

0 700

comb clearance during motion Lc -(xo+xdisp) 4 200

minimum comb overlap xo-xdisp 4 200

shuttle clearance during motion Lt-xdisp-(wsy+wb)/2 4 200

shuttle gap in y (Lsy-2wba-wsa)/2 2 200
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film damping between the microresonator and the bottom layer will dominate over viscous air

damping due to lateral motion. Therefore, even if these modes are closer to the x-mode than the in-

plane modes, their oscillations will be more damped. Additionally, it is very difficult to achieve the

factor of threein mode separation for the out-of-plane modes. Hence, the out-of-plane modesfz,

fθx, andfθy (collectively represented byfo in Table IV) are constrained to be at least twice greater

thanfx. For stability, the restoring force of the spring in they direction must be three times greater

than the destabilizing electrostatic force from the comb drive (i.e., ). A similar stability

constraint must hold for the rotational mode.

Assuming the system is underdamped, the displacement amplitude at resonance is

, where  is the comb drive force,  is the quality

factor, andBx is the damping coefficient. To enable easy visual confirmation of resonance the dis-

placement amplitude is constrained to be at least 2µm. A quality factor constraint,Qx ≥ 5, is also

implemented to ensure underdamped resonant operation.

Some of the lumped-parameter macromodels were derived based on simplifying assump-

tions. For example, in they direction, we assume that the shuttle compliance will never dominate

the flexure stiffness. We encode this assumption as a design constraint by ensuring that

. In thex direction, we assume that the flexure stiffness will be linear. To encode

this concern, we use anad hoc value of 10 for the ratio of beam length to the maximum displace-

ment. In other words, the upper limit on the deflection of the beam is 10% of the beam length.

Finite residual stress in mechanical polysilicon films can cause released fixed-fixed suspen-

sions to break in tension or buckle under compression. Polysilicon can be deposited either com-

pressive or tensile, depending on deposition conditions. In the MUMPs process, residual stress is

always compressive, having a nominal value of -10 MPa and worst-case value of -20 MPa.

3ke y, ky<

xdisp QxFx kx⁄= Fx NV2∝ Qx mxk
x

Bx
2⁄=

ky axle, 10ky>
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Beams in the folded flexure are free to expand outward to relieve residual axial stress. How-

ever, as shown in Figure 9, the central shuttle also expands an amount∆ due to residual stress, cre-

ating additional axial stress in the outer beams and tension in the inner beams. A first-order value

of the critical buckling length,Lcr, for the folded-flexure is given by the Euler column formula,

, where2Lb < Lcr to ensure no buckling, andw corresponds to the minimum

of wb andt.

A summary of the functional constraints on the design specifications is given in Table IV.

3.3 Synthesis Formulation

Synthesis of the microresonator will result in one of two possible outcomes. Several designs

may satisfy the above constraints, or no designs may meet the constraints (null design space). Our

Table IV Functional Constraints

Constraint Description Expression min max

resonant frequency fx/fspec 0.99 1.01

stroke at resonance xdisp 2 µm 100µm

quality factor in x Qx 5 105

y-axis stability ke,y/ky 0 1/3

θz stability ke,θz/kθz 0 1/3

in-plane mode separation fx/fi 0 1/3

out-of-plane mode separationfx/fo 0 1/2

ky accuracy ky/ky,axle 0 1/10

kx accuracy xdisp/Lb 0 1/10

buckling Lb/Lcr 0 1/2

Lsy+∆
F

F F

F

outer beams in compression
inner beams in tension

FIGURE 9. Effect of compressive residual stress on the folded-flexure suspension. The expansion
of the central shuttle mass pushes the outer beams. If the stress due to this is greater than a
critical value, the outer beams will buckle.

Lcr πw 2Lb 3∆⁄=
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synthesis approach is to select the design that minimizes an objective function and therefore, may

be considered optimal. The synthesized result depends very strongly on the choice of objective

function.

