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Abstract

Automatic layout generation of a surface-micromachined accelerometer from user-supplied specifi-
cations is presented. An accelerometer is an inertial sensor used to measure accelerations. An ADXL76
style accelerometer is chosen as the synthesis topology. The design problem is formulated as a formal non-
linearly constrained numerical optimization problem by using the physical dimensions of the device and
sense modulation voltage as the design variables. Analytical models for both open-loop and closed-loop
control are derived for the accelerometer performance characteristics in terms of the design variables. Con-
straints which ensure physically valid design and high-level specifications of the accelerometers, such as
sensitivity, minimum detectable acceleration and maximum detectable acceleration, are defined by the
using these analytical models. Objective functions such as minimize area, minimize noise, minimize a nor-
malized sum of area and noise, and maximize range are used to drive the optimization to different parts of
the design space. A generic analog force-feedback loop with phase-leading compensation is used to
describe the closed-loop operation of the accelerometer. Layouts are synthesized for different objective
functions. Trade-offs among different objective functions are discussed based on the generated layouts.
Layouts synthesized for open-loop and closed-loop control are compared. Results show that the force-

feedback control can substantially increase the range of the accelerometer.
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|. Introduction

With the rapid development of MicroElectroMechanical Systems (MEMS) technology, there is a
demand for layout synthesis tools which can directly translate high-level design specifications into valid
MEMS device layout. These synthesis tools can help designers to rapidly explore the entire design space
given user-specified constraints, and assist in building complex arrayed MEMS devices by quick design of
individual cells. Usually in MEMS design, designers need to decide on a certain topology, make trade-offs
between performance specifications and assign values to a set of variables which can represent a valid
design. Physical layout is then generated from the set of variables. Generally, the number of variables is
large and finding an optimum trade-off between specifications is difficult from hand calculations.

Prior work on layout synthesis has focused on layout generation from physical definitions [1][2],
requiring the user to translate the design objective into layout parameters. Also work has been done in
design optimization for simple MEMS structures [3]. Recently work has been done in shape optimization
for electrostatic comb drives [4]. None of those approaches obtain the entire design from device specifica-
tions automatically. A new approach has been proposed which models the design problem as a formal
numerical synthesis problem, and solves it by optimization techniques [5]. A schematic of this approach is
shown in Figure 1. This approach starts from a given design topology, translates the topology into design
variables, determines the numerical design constraints from user specifications, geometry and manufactur-
ing limitations. The quantitative design objective drives the optimizer to an optimum design which is then
translated into a CIF layout file by the layout generator (CAMEL [1]). A folded-flexure electrostatic comb-
drive-microresonator topology has been successfully used to demonstrate the ability of the synthesis
approach [5].

In this report, we extend the synthesis techniques in [5] to a more complicated surface-micromachined
accelerometer system. MEMS-based accelerometers have been widely used in automotive, robotics and
other industries. A commonly used differential lateral accelerometer topology is used in our study. We

develop a synthesis tool which not only considers the physical design of the mechanical structure of the
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Figure 1. Schematic of layout synthesis

accelerometer, but also some design issues in the system level, for example, the interface between the
mechanical structure and the sensing electronics, and the force feedback control which is used to stabilize
the system and increase the maximum detectable acceleration.

Chapter 2 of this report gives an overview of the lateral accelerometer, including the topology, and its
capacitive sensing scheme. In Chapter 3, lumped models and equations which describe the behavior of the
accelerometer are derived. In Chapter 4, a detailed discussion of the synthesis algorithm is given. Chapter
5 gives some synthesis results and provides comparison with finite element simulations. Finally, Chapter 6

summarizes this report and suggests directions for future work.

Il. Accelerometer overview

An accelerometer is an inertial sensor used to measure accelerations. Many MEMS-based accelerom-
eters use a capacitive-sensing scheme for acceleration detection [6][12]. A simplified schematic of a capac-
itive accelerometer is shown in Figure 2.

