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Abstract

Automatic layout generation of a surface-micromachined accelerometer from user-supplied specifi-

cations is presented. An accelerometer is an inertial sensor used to measure accelerations. An ADXL76

style accelerometer is chosen as the synthesis topology. The design problem is formulated as a formal non-

linearly constrained numerical optimization problem by using the physical dimensions of the device and

sense modulation voltage as the design variables. Analytical models for both open-loop and closed-loop

control are derived for the accelerometer performance characteristics in terms of the design variables. Con-

straints which ensure physically valid design and high-level specifications of the accelerometers, such as

sensitivity, minimum detectable acceleration and maximum detectable acceleration, are defined by the

using these analytical models. Objective functions such as minimize area, minimize noise, minimize a nor-

malized sum of area and noise, and maximize range are used to drive the optimization to different parts of

the design space. A generic analog force-feedback loop with phase-leading compensation is used to

describe the closed-loop operation of the accelerometer. Layouts are synthesized for different objective

functions. Trade-offs among different objective functions are discussed based on the generated layouts.

Layouts synthesized for open-loop and closed-loop control are compared. Results show that the force-

feedback control can substantially increase the range of the accelerometer.
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I. Introduction

With the rapid development of MicroElectroMechanical Systems (MEMS) technology, there

demand for layout synthesis tools which can directly translate high-level design specifications into

MEMS device layout. These synthesis tools can help designers to rapidly explore the entire design

given user-specified constraints, and assist in building complex arrayed MEMS devices by quick des

individual cells. Usually in MEMS design, designers need to decide on a certain topology, make trad

between performance specifications and assign values to a set of variables which can represent

design. Physical layout is then generated from the set of variables. Generally, the number of varia

large and finding an optimum trade-off between specifications is difficult from hand calculations.

Prior work on layout synthesis has focused on layout generation from physical definitions [1

requiring the user to translate the design objective into layout parameters. Also work has been d

design optimization for simple MEMS structures [3]. Recently work has been done in shape optimiz

for electrostatic comb drives [4]. None of those approaches obtain the entire design from device spe

tions automatically. A new approach has been proposed which models the design problem as a

numerical synthesis problem, and solves it by optimization techniques [5]. A schematic of this appro

shown in Figure 1. This approach starts from a given design topology, translates the topology into

variables, determines the numerical design constraints from user specifications, geometry and man

ing limitations. The quantitative design objective drives the optimizer to an optimum design which is

translated into a CIF layout file by the layout generator (CAMEL [1]). A folded-flexure electrostatic co

drive-microresonator topology has been successfully used to demonstrate the ability of the syn

approach [5].

In this report, we extend the synthesis techniques in [5] to a more complicated surface-microma

accelerometer system. MEMS-based accelerometers have been widely used in automotive, robo

other industries. A commonly used differential lateral accelerometer topology is used in our stud

develop a synthesis tool which not only considers the physical design of the mechanical structure
4
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accelerometer, but also some design issues in the system level, for example, the interface betw

mechanical structure and the sensing electronics, and the force feedback control which is used to s

the system and increase the maximum detectable acceleration.

Chapter 2 of this report gives an overview of the lateral accelerometer, including the topology, a

capacitive sensing scheme. In Chapter 3, lumped models and equations which describe the behavio

accelerometer are derived. In Chapter 4, a detailed discussion of the synthesis algorithm is given. C

5 gives some synthesis results and provides comparison with finite element simulations. Finally, Ch

summarizes this report and suggests directions for future work.

II. Accelerometer overview

An accelerometer is an inertial sensor used to measure accelerations. Many MEMS-based acc

eters use a capacitive-sensing scheme for acceleration detection [6][12]. A simplified schematic of a

itive accelerometer is shown in Figure 2.

The central part of the accelerometer is a suspended mechanical proof mass, which acts as the

element. When the accelerometer is exposed to some acceleration, the proof mass moves relativ

substrate, subject to spring restoring forces and the damping provided by the motion of air around th

ing mass and comb fingers. The relative displacement is sensed by measuring the capacitance

Figure 1. Schematic of layout synthesis
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between the comb fingers, as shown in the sensing unit in Figure 2. During the displacement sensin

ulation voltage Vm is applied across the sense fingers. For the force feedback unit, when voltages of

ent amplitudes are applied across the finger gaps of the force unit, different electrostatic forces w

generated and the net force will pull the proof-mass into the desired direction. The force feedback un

be used in closed-loop feedback control or in self test.

The performance of an accelerometer design is evaluated by specifications such as sensitivity w

defined as the ratio of output voltage over the input acceleration, minimum detectable acceleration,

mum detectable acceleration, bandwidth. Designers also need to consider geometric constraints g

manufacturing process, such as the maximum device size, the minimum beam width. A valid desig

meet all the user specifications and the geometric constraints.

The layout of the capacitive accelerometer used in our synthesis is shown in Figure 3. This top

is similar to that of the ADXL150 accelerometer from Analog Devices [6].

The accelerometer consists of a movable proof-mass, suspended by two U-shape spring beams

sides. Movable comb fingers (rotor fingers) are attached to the proof mass. They are combined w

fixed comb fingers (stator fingers) to form the sensing units and feedback force units as defined in Fi

At two ends of the proof mass, there are four small rectangular cantilever beams, called limit stops

are used to limit the displacements of the proof mass in the x and y directions so that the rotor and

fingers can not touch together. Because different voltages are applied across the finger gaps during

+Vm

-Vm

  mass

spring damping effect

C1
C2

Vf1

Vf2

sensing unit
force feedback
unit

Figure 2. Schematic of an capacitive accelerometer
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ometer operation, touch of the two fingers will cause short circuit and damage the device.

The lateral accelerometer can be fabricated by MUMPs technology from MCNC [7] or by iME

technology from Analog Devices [8]. In both processes, the polysilicon is used as the structural m

because of its excellent mechanical properties. The conditioning circuit can either be integrated in th

chip or provided off chip.

III. Lumped parameter modeling of accelerometer

3.1. Introduction

In order to evaluate the performance of an accelerometer design, we need a set of lumped-pa

models to describe the device behavior as a function of the physical design variables. In our synthe

mulation, we model the accelerometer as a spring-mass-damper system as shown in Figure 4. The

include the effective stiffness of the spring, the effective masses of the spring and the proof mass, v

air damping, electrostatic comb-drive force for the feedback control, and the capacitive sensing inte

There are many specifications to evaluate the performance of the accelerometer [6]. In this rep

focus on the five most important ones: the accelerometer sensitivity, the minimum detectable accel

 x

θ
y

U-spring
proof-mass

U-spring
anchor

force
unit

sense
unit

limit stop

stator comb
finger
rotor comb
finger

Figure 3. Layout of a lateral capacitive accelerometer
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3.2. Modeling of the accelerometer system

For the mass-spring-damper system shown in Figure 4, the differential equation for the displac

x as a function of external acceleration is:

wherekx is the spring stiffness,Bx is the damping coefficient,mx is the effective mass,Fext is the external

force, andaext is the external acceleration.

In the following sections, we will derive analytical models of the spring constant, the effective m

and the damping coefficient as functions of the design variables.

3.2.1 Spring stiffness models

Due to the rigidity of the proof-mass, the U-spring dominates the stiffness model. We derive the

tive stiffness of the U-spring by using energy methods [9]. In this method, a force F (or moment M

applied at the free end of the spring in the appropriate direction, and the displacementδ is found by Cas-

tigliano’s second theorem. The spring constant is defined as k = F/δ. This method has been used for othe

MEMS structures such as folded-flexure beams and crab-leg beams [10] [11].