Generally, smaller area devices are preferred for cost reduction. Smaller operating voltages

are also preferred for integrated devices. Therefore, three objective functions to be minimized are

implemented: total active area, amplitude of the comb drive voltage, and the sum of normalized

area and normalized voltage (normalized to maximum possible area and voltage respectively). The

amplitude of oscillation is very crucial and large amplitudes are required for better sensing capa-

bilities. To achieve this, a fourth objective function: maximize displacement at resonance, is also

implemented.

In our approach, the synthesis problem is translated into a constrained optimization formula-

tion that is solved using a non-linear constrained optimization technique. During the optimization,

designs are evaluated by the values of the constraint functions and the objective functions for the

current values of the design variables. Depending on the choice of the objective function, there can

be more than one minimum point in the optimization, due to the complex non-linear characteristics

of the individual equations in the lumped-element models. Furthermore, since our goal is synthe-

sis, we need to be independent of any choice of starting point for the optimization.

In order to increase the probability of finding a better design (i.e., move closer to the global

optimum) a gridded multi-start algorithm coupled with a gradient-based constrained optimization

(NPSOL) [19] efficiently solves for the global minimum of the objective function. The use of a

starting grid eliminates the need to provide good starting points to the gradient-based optimization.

The starting grid is formed by assigning 3 values to each design variable (as described in

Section 3.1, there are 15 design variables) leading to 315 starting points. Each of these points in the

design space is evaluated and 100 designs which best meet the constraints are selected. These 100

points are used as the starting points for the gradient-based optimization. A number of these 100
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optimization runs may converge to the same design. From among the different designs resulting

from these 100 optimization runs, the best design is chosen as the final synthesis result.

The non-linear constrained optimization formulation can be written as:

where  is the vector of independent design variables given in Table II;  is a set of objective

functions that codify performance specifications the designer wishes to optimize,e.g., area;

 and  are each a set of functions that implement the geometric and functional

constraints given in Table III and Table IV. Scalar weights,wi, balance competing objectives. The

decision variables can be described as a set , where  is the set of allowable values for

 (described by the bounds in Table II).

The MEMS design problem cannot be completely modeled in the non-linear constrained

optimization formulation. Some of the design variables in the design (such as the number of comb

fingers) are integer in nature. The number of comb fingers is initially treated as a continuous vari-

able. When the optimization (called the RELAXED problem) terminates successfully, the number

of comb fingers is truncated to the nearest integer and removed from the list of design variables.

The optimization is run again (called the NON-RELAXED problem) with the result of the

RELAXED problem as the starting point, resulting in the final synthesized design. Furthermore,

all the geometry parameters will directly affect the physical microresonator layout. Therefore, they

should be represented as integers with centi-micron units rather than as real numbers, as is the case

in the classical non-linear constrained optimization formulation. To implement this the values of

minu z wi f i u( )⋅
i 1=

k

∑=

s.t. h u( ) 0=

g u( ) 0≤

u UP∈

u f u( )

h u( ) 0= g u( ) 0≤

u UP∈ UP

u
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the design variables that result from the NON-RELAXED problem are rounded off to the nearest

centi-micron units.

3.4 Layout Generation

Once the optimization results in a valid design, i.e., a set of values for the design variables,

which satisfy all the requirements, these values are fed to a parameterized layout generation tool,

CAMEL [1]. CAMEL produces a CIF file which contains the mask information required for fabri-

cation of the synthesized microresonator. CAMEL was modified to produce simplified layouts of

the microresonator so that the number of style variables is reduced.