The central part of the accelerometer is a suspended mechanical proof mass, which acts as the sensing
element. When the accelerometer is exposed to some acceleration, the proof mass moves relative to the
substrate, subject to spring restoring forces and the damping provided by the motion of air around the mov-

ing mass and comb fingers. The relative displacement is sensed by measuring the capacitance change
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Figure 2. Schematic of an capacitive accelerometer

between the comb fingers, as shown in the sensing unit in Figure 2. During the displacement sensing, mod-

ulation voltage YV, is applied across the sense fingers. For the force feedback unit, when voltages of differ-

ent amplitudes are applied across the finger gaps of the force unit, different electrostatic forces will be
generated and the net force will pull the proof-mass into the desired direction. The force feedback unit may
be used in closed-loop feedback control or in self test.

The performance of an accelerometer design is evaluated by specifications such as sensitivity which is
defined as the ratio of output voltage over the input acceleration, minimum detectable acceleration, maxi-
mum detectable acceleration, bandwidth. Designers also need to consider geometric constraints given by
manufacturing process, such as the maximum device size, the minimum beam width. A valid design must
meet all the user specifications and the geometric constraints.

The layout of the capacitive accelerometer used in our synthesis is shown in Figure 3. This topology
is similar to that of the ADXL150 accelerometer from Analog Devices [6].

The accelerometer consists of a movable proof-mass, suspended by two U-shape spring beams on both
sides. Movable comb fingers (rotor fingers) are attached to the proof mass. They are combined with the
fixed comb fingers (stator fingers) to form the sensing units and feedback force units as defined in Figure 2.
At two ends of the proof mass, there are four small rectangular cantilever beams, called limit stops. They
are used to limit the displacements of the proof mass in the x and y directions so that the rotor and stator

fingers can not touch together. Because different voltages are applied across the finger gaps during acceler-
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Figure 3. Layout of a lateral capacitive accelerometer

ometer operation, touch of the two fingers will cause short circuit and damage the device.

The lateral accelerometer can be fabricated by MUMPs technology from MCNC [7] or by IMEMS
technology from Analog Devices [8]. In both processes, the polysilicon is used as the structural material
because of its excellent mechanical properties. The conditioning circuit can either be integrated in the same

chip or provided off chip.

[ll. Lumped parameter modeling of accelerometer
3.1. Introduction

In order to evaluate the performance of an accelerometer design, we need a set of lumped-parameter
models to describe the device behavior as a function of the physical design variables. In our synthesis for-
mulation, we model the accelerometer as a spring-mass-damper system as shown in Figure 4. The models
include the effective stiffness of the spring, the effective masses of the spring and the proof mass, viscous
air damping, electrostatic comb-drive force for the feedback control, and the capacitive sensing interface.

There are many specifications to evaluate the performance of the accelerometer [6]. In this report, we

focus on the five most important ones: the accelerometer sensitivity, the minimum detectable acceleration



Figure 4. Spring-mass-damper model for the accelerometer

(noise), the maximum detectable acceleration (detecting range), the cross-axis sensitivity and bandwidth.
3.2. Modeling of the accelerometer system
For the mass-spring-damper system shown in Figure 4, the differential equation for the displacement

x as a function of external acceleration is:

2
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wherek, is the spring stiffnessB, is the damping coefficienty, is the effective masss,,;is the external
force, andhg,, is the external acceleration.

In the following sections, we will derive analytical models of the spring constant, the effective mass,

and the damping coefficient as functions of the design variables.

3.2.1 Spring stiffness models

Due to the rigidity of the proof-mass, the U-spring dominates the stiffness model. We derive the effec-
tive stiffness of the U-spring by using energy methods [9]. In this method, a force F (or moment M) is
applied at the free end of the spring in the appropriate direction, and the displaceimdotind by Cas-
tigliano’s second theorem. The spring constant is defined as B.=This method has been used for other
MEMS structures such as folded-flexure beams and crab-leg beams [10] [11].