When only displacement from bending and torsion is considered, the total strain energy U of a

Figure 4. Spring-mass-damper model for the accelerometer

m

ky

By

kx
Bx

 x

θ
y kθ
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spring
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mx
d

2
x

dt2
-------- Bx

dx
dt
------ kxx+ + Fext maext= = (3.1)
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whereE is the Young’s modulus of the material,Li is the length of the i’th beam in the spring,Mi(ξ) is the

bending moment along the beami, andξ is the distance from the beam end. The bending momentMi is cal-

culated from the forces and the moments applied at the end point of the spring.

From Castigliano’s second theorem, the partial derivative of the strain energyU with respect to a

given forceFj is equal to the displacement at the force point,δj.

Similarly, the angular displacements,θj, resulted from applied moments,Mj is given by:

According to the direction of interest, different boundary conditions are applied to the beam ends, res

in a set of simultaneous equations. The analytic relation of the displacement and the applied force

obtained by solving those equations.

Using the method described above, we derive the U-spring stiffness. A schematic of the U-sprin

pension is shown in Figure 5.

In the x-direction, a force Fx is applied at the free end point A. From symmetry considerations w

used in the accelerometer, the boundary conditionsδy = 0 andδθ = 0 are obtained. Solving the simulta

neous equations from the energy method, thex-direction spring stiffness for the simplified cas

 andWb1 = Wb2 = Wb is:

whereE is the Young’s modulus of polysilicon,Lb andLt are the lengths of beams and truss,Wt andWb are

U
Mi ξ( )2

2EIi
------------------ ξd

0

Li∫
i 1=

N

∑= (3.2)

δ j F j∂
∂U= (3.3)

θ j M j∂
∂U= (3.4)

Lb1 Lb2 Lb= =

kx
12αEIb

Lt
2 6αLb Lt+( )

-----------------------------------= (3.5)
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the beam and truss widths,Ib is the bending moment of inertia of beam b1 and b2, ,α = (Wt/

Wb)
3. From equation (3.5) we can see thatkx is getting smaller whenLt or Lb increases.

Similarly, when a y-direction force Fy is applied, we have the boundary conditionsδx = 0 andδθ = 0.

The y-direction stiffness for the simplified case  andWb1 = Wb2 = Wb is:

The calculation of torsional spring constant in theθ direction, kθ (the rotation-about-z mode), is a little

different from that of kx and ky. The schematic for kθ calculation is shown in Figure 5(b). Instead of apply

ing the boundary condition at the beam end of the U-spring, we apply the boundary conditionδx = 0 andδy

= 0 at the center of proof mass, point O, when a moment M0 is applied, because we can not rotate the be

end about the z direction and keepδx and δy of the beam end to be zero.

The full expression for calculated kθ is very long and is not listed here. For the simplified caseWt = Wb,

Lb1 = Lb2 = Lb and ,kθ is:

I b tWb
3 12⁄=

  x

y
θ

  OM0

Lb2anchor

Lt

Lb1

Wp2=Wp/2

Lp2=Lp/2

Fx

Fy

Figure 5. Schematic of U-spring for spring stiffness calculation. (a) forces and moments app
on the U-spring beams for kx and kycalculation. (b) U-spring and a quarter of proof mass for kθ
calculation.

Fy

 M0

Lb2

LtLb1

anchor

A
beam, b1

beam, b2

trussFx

(a) (b)

Lb1 Lb2 Lb= =

ky

3EIb 2αLb Lt+( )

Lb
3 αLb 2Lt+( )

------------------------------------------= (3.6)

Lb Lt»

kθ
EIb 12Lp2

2
Lb

2 12Lp2LtLb
2

Lt
2 36LbWp2 36Wp2

2 15Lb
2+ +( )+ +[ ]

6Lb
3
Lt

2
------------------------------------------------------------------------------------------------------------------------------------------------------= (3.7)
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whereIb is the moment of inertia of both beam and truss, andLp2 andWp2 are half of the proof-mass length

and width, respectively, as shown in Figure 5(b).

3.2.2 Effective mass models

The effect of spring mass on resonant frequency of different modes is taken into account by an

tive mass model. Effective mass for each mode of interest is calculated by normalizing the total max

kinetic energy of the spring by the maximum proof-mass velocity,vmax,

wheremi andLi are the mass and the length of the i’th beam in the spring. Analytic expressions fo

velocities,vi, along the spring beams are approximated from static mode shapes of the U-spring defle

        The effective mass of the movable part of the accelerometer in the x-direction is

wherempr is the total mass of the proof mass and the movable fingers, andmsp,xis the effective mass of the

U-spring in x-direction. The full equationmsp,xby using equation (3.8) in general case is very long. ForWt

= Wb = W andLb1 = Lb2 = Lb,

whereρ is the density of the polysilicon,t is the thickness of polysilicon.

The effective mass in y-direction is same as equation (3.9), but have the spring effective mas

directionmsp,yinstead ofmsp,x. Also for the simplified case,Wt = Wb = W andLb1 = Lb2 = Lb,

meff

mi
Li
------

vi ξ( )

vmax
------------

 
 
  2

ξd
0

Li∫
i

N

∑= (3.8)

mx mpr 4msp x,+= (3.9)

msp x,

ρtW 192Lb
5

864Lb
4

Lt 1112Lb
3

Lt
2

280Lb
2

Lt
3

21Lt
5

+ + + + 
 

280Lb
2

Lb 2L+
t

( )
2

----------------------------------------------------------------------------------------------------------------------------------------------=  (3.10)

msp y,

ρtW 966Lb
5

315Lb
4

Lt 164Lb
2

Lt
3

87LbLt
4

13Lt
5

+ + + + 
 

1260Lb
4

----------------------------------------------------------------------------------------------------------------------------------------= (3.11)
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The moment of inertia about the z axis,Iθ is calculated assuming the entire structure rotates by sa

angle [11],

wheremi is the mass of the i’th rectangular block,Wi andLi are the width and length, andri is the distance

of the center of mass of the rectangular block from center of rotation. The result calculated from th

mula is over estimated because beam rectangular blocks closer to the anchor point do not rotate as

the proof mass.

3.2.3 Air damping model

The damping of the accelerometer comes from both structural damping and viscous flow of air a

the structural region [12]. Since the amplitude of air damping at atmospheric pressure is orders of m

tude higher than the structural damping, the latter is ignored [12]. The air damping of the accelerom

topology can be classified into Couette-flow damping below the accelerometer, Stokes flow abo

accelerometer, and the squeeze-film damping between the comb fingers. Couette-flow damping is

the shear flow of air between parallel plates. For example, the air flow between the proof mass and t

strate during the proof mass motion. The viscous damping coefficient of Couette flow can be mode

whereµ is the viscosity of air,df is the air film thickness andA is the plate area.

The motion of the fluid above the top surface of the plate can be modeled as Stokes flow [13], in

the amplitude of fluid oscillation decays exponentially with distance from the plate surface. Letδ be the

penetration depth, the damping coefficient of Stokes flow is

Squeeze-film damping occurs when the air gap between two closely placed parallel surfaces ch

For the lateral accelerometer, the squeeze film damping between comb fingers when the accele

I θ mi
Wi

2
Li

2
+

12
--------------------- mir i

2
+

 
 
 

rec gular i,tan 1=

N

∑= (3.12)

BCouette
µ

d f
------A= (3.13)

BStokes
µ
δ
---A=  (3.14)
12
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moves in x-direction changes to Hagen-Poiseuille flow because the narrow air gap width. In this case

effects represent a significant percentage of the total damping [12]. The damping coefficient of Hage

seuille flow between a single comb finger is given by:

whereµ is the viscosity of air,l is the finger length,t is the finger thickness, and theg is the air gap

between two fingers.

       So the total damping coefficient is

whereApm, At, Ab are the areas of the proof mass and comb fingers, spring truss, and beam respe

Here we assume the trusses and beams travel at half the velocity of the proof mass on average [14

accurate estimate can be found by shape approximation discussed in Section 3.2.2.Nf is total number of

the comb fingers.