3.5 Summary

The synthesis tool has been described in detail. This tool is used to generate microresonator

layouts for different frequencies and different design objectives. In the next chapter, we will detail

the complex trade-offs involved in optimal design of microresonators, with the help of the synthe-

sis results.
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Chapter 4.  Synthesis Results and Synthesis
Validation

The synthesis tool was used to generate layouts for 5 different frequencies for 4 different

objective functions. For these microresonators, only the in-plane mode separation constraints

described in Section 3.2.2, were imposed. The trends in the synthesis results with changing fre-

quencies and objective functions are discussed. Out-of-plane mode separation constraints (also

described in Section 3.2.2) are then included in the synthesis and the generated results are dis-

cussed. We evaluate the effectiveness of synthesis by comparing the predicted behavior of the syn-

thesized microresonators with finite element analyses and through experimental measurements on

fabricated microresonators.

4.1 Microresonator Layouts with In-plane Mode Separation Constraints

Layouts were synthesized using 3, 10, 30, 100 and 300 kHz as the input frequency specifica-

tion. These microresonators were synthesized for 4 different objective functions. The synthesis

results are shown in Figure 10. As the frequency increases, we see that the overall size of the

microresonator decreases. The length of the folded-flexure beams also becomes smaller at higher

frequencies. Higher frequency microresonators need stiffer springs and lighter masses. Shorter

beams are stiffer and smaller microresonators have lesser mass. Hence the observed trends in the

size and the beam lengths.

The minimize-area microresonators are seen to be smaller than the other sets of microresona-

tors. In some cases, the minimize-area microresonators have only one comb finger. The minimize-

voltage microresonators have longer comb drives (because they have more comb fingers) than the

other sets of microresonators. To produce adequate force with a small voltage, more comb fingers

are required, since, the force produced is directly proportional to the number of comb fingers

((26)). The minimize-area and voltage microresonators are larger than the minimize-area

microresonators and at the same time, have shorter comb drives than the minimize-voltage
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(a)

(b)

(c)

(d)

3 kHz                                10 kHz                           30 kHz                 100 kHz         300 kHz

FIGURE 10. Layouts synthesized with in-plane mode separation constraints for 5 different frequencies and 4 different objective functions. (a) minimize
area (b) minimize voltage (c) minimize area + voltage (d) maximize displacement at resonance
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microresonators. The maximize-displacement microresonators have long comb fingers in order to

accommodate the large motion amplitude of the shuttle during resonance.

4.2 Frequency Limits on Synthesis

The synthesis tool cannot synthesize microresonators with frequencies smaller than 1.6 kHz

or larger than 300 kHz. At the low frequency end, the plate masses have a large surface area. As

seen in Figure 11, in the 1.6 kHz case the constraints on the overall size (700µm a side) are active.

The larger area results in a large damping force and, therefore, a small quality factor. Therefore, it

is difficult to maintain the quality factor to be greater than 5. Additionally, since the comb fingers

are far away from the center of the shuttle mass, a small angular displacement can lead to a large

instability torque. The synthesis tool is therefore not able to meet the quality factor constraint and

theθz instability constraint at frequencies lower than 1.6 kHz.

At the higher frequency end, the springs are very stiff in the y-direction. The central shuttle

axle is therefore liable to bend if there is a y-directed force. Theky accuracy constraint is, there-

fore, difficult to satisfy at frequencies higher than 300 kHz. To produce a displacement of 2µm, a

larger force needs to be applied at 300 kHz than at lower frequencies, since the springs are stiffer

at higher frequencies. Since the voltage that can be applied to the comb drives has an upper limit of

 700µm

 700µm

(a)1.6 kHz (b) 300 kHz

FIGURE 11. Microresonators synthesized with the maximize displacement objective function.
(a) 1.6 kHz, low frequency limit (b) 300 kHz, high frequency limit
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50 V, the only way to increase the force is by having more comb fingers. However, this increases

the mass of the resonator and also the width of the comb drive. With an increased mass it is diffi-

cult to generate high-frequency resonators. Further, if the comb drive is too wide, theθz mode sep-

aration constraint is difficult to meet. These are the constraints and trade-offs that determine the

high-frequency limit on the synthesis for the MUMPS process design rules and the previously

described minimum performance criteria.