When only displacement from bending and torsion is considered, the total strain energy U of a linear



structure is calculated as

N
(E)
Z _[0 2T (3.2)

whereE is the Young’s modulus of the material, is the length of the i'th beam in the spring;(§) is the
bending moment along the beapandg is the distance from the beam end. The bending movers cal-

culated from the forces and the moments applied at the end point of the spring.
From Castigliano’s second theorem, the partial derivative of the strain ehbkevgth respect to a

given forceF; is equal to the displacement at the force p@jnt,

6:6U

Cdl 3.3
i = oF, (3.3)

Similarly, the angular displacement, resulted from applied momentg; is given by:

(=3}

_aU
0; = M (3.4)
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According to the direction of interest, different boundary conditions are applied to the beam ends, resulting
in a set of simultaneous equations. The analytic relation of the displacement and the applied force can be
obtained by solving those equations.

Using the method described above, we derive the U-spring stiffness. A schematic of the U-spring sus-
pension is shown in Figure 5.

In the x-direction, a force Jis applied at the free end point A. From symmetry considerations when
used in the accelerometer, the boundary condit@s 0 anddg = 0 are obtained. Solving the simulta-
neous equations from the energy method, #direction spring stiffness for the simplified case
Lps = Lpy = Ly andWyg = Wy =W, is:
12aEl, (3.5)

L¥(6al, +L,)

whereE is the Young's modulus of polysilicohy, andL; are the lengths of beams and trudéandW, are
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Figure 5. Schematic of U-spring for spring stiffness calculation. (a) forces and moments applied
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the beam and truss widthisg,is the bending moment of inertia of beam b1 and 2= twﬁ/ 12 a=,(W/
Wb)3. From equation (3.5) we can see that getting smaller whek or Ly, increases.

Similarly, when a y-direction forcefs applied, we have the boundary conditidqs= 0 anddg = 0.
The y-direction stiffness for the simplified casg = L, = L, g = Wy =Wy is:

_ 3El,(2aLy, +Lt)
Lo(aLy +2L,)

(3.6)

y

The calculation of torsional spring constant in thdirection, kg (the rotation-about-z mode), is a little
different from that of k and k. The schematic forgcalculation is shown in Figure 5(b). Instead of apply-
ing the boundary condition at the beam end of the U-spring, we apply the boundary codg#iOrandd,
= 0 at the center of proof mass, point O, when a momegis\pplied, because we can not rotate the beam
end about the z direction and kemndd, of the beam end to be zero.

The full expression for calculated ks very long and is not listed here. For the simplified cédge W),
Lp1=Lpr=LpandL,» L, Kkgis:

_ El[12L5pLp + 12L pol Ly + L{(36L W, + 36Wp, + 15Lp)]
6L LY

5 (3.7)
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wherely, is the moment of inertia of both beam and truss, BandW,; are half of the proof-mass length

and width, respectively, as shown in Figure 5(b).

3.2.2 Effective mass models

The effect of spring mass on resonant frequency of different modes is taken into account by an effec-
tive mass model. Effective mass for each mode of interest is calculated by normalizing the total maximum

kinetic energy of the spring by the maximum proof-mass velogiy,
N
m Loy (9P
i
My = S —[ G—0 d€ (3.8)
eff Iz LiIO

wherem; andL; are the mass and the length of the i'th beam in the spring. Analytic expressions for the
velocities,v;, along the spring beams are approximated from static mode shapes of the U-spring deflection.