In practical designs, etch holes are usually added to the proof mass to ensure the structure

pletely released. The etch holes can reduce damping by several orders of magnitude [15] which we

consider in our present synthesis. To obtain accurate predictions of damping with etch holes, the

mass should be broken into a collection of smaller plates acting in parallel [16]. The total damping

sum of damping from each of the individual plates.

3.2.4 Electrostatic drive force model

In the force feedback units shown in Figure 2, electrostatic force is used for force-balance feedb

self-test. Assuming no fringe-field effects the electrostatic force for the single comb finger gap is:

where Vdr is the drive voltage,gf is the force comb-finger gap and is the capacitan

BHagen 7.2µl
t
g
--- 

  3
= (3.15)

B µ Apm 0.5At 0.5Ab+ +( ) 1
d f
------ 1

δ
---+ 

  N f 7.2µl
t
g
--- 

  3
+= (3.16)

Felec gfd
d CFVdr

2

2
----------------

CF

2gf
---------Vdr

2= =  (3.17)

CF εA gf⁄=
13
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between force comb fingers. From equation (3.17) we can see that, the electrostatic force has qu

dependence on the drive voltage which is not desired for analog force control. A simple solution for l

ization of the electrostatic force is to apply voltagesVc,dr+Vdr and Vc,dr-Vdr separately across the two

comb finger gaps [17]. HereVc,dr is a fixed center voltage andVdr is the controlling drive voltage. The two

resulting forces are in the opposite directions and the quadratic terms cancel. This results in a net f

which linearly depends on the controlling voltageVdr.

3.2.5 Electrostatic spring softening model

In the sense units shown in Figure 2, when the modulation voltage,Vm, is applied between the sensin

fingers, electrostatic forces are generated on the proof mass as shown in Figure 6. It will change the

effective spring constant of the system from its mechanical value.

       The net force applied to a single finger is

whereg0 is the initial gap between the fingers, is the area of the finger sidewall,

is the initial capacitance between the fingers whenx = 0. The effective electrostatic spring

F
2Vc dr, VdrCF

gf
---------------------------------= (3.18)

+Vm  -VmVx = 0

x

x=0

F2F1

g0 + x g0 - x

x direction

Figure 6. Electrostatic spring model

F
εAVm

2

2 g0 x–( )2
-------------------------

εAVm
2

2 g0 x+( )2
--------------------------–

C0Vm
2

g0

2
--------------------- 1

g0 x–( )2
---------------------- 1

g0 x+( )2
-----------------------–

 
 
 

= = (3.19)

A loverlapt finger=

C0 εA g0⁄=
14
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constant is obtained by differentiating equation (3.19), for ,

The electrostatic force is in the opposite direction of the mechanical spring force, so the actual

tive spring constant is .

3.3 Accelerometer performance evaluation models in open-loop operation

The accelerometer can either be operated open loop or closed loop. In closed-loop operation,

placement of the proof mass due to an applied acceleration is sensed and a restoring force is gene

counteract the motion. The open-loop accelerometer system is simple to design and is cost efficie

will first derive the equations that models the accelerometer performance in open-loop operation

models for closed-loop operation will be discussed in Section 3.4.

3.3.1 Accelerometer sensitivity

The sensitivity of the accelerometer is defined as the ratio of output voltage over the input acc

tion. It is determined by both the mechanical design of the sensor and the position sense circuit. W

need to find the mechanical sensitivity which is defined as how much the proof mass moves when an

eration is applied.

        We use the Laplace transform to solve the second-order system given by equation (3.1):

where is the resonant frequency and is the quality factor. At frequen

well below resonance ( ), the mechanical sensitivity is

x g0«

ke x∂
∂– F( )

2C0Vm
2

g0
2

------------------–
2εAVm

g0
3

-----------------–= = = (3.20)

keff kmech ke+=

X s( )
A s( )
----------- m

mxs
2

Bxs kx+ +
-------------------------------------- 1

s
2

s
ωr
Q
------ ωr

2
+ +

----------------------------------= =
(3.21)

ωr kx m⁄= Q ωrm B⁄=

ω ωr«

x
a
--- 1

ωr
2

------
mx

kx
------= = (3.22)
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From equation (3.22) we can see that the mechanical sensitivity is inversely proportional to the s

of the resonant frequency. To achieve high sensitivity, the resonant frequency should be made low. I

tice, there is a limit forωr because of the mechanical shock resistance and the manufacturability.

We choose a commonly used single-ended half-bridge capacitive sense interface to translate th

mass displacement into output voltage, as shown in Figure 7, because this scheme is easy to imple

both the MUMPS and the iMEMS processes.

In Figure 7, C1 and C2 are capacitors between the movable finger and its nearest fixed finger. The

ulation voltages Vm are applied between those fingers. The modulation voltages are usually opera

high frequency to suppress offset and flicker noise [17]. Cparais the total parasitic capacitance at the outp

Vo node, including the parasitic capacitance from proof mass to substrate, parasitic capacitance

anchors and the parasitic from the signal conditioning circuits.

       Applying Kirchhoff’s current law at nodeVo in Figure 7 yields:

When no acceleration occurs, the movable finger is midway between the two fixed sense fingersC1 =

C2 = C0, and the output voltageVo is zero. Under an applied acceleration, the proof mass moves a disp

Σ

Cpara

+
-

C1

C2
-Vm

+Vm

capacitive sense interface conditioning circuit

Vo

      Figure 7. Accelerometer sensing interface

noise

Vo

C1 C2–

C1 C2 Cpara+ +
-----------------------------------------Vm= (3.23)
16
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ment x governed by equation (3.22) andC1 andC2 are no longer equal. We use a parallel-plate model

approximate the capacitance and assume the displacement x is small compared to the initial gapg0:

combine equation (3.23) and (3.24), we have

and the sensitivity is

The sensitivity is inversely proportional to the initial gap between the sensing fingers. Also the par

capacitance should be minimized to obtain high sensitivity. Note that the sensitivity we derived here

includes the mechanical structure and the capacitive sense interface. The output voltageVo usually will be

further amplified by later conditioning circuits [6][12].

3.3.2 Minimum detectable acceleration

The minimum detectable acceleration is determined by the total noise referred back to the acce

eter input. In our synthesis, we consider two noise sources. One is the Brownian (thermal) noise

mechanical domain which comes from the random collision of the air molecules with the accelerom

The second noise source is transistor noise in the front-end circuit.

        For a damped suspended proof mass, the Brownian equivalent acceleration is [17]:

C1 ε0
A

g0 x–( )
------------------- ε0

A
g0
----- 1 x

g0
-----+ 

 ≈ C0 1 x
g0
-----+ 

 = = (3.24.a)

C2 ε0
A

g0 x+( )
------------------- ε0

A
g0
----- 1 x

g0
-----– 

 ≈ C0 1 x
g0
-----– 

 = = (3.24.b)

V0

2C0

2C0 Cpara+
------------------------------- x

g0
-----

 
 
 

Vm

2C0

2C0 Cpara+
------------------------------- ma

kg0
--------Vm= = (3.25)

V0

a
------

2C0

2C0 Cpara+
------------------------------- m

kg0
--------Vm= (3.26)

an Brownain–
2 4kBTB

m
--------------------- ∆f

4kBTωr

mQ
-------------------- ∆f= = (3.27)
17
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wherekB is Boltzman’s constant,T is the temperature,B is the damping factor andQ is the quality factor.

Let Vn-circuit be the noise coming from the electrical circuit. We refer this noise into the input acc

ation:

The minimum detectable acceleration equals to the total input acceleration noise:

3.3.3. Maximum detectable acceleration

In the operation of the accelerometer, a large input will cause the proof mass to hit the limit stop

maximum detectable acceleration is defined as the largest acceleration the system can detect befor

the limit stop. When the accelerometer operates in open loop and an acceleration is applied, in stead

the proof-mass is subjected to an inertial force, a mechanical spring force and an electrical spring fo

discussed in Section 3.2.5. With the increase of the acceleration, the mechanical restoring force may

able to match the sum of inertial force and the electrical spring force at some point, and the proof ma

snap into the limit stop. At equilibrium, the mechanical force equals to the sum of inertial force an

electrical force.

where x is the displacement of the proof-mass andg0 is the initial gap between sense fingers.