4.3 Microresonator Layouts with Out-of-plane Mode Separation Constraints

Previously, we presented synthesized layouts which were optimized for different objective

functions such as minimize microresonator area, minimize applied voltage, minimize a normalized

sum of microresonator area and applied voltage, and maximize microresonator displacement at

resonance. These resonators were fabricated in the MUMPS process [12]. All these devices are 2

µm thick. Representative layouts are shown in Figure 12 (a) and (b). After the incorporation of the

out-of-plane mode separation constraints in the synthesis tool, an attempt was made to synthesize

layouts as before. However, it was found that the thickness of 2µm was not sufficient to meet these

new constraints. With higher structural thickness, the springs will be stiffer in the out-of-plane

modes and, therefore, these modes will have higher resonant frequencies. Hence, we introduced

the structural thickness as a new design variable and implemented a new objective function: mini-

mize a normalized sum of microresonator area, applied voltage and structural thickness. The lay-

outs generated are shown in Figure 12(c). The thicknesses range from 3.7µm to 9.1µm. The mode

separation constraints are more significant near the design corners, i.e., for the 300 kHz resonator.

It is seen that the 300 kHz resonator in Figure 12 (b) has the least number of fingers and, therefore,

has a smaller moment of inertia about thez-axis (pointing out of the plane of the paper). This is

necessitated by the rotation-about-z mode separation constraint. On the other hand, the 300 kHz

resonator in Figure 12(c) has more comb fingers. However, since the design has a much thicker
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and wider truss beam, the mode separation constraint can still be met even though the moment of

inertia is relatively large.

4.4 Model Accuracy Verification with Finite Element Analyses (FEA)

The analytic expressions for spring constants and resonant frequencies were verified with

FEA [20] using 3D 20-node quadratic brick elements to model the entire resonator structure. The

important spring constants and corresponding resonant frequencies are shown in Figure 13. Ana-

lytic spring constants inx are within 10% of the FEA results (Figure 13(a)). Similarly, our fre-

quency estimates in thex direction are also accurate to about 10%. The spring constants in the y-

mode (Figure 13(c)) and the z-mode (Figure 13(b)) are accurate to about 20% at the lower fre-

quencies, but are more than 30% off at 300 kHz. Theθz spring constant (Figure 13(c)) has errors

of about 30%. In the two out-of-plane rotational modes (Figure 13(d) and (e)), the spring constant

is accurate to about 2% at 3 kHz but is more than 50% off at 300 kHz. Predicted resonant frequen-

cies of the z-mode are within 10% of the FEA results, while the resonant frequencies of the out-of-

plane vibration modes are within 30% at lower frequencies, but are off by about 50% at 300 kHz.

The flexure-mode and the in-plane rotation-mode resonant frequencies have a maximum error of

25%. (These values were obtained from a 2D FEA using 8-node quadratic plane-stress elements).

(a)

(b)

(c)

3kHz                                  10kHz                       30kHz         100kHz        300kHz

5.5µm 3.7µm                  5.9µm       8.8µm          9.1µm
Varying thickness

2 µm thick

2 µm thick

FIGURE 12. Comparison of layouts generated using increasing number of mode separation
constraints for five frequencies. (a) 1 mode separation constraint (b) 3 in-plane mode separation
constraints (c) 3 in-plane and 4 out-of-plane mode separation constraints. Layouts are optimized for
area, voltage and thickness.
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FIGURE 13. Comparison of predicted spring stiffness and resonant frequencies with finite element analysis for
the microresonators shown in Figure 12(c). (a) spring constant and resonant frequency of the x-mode (b) spring
constant for the y-mode and theθz mode (c) spring constant and resonant frequency for the z-mode (d) spring
constant and resonant frequency for theθx mode (e) spring constant and resonant frequency for theθy mode.

(a) (c)

(d) (e)

(b)
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Briefly stated, the x-mode is modeled to within 10% accuracy, while the other modes are about 20-

30% off on an average.