Let , the equilibrium acceleration which satisfies equation (3.30) is a function ofx:

A schematic diagram ofaeq(x) vs.x is shown in Figure 8.
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Vn circuit–
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---------------------------= (3.28)

amin an circuit–
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Differentiating equation with respect tox and set the result to zero,a(x) is found to have a maximum at:

The snap-in accelerationasnap is found by substitutingxsnap into equation (3.31):

where .

For accelerations smaller thanasnap, the proof mass is in stable equilibrium and x increases with in

acceleration. When accelerations are larger thanasnap, the gap is reduced to less than and th

increase of the mechanical restoring force is slower than the increase of electrostatic force, snap

occur. The proof mass is in unstable equilibrium for this case. If the gap between the proof mass a

limit stop xlimit is larger thatxsnap, the maximum detectable accelerationamaxin open-loop isasnap. Other-

wise,amaxis alimit as shown in Figure 8 which can be found by set  in equation (3.31)

where .

6.4371´10-7 6.4372´10-7 6.4373´10-7 6.4374´10-7 6.43

55.7632

55.7632

55.7632

a HgL
t1.nb 1

unstablestable

xsnap

asnap
alimit

xlimit
x

aeq(x)

Figure 8. Schematic diagram for snap-in acceleration calculation
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3.3.4 Cross-axis sensitivity

Cross-axis sensitivity occurs when the primary axis output voltage is created by forces in the ort

nal axis. In our design, the primary axis is the x-axis. Cross-axis sensitivity can come from the mis

ment of the package orientation [6] or come from process variations, for example, the mismatch in th

wall of the spring beam and truss [18]. In our synthesis, we only consider the process variations sin

misalignment of package is beyond the scope of layout synthesis.

The capacitive sensing units are connected in such a way that the top stator fingers are at th

potential and so are the bottom stator fingers, as shown in Figure 9. Note here we have C1 = C11 + C12 and

C2 = C21 + C22, where C1 and C2 are the half-bridge capacitors shown in Figure 7. When there is a

placement in y-direction, C11 and C21 will be decreased by∆C, and C12 and C22 will be increased by∆C.

For the half-bridge sense circuit shown in Figure 7, there is zero output voltage because C1 = C2. The dis-

placement in z direction will cause C11, C21, C12 and C22 to change by the same amount, there is also

zero output voltage. A non-zero voltage output can be produced only when there is displacement in t

mary x direction.

When a y-directed force is applied to the proof mass, displacement in x-direction is determined

compliance coefficientαxy in the 3-DOF (degree of freedom) compliance matrix of the U-spring susp

C12

C21

C11

C22

+Vm

-Vm

x
y

Vout

∆y

Figure 9. Sense capacitor behavior during y-directed motion

proof
mass

proof
mass

C11

C21

C12

C22

-Vm

VmVm

-Vm

Vout

y direction movement,∆y

(a) (b)
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        To findαxy, we first find the 3-DOF stiffness matrix for a single U-spring:

In section 3.2.1, we used energy methods to find the spring constantskxx, kyy, kθθ. We apply the same

method to find the cross-coupled stiffness coefficients,kxy, kyθ, kxθ. for the single U-spring, using appropri

ate boundary conditions. Then we add together the four stiffness matrices of the four U-springs, con

ing the changing direction of local coordinates. The last step is to obtain the compliance matrix as

in equation (3.35) by inverting the total stiffness matrix. The result shows that both the stiffness an

compliance matrix are symmetric, as expected.

The full formula forαxy is extremely long and can not be listed here. For most designs, the fou

spring beams and trusses are designed with the same length and width. If there are no process va

the spring beams are perfectly matched. In this case, the stiffness matrix and compliance matrix a

diagonal,αxy = 0 and there is no cross-axis sensitivity.

However, in actual fabrication, process variations will cause mismatch of the spring beams, pre

nantly of the beam widths. In this case,αxy is not equal to zero and the acceleration in the y-direction w

produce a non-zero output voltage.

The cross-axis sensitivity of an accelerometer is formulated as the ratio of voltage output d

orthogonal axis acceleration (y-axis) over the voltage output due to the same amount of acceleration

x

y

θ

αxx αxy αxθ

αyx αyy αyθ

αθx αθy αθθ

Fx

Fy

Mθ

= (3.35)

Fx

Fy

Mθ

kxx kxy kxθ

kyx kyy kyθ

kθx kθy kθθ

x

y

θ

= (3.36)
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primary axis (x-axis) [6]:

where my,eff and mx,eff are the effective mass in the y and x directions, respectively. In most ca

, and . We compare our cross-axis sensitivity model with finite elem

simulation results in Section 5.3.

 3.3.5 Mechanical bandwidth

      From equation (3.21), lettings= jω, the amplitude is

We define the mechanical bandwidth of the accelerometer as the -3dB cut-off frequency,

.

whereωr is the resonant frequency,Q is the quality factor.

3.4 Force-feedback control for accelerometer

3.4.1 Feedback system formulation

Closed-loop operation can improve the performance of the accelerometer in several ways. It inc

the maximum detectable acceleration by providing feedback force against large accelerations. Sen

and bandwidth can be made independent from their mechanical values, and can be controlled by th

back loop. The control can be implemented with either analog feedback [6] or a digital sigma-deltaΣ∆)

approach [12]. Details of different circuit implementations for the feedback loop are beyond the sco

our layout synthesis and will not be discussed. However, we model an analog feedback system at a

conceptual level to include closed-loop effects in our synthesis.

Scr

my eff, aαxy

mx eff, a( ) kxx⁄
----------------------------------- kxxαxy

my eff,
mx eff,
-------------- 

 = = (3.37)

my eff, mx eff,≈ Scr kxxαxy≅

X jω( )
A jω( )

------------------- 1

ωr
2 ω2

–( )
2 ωr ω

Q
---------- 

  2
+

--------------------------------------------------------=
(3.38)

X jω 3dB–( ) X 0( ) 2⁄=

ω 3dB– ωr 1 1

2Q
2

----------–
1

2Q
2

---------- 1 4Q
2

– 8Q
4

++= (3.39)
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A schematic of the feedback system is shown in Figure 10. The feedback system consists of a

spring-damper system representing the mechanical part of the accelerometer, a position sensor re

ing the capacitive sensing interface, a proportional plus derivative compensator and a force transduc

compensatorG0 + G1s is basically a lead filter to increase the stability of the system by putting a left-pl

zero into the loop gain. The force transducer has a linear force-voltage relation of equation (

. From discussions in Section 3.3.1, the coefficient of the position sen

. Compensator coefficientsG0 andG1 need to be found for the feed-

back system.

      From Figure 10, the closed-loop transfer function is

The steady-state value ofVout(t) can be found by the final-value theorem [19]:

The steady-state value of the displacementxo(t) for an input accelerationain is:

1

ms
2

Bs k+ +
--------------------------------

G0 + G1s

Σ
Fin

mass-spring-damper system

        KF

        Kv

 Figure 10. Analog feedback loop

position sensor

compensatorforce transducer

VoutXo

Ffb

VF

KF 2VC dr, CF gf⁄=

Kv Vm g0⁄( )2C
0

2C0 Cpara+( )⁄=

H s( )
Vout s( )

Fin s( )
-----------------

KV

ms
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B G1KFKV+( )s KFKVG0 k+( )+ +
-----------------------------------------------------------------------------------------------------= = (3.40)

Voutt ∞→
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-------------------- 
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KV
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KFKVG0 k+
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G0 andG1 are determined by two equations. The first one comes from the system stability require

By letting the second-order system critically damped, we have

The second equation is obtained by setting xo,steadyto some fixed value. Solving equation (3.42) an

(3.43), we haveG0 andG1 as

In our synthesis formulation, if the proof-mass displacement caused by user-specified maximum

accelerationamax,spec, , is less than the open-loop snap-in displacementxsnap

discussed in Section 3.3.3,xo,steadyis set to thexmax,openbecause snap-in will not occur. In this case, the

is no feedback force in steady state, i.e. the system is open-loop for the steady state. However, fe

force is required to meet an user-specified transient response. Ifxmax,openis larger thanxsnap, thenxo,steady

is set toxsnap. Figure 11 shows example step response waveforms ofxo(t) andFfb(t) for open-loop and

closed-loop operation.