In addition to calculating the spring stiffness and the resonant frequencies in the various

modes, we also observed the dominant modes of oscillation of the microresonator. In particular,

we observed the modes of two microresonators, both designed for 10 kHz, one (2µm thick) syn-

thesized with the in-plane mode separation constraints while the other one (3.7µm thick) synthe-

sized with out-of-plane constraints as well. The layouts of these are shown in the second column in

Figure 12 (b) and (c) respectively. It is seen in Figure 14 that the 2µm-thick microresonator has

two vibration modes which are lower than the x-mode, whereas, the 3.7µm-thick microresonator

has the x-mode as the lowest mode, indicating that the mode separation constraints are effective.

4.5 Experimental Verification

Resonators were fabricated in MUMPS, and the resonant frequencies and the quality factors

of the x mode of vibration were measured.

The experimental setup to obtain the transfer function of the microresonator is shown in

Figure 15. This setup uses Electromechanical Amplitude Modulation (EAM) [21]. The output is

observed at the lower side-band frequency (fc - fd). To get the transfer function, fd, is swept across

 -

+

Spectrum Analyzer

Rf

Vdc

Vd, fd

Vc, fc

Vd: Drive Voltage
fd: Drive frequency
Vc: Carrier Voltage
fc: Carrier frequency

FIGURE 15. Setup for obtaining the transfer function of the microresonator employing
Electromechanical Amplitude Modulation (EAM). One comb drive is used for actuation and the
other for sensing. The sense current is passed through a transimpedance amplifier and the output
spectrum is observed on a spectrum analyzer.



33

FIGURE 14. Simulated vibration modes of two 10 KHz resonators. (a) Modes for the resonator synthesized with the in-plane
mode separation constraints only. The dominant mode in this case is thez-translation mode at 6.9 KHz. (b) Modes for the
resonator synthesized with the out-of-plane mode separation constraints as well. The thickness of this resonator is 3.7µm. The
dominant mode is the preferredx-translation mode and all the other vibration modes are well-separated from the dominant
mode.

     6.9 KHz                     8.9 KHz                       10.5 KHz                       11.9 KHz                     20.1 KHz

     11.2 KHz                   20.1 KHz                     31.6 KHz                     32.9 KHz                      43.6 KHz

(a)

(b)

       z-translation          rotation-about-y               x-translation                rotation-about-x           flexure-beams-z

       x-translation              z-translation                rotation-about-x            rotation-about-y            flexure-beams
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the frequency range of interest and the output is observed. The carrier frequency, fc, is also

changed simultaneously so that the side-band frequency (fc - fd) remains constant. The instruments

used in the setup are controlled by a PC using HP-VEE scripts.

Comparison of the synthesized frequency and measured frequency of fabricated microresona-

tors showed a consistent underestimation of about 70% of the desired frequency by the analytical

equations in the synthesis system. A closer inspection of the fabricated microresonators showed a

systematic 0.07µm overetch of the structural layer at the bottom and 0.47µm at the top surface (as

shown in Figure 16, causing significant overestimation of the bending moment of inertia from the

rectangular cross-section approximation, particularly for the thin 2µm beams and trusses. Addi-

tionally, the measured value of structural film thickness was 1.9µm instead of the nominal value

of 2 µm.

The transfer functions obtained for 4 microresonators of specified frequency 10, 20, 30 and

100 kHz are shown in Figure 17. The measured resonant frequencies are about 30% lower than the

specified frequency. For the 10 kHz resonator the measurements are riding on a background of

about 40 dB, hence the vertical shift in the transfer function. From these measurements, the reso-

nant frequency and the quality factor were extracted. These values are plotted in Figure 18 along

with the values predicted by the models which included the beam overetch. Models for trapezoidal

cross-section were incorporated in the synthesis tool and the synthesized designs were evaluated

FIGURE 16. Overetching of beams resulting in a trapezoidal cross-section as opposed to the
expected rectangular cross-section
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taking measured over-etch parameters into account, for one-to-one verification with measured

functional performance data. These analytical models are quite accurate. The measured resonant

frequency matches to within 4% of the model. This implies that, if we were to have a process that

has a well-characterized over-etch, we would be able to synthesize layouts whose performance

will be exactly as expected.

The quality factor is accurate to about 20% at high frequencies (at 20 kHz, the model is accu-

rate to within 5%). The quality factor model depends primarily on the damping models used. At

higher frequencies, when the dimensions are small, the edge and finite-size damping effects
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become more significant. Hence, we see more error in the quality factor model at higher frequen-

cies.

4.6 Summary

Layouts synthesized for different objective functions and different specified frequencies sug-

gest that the synthesis tool is functional. Performance predictions by the synthesis tool are verified

by comparison with FEA. The effectiveness of the synthesis tool in implementing mode separation

is also observed. Synthesized microresonators are fabricated and experimental measurements are

made on them. In the next chapter, we draw conclusions from these comparisons and experimental

measurements.
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Chapter 5.  Summary, Conclusions and Future
Work

5.1 Summary

The following tasks were completed during the course of this work.

1. Compiling models for the folded-flexure electrostatic comb drive microresonator. Specifically,

this involved using and enhancing previously derived models for the spring constants and

effective masses, damping force and the electrostatic comb drive force and deriving new mod-

els for the modes of vibration not modeled previously.

2. Building on the existing synthesis framework to develop a synthesis tool for the microresona-

tor, formulating and encoding new constraints and objective functions to ensure better

microresonators.

3. Synthesizing microresonator layouts from high-level specification using the synthesis tool for

a range of frequencies and for different objective functions.

4. Examining the validity of the synthesis results and, if necessary, adding new constraints and

improving models followed by re-synthesizing the layouts.

5. FEA of the synthesized microresonators to simulate the mechanical behavior of the microreso-

nators. These analyses were used to determine if the models used were accurate throughout the

range of the synthesis and if the assumptions made were justified.

6. Building a microresonator test setup using HP-VEE scripts to control the instruments and

automatically obtain the microresonator transfer function. Resonant frequency and quality fac-

tor measurements were made on the fabricated microresonator using this setup.
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5.2 Conclusions

The synthesis tool can generate microresonator layouts from high-level specifications. The

synthesized microresonators have resonant frequencies within 10% of the values predicted by the

synthesis tool. The in-plane and out-of-plane mode separation constraints ensure that the other

vibration modes are well-separated from the x-mode of vibration. The models for these modes are

accurate to about 30%, but since the interest in these modes is only for maintaining sufficient sep-

aration in frequency from the x-mode, this is acceptable. With a well-characterized process, the

synthesis tool can generate layouts which, when fabricated, match the predicted resonant frequen-

cies and quality factors very well.

5.3 Future Work

The synthesis work can be extended in a number of directions. Synthesis modules for other

devices such as accelerometers and gyroscopes will be developed. This requires a dedicated mod-

eling effort for each of these devices. Manufacturing variations need to be incorporated for accu-

rate synthesis results.

In order to extend the synthesis methodology to any general MEM device without a dedicated

modeling effort, the capability to generate models automatically is required. An adaptive macro-

modeling algorithm, which uses the data from a number of FEA results to model the device accu-

rately in a restricted range of the design space, can be embedded in the synthesis tool. Whenever

the search for a good design wanders out of this range, the algorithm can be called again to gener-

ate new macromodels.

An alternative approach would be to have libraries of pre-compiled accurate models for stan-

dard MEMS components, like folded-flexure springs etc., and stitch these models together as dic-

tated by the device topology and generate the models for the whole device. This will also facilitate

synthesis at different levels: i.e., first at the device level which results in specifications for the com-

ponents and then synthesis at the component level.
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