B G1KFKV+( )2 4m KFKVG0 k+( )= (3.43)

G0

main kxo steady,–

KFKVxo steady,
-------------------------------------------= G1

B– 2m
ain

xo steady,
---------------------+

KFKV
-------------------------------------------------=

(3.44)

xmax open, mamax spec, k⁄=

Figure 11. Step response of xo(t) and Ffb(t) for specifiedamax,spec = 20gand100g. Fin = mamax,spec.
(a) open-loop xo(t) (solid line), closed-loop xo(t) (dotted line). (b) Ffb(t) (solid line). There is
no open-loop xo(t) waveform foramax,spec = 100gbecause of snap-in.
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In both cases, the proof-mass displacementxo(t) in closed-loop operation are settling much faster th

that in open-loop because of the lead compensation. In Figure 11(a),xmax,openis smaller thanxsnapbecause

of the smallamax (20g) specification. There is no feedback force in steady state, but transient feed

force is needed if critical damping is specified. The closed-loop and open-loop displacementxo(t) settled at

the same valuexmax,open. In Figure 11(b), the largeamax(100g) specification requires feedback force ev

in steady state. The steady state closed-loop displacementxo(t) is xsnap. Open-loop displacement is no

shown because the snap-in will occur in this case sincexmax,open > xsnap.

A critically damped closed-loop system increasesamax in two ways. First, it eliminates the displace

ment ringing so that the maximum displacement occurs only in the steady state. Second, a feedbac

is provided to pull the proof-mass back in steady state when a large input acceleration is applied. W

discuss other device performance parameters affected by the feedback force in the following sectio

3.4.2 Accelerometer performance evaluation models in closed-loop

3.4.2.1 Sensitivity in closed-loop

From equation (3.41) and (3.44), the closed-loop sensitivity is obtained as:

Whenxo,steadyis less than or equal toxmax,open, the closed-loop sensitivity is same as the open-loop se

tivity given by equation (3.26) because . In this case, there is no feedback force in

steady state. Whenxo,steadyis equal toxsnap, the sensitivity can be set independently from its open-lo

value because of the feedback force in steady state. Sensitivity will be specified as input to the syn

which will constrain values ofxo,steady andG0.

3.4.2.2 Minimum detectable acceleration in closed-loop

Since an ideal feedback network does not add noise into the system[12], the minimum detectable

Vout

a
---------- 

 
closed

mKV

KFKVG0 k+
------------------------------- KV

xo steady,
amax spec,
---------------------= = (3.45)

xmax open,

amax spec,
--------------------- m

k
----=
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eration is given by same equation (3.29). But sensitivity used to refer circuit noise to the input in equ

(3.28) is the closed-loop sensitivity.

3.4.2.3 Maximum detectable acceleration in closed-loop

As discussed in Section 3.4.1, the closed-loop improves the accelerometer range by reducing

during the settling time and providing feedback force in steady state. From Figure 10, the transfer fu

for the feedback force controlling voltageVF is:

By using Equation (3.43) and taking Laplace transform, its transient response to a step inputain(t) is

where . It has a maximumVF,peak at

The appearance of a maximumVF,peakcan be seen from Figure 11(b), sinceVF(t) has a same waveform

shape asFfb(t).

As the input acceleration is increased, the controlling voltageVF is increased to provide enough feed

back force. The maximum detectable acceleration occurs whenVF,peakreaches its largest available valu

VF,max. From equation (3.47), we have

3.4.2.4 Cross-axis sensitivity in closed-loop

From the definition in Section 3.3.4, the cross-axis sensitivity in closed loop is

which is the same as Equation (3.36) of the open loop operation.

VF s( )
Fin s( )
---------------

KV G0 G1s+( )

ms
2

B G1KFKV+( )s KFKVG0 k+( )+ +
-----------------------------------------------------------------------------------------------------= (3.46)
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αt–– α G0 αG1–( )te αt––[ ]= (3.47)

α B G1KFKV+( ) 2m⁄=

t peak

G1

αG1 G0–
-----------------------= (3.48)

amax closed,

VF max, α2

KV
----------------------- G0 G0e

αt peak–
– α G0 αG1–( )t peake

αt peak–
–[ ]

1–
= (3.49)
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mx eff, a( ) kxx⁄
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my eff,
mx eff,
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3.4.2.5 Bandwidth of the close-loop system

From Figure 10, we can write the transfer function for the proof-mass displacement as

The resonant frequencyωr,closeis

Note again that, whenxo,steady = xmax,open, ωr,closed= ωr,open.

Also defining the close-loop bandwidth as the -3dB cut-off frequency as we did in open-loop, we

where  is the closed-loop quality factor.

3.4.3 Issues in feedback control

In Section 3.3.1, we made an assumption that, for the capacitive sense interface, the displace

caused by the input acceleration is much smaller than the initial finger gap, i.e. the proof mass is ap

mately centered during the sensing. This assumption is not valid when large input is applied. Usi

exact value ofC1 andC2 into Equation (3.23), we have:

Applying the Taylor’s series expansion to Equation (3.54) and letting , we fi

the position sensor coefficient,

X s( ) mA s( )
ms

2
B G1KFKV+( )s KFKVG0 k+( )+ +

--------------------------------------------------------------------------------------------------= (3.51)

ωr closed,
KFKVG0 k+
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-------------------------------

amax spec,

xo steady,
---------------------= = (3.52)

ω 3dB closed,– ωr closed,
1 1

2Qr closed,
2

----------------------------–
1

2Qr closed,
2

---------------------------- 1 4Qr closed,
2

– 8Qr closed,
4

++= (3.53)

Qr closed,
ωr closed, m

B G1KFKV+
--------------------------------=

V0

2C0

2C0 Cpara+
-------------------------------x

g
---Vm

1

1
Cpara

2C0 Cpara+
------------------------------- x

g
--- 

  2
–

----------------------------------------------------

 
 
 
 
 
 

= (3.54)

A Cpara 2C0 Cpara+( )⁄=

KV

V0
x

-------
2C0

2C0 Cpara+
-------------------------------

Vm
g

-------- 1 A
x
g
--- 

  2
A

2 x
g
--- 

  4
A

3 x
g
--- 

  6
…+ + + += = (3.55)
27



or is

hese

osition

le sin-

pletely

at the

ach is

de

ify the

setting

actur-

s must

s which

tail in

bles are

val-

00

akage

ology-
Whenx is not much smaller thang, the high-order terms cannot be neglected, and the position sens

nonlinear. The large displacement will also affect the linearity of the mechanical springs. All of t

effects will cause the sensitivity to be nonlinear.

To solve this problem, feedback control systems tend to be designed to null the proof-mass p

when the signal is applied. This can be done by a digital approach [17]. In analog approach, the simp

gle-zero leading compensation we introduced reduces proof-mass displacement but does not com

null its position. A possible approach to nulling is to add an integrator into the feedback loop so th

deflection of the proof mass from the center point is integrated. In the frequency domain, this appro

equivalent to adding a pole ats = 0 in the splane. Additional left-plane zeros must be included to provi

phase leading compensation for stability.

 IV. Synthesis methodology
In order to model our design problem as a formal numerical synthesis problem, we need to ident

design variables which represent our accelerometer topology. Then the design space is defined by

maximum and minimum values for the design variables. Design constraints which come from manuf

ability and user specifications are formulated to further limit the design space. The design variable

meet the constraints for the design to be acceptable. The next step is to define the objective function

drive the synthesis tool toward the optimum design. We will discuss the synthesis methodology in de

next several sections.

4.1 Design variables

There are seventeen design variables identified for the accelerometer design. The design varia

shown in Figure 12(a). Table 1 shows the definition of the variables and their maximum and minimum

ues which are usually set by the polysilicon fabrication process. Maximum beam lengths are set to 4µm

to prevent beam curling due to stress gradients in the polysilicon film and possible sticking and bre

during the wet etch [20]. The minimum beam lengths, widths and beam spaces are set by techn

x
g
---
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Table1.
driven design rules. Maximum beam widths are set to 20µm by the limited undercut of silicon-oxide to

release the structures. The maximum length of the proof mass is constrained to 700µm by the size of the

layout and the maximum width is constrained to 400µm for the release of the mass. The minimum valu

of limit stop gap in x and y direction is set to 1µm. Although this gap size violates the design rules in som

polysilicon process (e.g.MUMPs), the small gap is necessary to avoid fingers of different voltages f

touching.

The style geometric variables are necessary to completely define the layout, but do not affect th

formance of the accelerometer. The 10 style variables are shown in Figure 12(b) and also listed in 

Table I Design and style variables for the accelerometer. Lengths and widths are in units
of µm exceptN and V.

DESIGN VARIABLES
Var. Description Min Max Var. Description Min Max
Lb1 length of spring beam 1 2 400 gs gap between sense finger 2 20
Lb2 length of spring beam 2 2 400 gf gap between feedback finger 2 20
Wb width of spring beam 2 20 X0 comb finger overlap 2 400
Lt length of truss beam 2 400 gxlim gap limit x displacement 1 20
wt width of truss beam 2 20 gylim gap limit y displacement 1 20
Lpm length of proof-mass 2 700 Ns number of sense comb fingers 1 100
Wpm width of proof-mass 2 400 Nf number of feedback comb fingers 1 100
Lc length of comb finger 2 400
Wc width of comb finger 2 20 V voltage amplitude 1V 2.5V

Lb1

Lb2 Lt

WbWt

 Wpm

Lpm

Lf

Wf
gs

gf

X0

Ns

 Nf

gx,limit

gy,limit

gsu

gfu

gsfu

Lsfor

Lssor

Wsa

Lsa

Lp,lm

Wp,lm

Lra

Figure 12. Design and style variables of accelerometers.
                (a) Design variables   (b) Style variables

(a) (b)
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They define the stationary parts of the accelerometer, such as the gap between sensing and feedba

the length of stator finger over rotor finger. These variables are set to fixed values, usually minimum

the fabrication process allowed to reduce the device size.

4.2 Design constraints

4.2.1 Geometrical constraints

Geometrical constraints are design constraints related to the layout dimensions and are necess

physically valid design. In our accelerometer design, we have 11 geometrical constraints as shown

ure 13 and also listed in Table 2.

The first three constraints determine the size of the device. The length and width should not be o

arbitrary fixed size, 700µm in our example. The width of the device could be the U-spring length or

STYLE VARIABLES
gsu gap between sense unit 2 2 Lsa length of stator anchor 11 11
gfu gap between feedback unit 2 2 Wsa width of stator anchor 11 11
gsfu gap of sense andfbk unit 10 10 Lp,lm length of limit post 2 2
Lsfor length of stator over rotor fgr 21 21 Wp,lm width of limit post 2 2
Lssor length diff. of stator fingers 16 16 Lra spring anchor length 15 15

U-spring length
mass-comb width

accel.
length

spring anchor width

stop stroke

comb stroke

limit stop position

spring-comb gap

Figure 13. Geometric constraints of accelerometer layout

 x
     y

minimum truss length
30



-

fingers

e

e

should

ger

op

c con-

ter per-

values,
total mass-comb width, so both of them must less than 700µm. The width of the spring anchor is calcu

lated fromLb1, Lb2 andWpmand must be greater or equal to the minimum anchor width, 11µm. To prevent

fingers of different voltages from touching each other, the gap between sense fingers and feedback

must be larger than the limit-stop gap in x directiongx,limit, and the comb stroke in y direction should b

larger thangy,limit. There is an additional constraint onLb1 andLb2 that ensures the limit-stop posts ar

attached to the proof mass instead of the spring beam. The gap between the limit stop and the spring

be larger than the minimum space 2.0µm and constrains the minimum truss length. It also must be lar

than gx,limit to makegx,limit an effective displacement limit in the x direction, which is called the st

stroke. All the above constraints are linear constraints. However, there is one nonlinear geometri

straint, the gap between the spring and comb finger.

Table 2: Geometric constraints

4.2.2 Functional constraints

In Section 3.3 and 3.4, we discussed models for the parameters used to specify the accelerome

formance. In order to synthesize a valid design, these specifications must be assigned realistic

which are bounded by the functional constraints listed in Table 3.

Constraint Description Expression
min
[µm]

max
[µm]

accelerometer length Lpm+2(Lt+Lra) 0 700

mass-comb width Wpm+2(Lc+2Lsfor+Lssor) 0 700

spring length Wpm+2(Lb2+Wt) 0 700

spring anchor width Wpm+2(Lb2-Lb1) 11 100

x displacement limit I gs-gx,limit 0.2 20

x displacement limit II gf-gx,limit 0.2 20

comb stroke Lc-X0-gy,limit 2 20

limit stop position Lb1-Lb2-gy,limit-Wp,lm 0 400

minimum truss length Lt-Wb-Lp,lm 2.0 400

stop stroke Lt-Wb-Lp,lm-gx,limit 0 400

spring-comb gap [Lpm-2Wb-2Nf(3Wc+2gf)-2(Nf-1)gfu-
Ns(3Wc+2gs)-(Ns-1)gsu -2gsf]/2

10 20
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The minimum sensitivity, maximum noise, minimum range and maximum cross-axis sensitivit

specified by users. The bandwidth could be the mechanical bandwidth in open-loop or loop bandw

close-loop. Resonant frequencies of other in-plane modes,fx and fθ, must be at least three times greate

thanfx to decouple the modes adequately.

Table 3: Functional constraints

As we discussed in Section 3.2.5, the modulation voltage Vm will cause an equivalent electrical spring

kx,elec. Its reaction force acts in the opposite direction of the mechanical spring,kx,mech. When it is greater

or equal tokx,mech, the sense fingers will snap in for a very small input or even no input. Obviously, it is

a valid design. So we need to constrain thatke < 0.9kmech. Another constraint is added to generate enou

self-test electrostatic force. In our synthesis, we want to generate a self-test force equivalent to 20%

maximum detectable acceleration force [6].

In the fabrication process of the accelerometer, deposition of the structural material (usually po

con) will cause either compressive or tensile stress in the film. The stress will cause released be

break in tension or buckle under compression. For example, in the MUMPs process, polysilicon b

have a compressive residual stress with a nominal value of -10 MPa. In the case of the U-spring, bea

free to expand outward to relieve residual axial stress. But the expansion of the proof mass will creat

tional axial stress in the inner beam (beam 2) and tension in outer beam (beam 1). A first-order value

Constraint Description Expression min max

Sensitivity S = Vo/ain Sspec 1000 mv/g

Noise (min detectable accel.) amin 0.0 mg amin, spec

Range (max detectable accel.) amax amax, spec 104 g

Cross-axis sensitivity Scr 0.0 Scr,spec

Bandwidth ω-3dB ω-3dB, spec 105 Hz
Spring softening kx,elec/kx,mech 0 0.9

Self_test force test_force/(mx*range*9.8) 0.2 103

In-plane mode separation fx/fy, fx/fθ 0 1/3

Beam buckling Lb/Lcr 0 1/2
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critical buckling length,Lcr is given by the Euler column formula, , wheret is the

minimum of the width and thickness of the beam,∆ is the expansion length of the proof mass and calc

lated by , whereσr is the residual andE is the Young’s modulus. To ensure no buckling

the constraint2Lb < Lcr is added.

4.3 Synthesis algorithm

In accelerometer synthesis, several designs or no designs may satisfy the constraints. We se

design which minimizes an objective function, and may be considered optimal. Usually, devices of s

area are preferred for low cost. Also accelerometers with low noise (minimum detectable acceleratio

preferred for their ability to detect very small signals. And there are situations in which high-G accele

eters are needed, for example, accelerometers used for shock and impact measurement. So we ch

possible objective functions: minimize total area, minimize noise, minimize the sum of noise and are

malized to the maximum possible area and noise, and maximize detectable range (maximum det

acceleration). Sensitivity is also a very important specification, but it can be easily increased by the

fying circuit after the capacitive sense interface, so we did not list it as an objective function.

The synthesis problem is mapped onto a constrained optimization formulation that is solved u

nonlinear constrained optimization technique. During the optimization, designs defined by lumped-p

eter macromodels are evaluated by the values of the constraints and the objective functions. Due

complex nonlinear characteristics of the equations in the lumped-element macromodel, there can b

than one minimum point in the optimization for different objective functions. To perform synthesis in

entire design space, our tool should be independent of any choice of the starting point.

To solve for the global minimum of the objective function, we used a gridded multi-start algor

coupled with a gradient-based constrained optimization (NPSOL) [21]. The use of a starting grid

nates the need to provide good starting points to the gradient-based optimization. The starting grid

Lcr πt 2Lb 3∆⁄=

∆ WpmσrE=
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erated by assigning 3 values (low bound, up bound and middle value) to each of the 17 design var

leading to 317 starting points. Each of these points in the design space is evaluated and 100 designs

best meet the constraints are stored. These 100 points are then used as the starting points for the

based optimization and a final design is chosen from the 100 optimization runs by comparing the

straints and objective function.

The nonlinear constrained optimization formulation can be written as:

whereu is the vector of independent design variables given in Table 1;f(u) is a set of objective functions;

wi is the scalar weights to balance competing objectives. and are each a s

functions that implement the geometric and functional constraints given in Table 2 and Table 3, andUp is

the set of allowable values ofu (described by the bounds in Table 1).

In our synthesis, some of the design variables (such as the number of comb fingers) are inte

nature. So we cannot completely model the design problem in the nonlinear constrained optimizatio

mulation, which uses real numbers. We use a branch-and-bound algorithm to overcome this. Initi

relaxedoptimization which treats the number of comb fingers as continuous variables is run. The

number of comb fingers are truncated to the nearest integer and removed from the list of design va

The final synthesis design is obtained by running anon-relaxedoptimization with the result of therelaxed

problem as the starting point. In addition, all the geometry parameters in the physical design should

resented as integers with centi-micron units to describe a valid layout. Afternon-relaxedoptimization, the

values of the design variables are rounded off to the nearest centi-micron units.

4.4 Layout generation

After a set of optimized design variable values are obtained from the synthesis, a parameterized

minu z wi f i u( )•
i 1=

k

∑=

ṡṫ h u( ) 0= g u( ) 0≤ u UP∈

h u( ) 0= g u( ) 0≤
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generation tool, CAMEL[1] is used to generate a CIF file which contains the mask information req

for fabrication of the accelerometer. The original version of CAMEL was extended to include module

U-spring, differential comb finger and proof-mass layout generation.

V. Synthesis results and verification

The synthesis tool is used to generate layouts for both open-loop and closed-loop control. In th

tion, we present the layouts generated for different objective functions and discuss design trad

between these objective functions. The accuracy of the lumped-models used in the synthesis is ev

by comparing the predicted values with finite-element simulation results.

5.1 Synthesis results for open-loop operation

Four sets of accelerometer layouts are synthesized for four different objective functions: noise

noise plus area, and range, as shown in Figure 14. Sensitivity of 5, 10, 20 and 30 mV/g are used

input sensitivity specification.

When minimizing area is the objective function and the sensitivity specification increases, the nu

of sense fingers increase from 4 to 24 as shown in Figure 14(a). This increases the sensing capacita

the effective mass. It also reduces the effective spring constant because of the increase of elec

force. All these facts effectively increase the sensitivity. However, the increase of comb fingers also

an increase in device area, so there is a trade-off between the sensitivity and the area as shown in

15(a), corresponding to the layouts in Figure 14(a). Noise and range specifications are set to 0.1

and 10 g respectively for this case. Accelerometer designers usually want to use many sense finge

large mass to increase the sensitivity when the fabrication process allows.

The layouts in Figure 14(b) are generated for minimize noise. All the devices have the max

allowed dimension, 700µm each side. The large area has several effects on the noise. First, it increas

effective mass which will reduce the Brownian noise (see Equation (3.27)). Second, the mass increa

mg Hz⁄
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increase the sensitivity which will reduce the input-referred circuit noise (see Equation (3.28)) if the c

noise is fixed. Third, the increase of area also increases the air damping. To a first-order approximat

effective mass and the Couette and Strokes damping coefficient increase linearly with area. The

Poiseuille damping coefficient is a function of the structure thickness, the finger gap, the finger overla

number of the fingers. It is not a direct function of the area. The number of fingers will not increase

the area when the finger width and gap is made larger. From Equation (3.27), the Brownian noise is p

tional to the square root of the damping coefficient and inversely proportional to the effective mass,

net result is that noise will be reduced by the large area.

There is a trade-off between the sensitivity and the noise because both Hagen-Poiseuille damp

the sensitivity change with the finger gapgs, the finger overlapX0 and number of sense fingersNs. Figure

15(b) shows the change of the minimum noise with the sensitivity specification, corresponding to th

outs in Figure 14(b). The range specification is set to 10 g for this case. As the sensitivity specifi

increases, we see that the minimum noise increases. To minimize noise while meeting the sensitivi

straint, trade-offs are made amonggs, X0 andNs. In sensitivity of 5 and 10 mv/g case, the width and leng

of the proof mass are at their upper limit. This leads to maximum effective mass while keeping the

overlapX0 small to reduce the damping. The widths of the comb fingers in all four cases are substa

larger than the minimum value to increase the mass while keepingNssmall. The sense gapsgs for sensitiv-

ity of 5, 10, 20 mv/g are also not at their minimum value to reduce the damping.

The minimize-area-and-noise layouts in Figure 14(c) are larger in size than the minimize-area la

and smaller in size than the minimize-noise ones, as expected. The device area increases as the s

specification increases, because both small noise and large sensitivity demand large area. The noi

range specifications are set to 0.1  and 10 g respectively.mg Hz⁄
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sensitivity 5 mV/g sensitivity 10 mV/g

sensitivity 20 mV/g

sensitivity 30 mV/g

Figure 14(a). Synthesized accelerometer layouts for minimize-area with 4 sensitivity specs in
                     open-loop operation.
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Figure 14(b). Synthesized accelerometer layouts for minimize-noise with 4 sensitivity specs in
                     open-loop operation.

sensitivity 5 mV/g

sensitivity 20 mV/g

sensitivity 10 mV/g

sensitivity 30 mV/g
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sensitivity 5 mV/g sensitivity 10 mV/g

sensitivity 20 mV/g

sensitivity 30 mV/g

Figure 14(c). Synthesized accelerometer layouts for minimize-area-and-noise with 4 sensitivity
                     specs in open-loop operation.
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sensitivity 5 mV/g sensitivity 10 mV/g

sensitivity 20 mV/g sensitivity 30 mV/g

Figure 14(d). Synthesized accelerometer layouts for maximize-range with 4 sensitivity
                     specs in open-loop operation.
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The maximize-range layouts shown in Figure 14(d) all have the maximum dimensions too. In

loop operation, the range of the accelerometer increases quickly with the sense finger gap becaus

quadratic relation between the electrostatic force and the gap width. To maximize range in small se

ity, the gap is made larger than the minimum value. To maintain the required sensitivity, more sense

and mass are needed. This leads to the large area. For large sensitivity specifications, large number

fingers, small gap and large sense finger overlap are needed. All these facts increase the electrosta

and reduce the range. So there is also a trade-off between maximize-range and maximize-sensi

shown in Figure 15(c), corresponding to the layouts in Figure 14(d).

5.2Synthesis results for closed-loop operation

The same four objective functions and four sensitivity specifications are used to generate la

shown in Figure 16 for closed-loop operation. The relations between minimum area, noise, max

range and different sensitivity specifications in closed-loop are also shown in Figure 15 for compa

The curves in Figure 15(a), (b) and (c) correspond to the layouts in Figure 16(a), (b) and (d) respec

In Figure 16(a), the noise and sensitivity specification are set to 0.1 and 10 g. Both o

loop and closed-loop cases have very small areas as shown in Figure 15(a). For small sensitivity, s
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capacitance and mass required to meet the sensitivity are not at their maximum values, which ma

range specification easy to meet for both open-loop and closed-loop operation because large

capacitance and mass reduce the range. The small sensing capacitance and small number of feed

gers (1 for both cases) also make the noise specification easy to meet. As the sensitivity speci

increases, the number of sense fingers and mass are increased. In open-loop, more sense fingers a

(Ns=24 for open-loop compared toNs=17 for closed-loop for a sensitivity specification of 30 mV/g) for

required sensitivity because the gap of the sense fingers is made larger than the minimum value oµm

(3.2µm for 30 mV/g sensitivity) to meet the range requirement. In closed-loop, the sense-finger gap c

set to its minimum value (2µm for 30 mV/g sensitivity) and still meet the range specification because

the feedback force.

From Figure 15(b) we can see that the minimum noise of the closed-loop is larger than that

open-loop in all four cases. For the small sensitivity case, this is mainly due to the increase in the n

of force fingers. In open-loop, the force finger is only used to generate self-test force and the num

force fingers is one for all cases. While in closed-loop, the force finger is used to generate feedbac

and the range specification constrains the number of force fingers. The number of force fingers for se

ity of 5 mv/g and 10 mv/g for closed-loop is 9 and 2 respectively. However an increase in the sens

specification requires more sense capacitance and leads to only one feedback finger for sensitivit

mV/g and 30 mV/g in closed-loop. The larger noise for these two cases is due to the smaller finger g

larger number of sense fingers which will increase the Hagen-Poiseuille damping. The range specifi

is set to 10 g.

In the maximize-range comparison shown in Figure 15(c), the ranges in closed-loop are much

than those in open-loop, demonstrating the advantage of the force feedback. As the sensitivity speci

gets larger, the maximum-range is also reduced because the number of sense fingers must be inc

the expense of a decrease in the number of feedback fingers numbers for a fixed device size. The num
42



sensitivity 5 mV/g sensitivity 10 mV/g

sensitivity 20 mV/g sensitivity 30 mV/g

Figure 16(a). Synthesized accelerometer layouts for minimize-area with 4 sensitivity
                     specs in closed-loop operation.
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sensitivity 5 mV/g sensitivity 10 mV/g

sensitivity 20 mV/g sensitivity 30 mV/g

Figure 16(b). Synthesized accelerometer layouts for minimize-noise with 4 sensitivity specs
                         in closed-loop operation.
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sensitivity 5 mV/g sensitivity 10 mV/g

sensitivity 20 mV/g sensitivity 30 mV/g

Figure 16(c). Synthesized accelerometer layouts for minimize-area-and-noise with 4 sensitivity
                     specs in closed-loop operation.
Figure 16(c). Synthesized accelerometer layouts for minimize-area-and-noise with 4 sensitivity
                     specs in closed-loop operation.
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sensitivity 5 mV/g sensitivity 10 mV/g

sensitivity 20 mV/g sensitivity 30 mV/g

Figure 16(d). Synthesized accelerometer layouts for maximize-range with 4 sensitivity
                     specs in closed-loop operation.
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feedback fingers are 16, 8, 7, 5 respectively for the four sensitivity specifications. The widths of the

masses in Figure 16(d) are made small to allow large finger overlaps to generate large feedback forc

noise specification is set to 0.1  for all four cases.

In conclusion, force feedback can increase the range of an accelerometer substantially and it als

in reducing device area by allowing small sensing gaps. However, it increases the noise slightly

assuming no noise is added into the system by the feedback network. Whether an accelerometer sh

designed as open-loop or closed-loop is a trade-off among accelerometer specifications such as

noise, cost and linearity.

5.3 Finite element simulation verification

The finite-element analyses (FEA) tool ABAQUS [22] is used to verify the analytic expression

mechanical spring stiffness, resonant frequencies and cross-axis sensitivity. In the simulation, 2D

quadratic plane-stress elements are used to model the accelerometer structure. In Figure 17, the sp

stants and resonant frequencies inx, y andθ directions from the FEA simulations are compared with o

analytic models for the four designs in Figure 14(b). The analytical spring constants in x directio

within 7% of the FEA results. The x direction frequencies are within 5% of the FEA results which sh

the accuracy of our effective mass models. The spring constants and frequencies in y direction (

17(b)) are within 10%, 40% of the FEA results respectively. Predicted spring constants and resona

quencies inθ direction have about 8%, 45% errors comparing with FEA results. So the primary x-m

which determines the mechanical sensitivity of the accelerometer is modeled within 7% accuracy,

other two modes are modeled within 45% accuracy. The large error for y andθ model occurs when the

spring beam length is much larger than the truss length, for example,Lb1 = 342.45µm andLt = 6µm in

sensitivity of 20 mV/g case. The error is mainly due to the effective mass model which does not inclu

spring velocity effects accurately.

mg Hz⁄
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We also verified the analytic model for the compliance coefficientαxy used in cross-axis sensitivity

calculation with FEA results, as shown in Figure 17(d). For the four different designs, theαxy model is

accurate to within 6%.

VI. Conclusions and future work

This report describes a layout synthesis tool which can generate accelerometer layout from hig

specifications for different objective functions. An ADXL76 style accelerometer is chosen as the syn

topology. Analytical models for spring constants, effective masses, air damping, electrostatic comb

force are derived. A cross-axis sensitivity model which considers the manufacturing variation is
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derived. The results from finite-element simulation show that our analytical models for the spring

stants, resonant frequencies in the primary x-direction and cross-coupled compliance coefficient ar

rate to within 7%. A generic analog force-feedback loop is used to describe the closed-loop opera

the accelerometer. In the feedback loop, a simple phase-leading compensator is used to stabilize th

erometer system. The analytic expressions for accelerometer performance evaluations are derived

tions of the lumped models for both open-loop and closed-loop operations. Layouts for different obj

functions are generated. Trade-offs between different synthesis objectives are discussed based on

erated layouts. The synthesis results from open-loop operation and closed-loop operation are comp

The synthesis work can be further investigated in several ways. The synthesized devices nee

manufactured by either MUMPs or iMEMS process and tested to verify and improve the analytical

els. As stated in Section 3.4.3, a more sophisticated compensation scheme can be implemented

force feedback to avoid the nonlinearity of system. Besides cross-axis sensitivity, more manufac

variation issues need to be considered for accurate synthesis results, for example, incorporating the

facturing variations into the spring stiffness, effective mass and air damping models. Another directi

the future work is to extend the synthesis methodology to any general MEMS device by automatic m

ing and constraint generation from layout extraction.
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