The effective mass of the movable part of the accelerometer in the x-direction is

m, = My, +4mSp x (3.9

wherem,, is the total mass of the proof mass and the movable fingersngggs the effective mass of the
U-spring in x-direction. The full equatiom, , by using equation (3.8) in general case is very long.\Wor

= Wb = WandLbl = Lb2 = Lb,

5 4 3,2 2,3, ...50
) PtWHLOZL ) +864L L, + 1112 |1 +280L Ly +21L 5
e 280L2(L, + 2L )° 19
p(bp*2L)

wherep is the density of the polysiliconjs the thickness of polysilicon.
The effective mass in y-direction is same as equation (3.9), but have the spring effective mass in y-

directionmgy, yinstead ofng, , Also for the simplified cas&y; = W, = W andLy = Ly, = L,

ptwgasaLS +315L 00 + 16423 v o7, 1A 41300
b bt bt bt t0
m = (3.11)
sp y 4
1260,
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The moment of inertia about the z axig,is calculated assuming the entire structure rotates by same

angle [11],

0 i i o]
lg = M ————+mr;: [ (3.12)
o 0
rectangular,i = 1

wherem is the mass of the i'th rectangular blodk, andL; are the width and length, amdis the distance
of the center of mass of the rectangular block from center of rotation. The result calculated from this for-
mula is over estimated because beam rectangular blocks closer to the anchor point do not rotate as much as

the proof mass.

3.2.3 Air damping model

The damping of the accelerometer comes from both structural damping and viscous flow of air around
the structural region [12]. Since the amplitude of air damping at atmospheric pressure is orders of magni-
tude higher than the structural damping, the latter is ignored [12]. The air damping of the accelerometers
topology can be classified into Couette-flow damping below the accelerometer, Stokes flow above the
accelerometer, and the squeeze-film damping between the comb fingers. Couette-flow damping is due to
the shear flow of air between parallel plates. For example, the air flow between the proof mass and the sub-

strate during the proof mass motion. The viscous damping coefficient of Couette flow can be modeled by

BCouette = %A (313)

wherep is the viscosity of air is the air film thickness arlis the plate area.

The motion of the fluid above the top surface of the plate can be modeled as Stokes flow [13], in which
the amplitude of fluid oscillation decays exponentially with distance from the plate surfacé hethe

penetration depth, the damping coefficient of Stokes flow is

BStokes = %A (314)

Squeeze-film damping occurs when the air gap between two closely placed parallel surfaces changes.

For the lateral accelerometer, the squeeze film damping between comb fingers when the accelerometer

12



moves in x-direction changes to Hagen-Poiseuille flow because the narrow air gap width. In this case, edge
effects represent a significant percentage of the total damping [12]. The damping coefficient of Hagen-Poi-

seuille flow between a single comb finger is given by:

Biagen = 7.2u|%%3 (3.15)
where is the viscosity of air] is the finger lengtht is the finger thickness, and thgis the air gap
between two fingers.

So the total damping coefficient is

_ 01, 10 mny
B = u(Apm+ 0.5A,( + 0'5Ab)ﬂj_f + 8D+ Nf7.2ul 0 (3.16)

whereA,, A, A, are the areas of the proof mass and comb fingers, spring truss, and beam respectively.

Here we assume the trusses and beams travel at half the velocity of the proof mass on average [14]. More
accurate estimate can be found by shape approximation discussed in SectioNJd2tatal number of
the comb fingers.

In practical designs, etch holes are usually added to the proof mass to ensure the structure is com-
pletely released. The etch holes can reduce damping by several orders of magnitude [15] which we do not
consider in our present synthesis. To obtain accurate predictions of damping with etch holes, the proof
mass should be broken into a collection of smaller plates acting in parallel [16]. The total damping is the

sum of damping from each of the individual plates.

3.2.4 Electrostatic drive force model

In the force feedback units shown in Figure 2, electrostatic force is used for force-balance feedback or

self-test. Assuming no fringe-field effects the electrostatic force for the single comb finger gap is:

- F —
Felec = 5q° - _der (3.17)
where Vg, is the drive voltageg; is the force comb-finger gap anG = €A/ g; is the capacitance

13



between force comb fingers. From equation (3.17) we can see that, the electrostatic force has quadratic
dependence on the drive voltage which is not desired for analog force control. A simple solution for linear-

ization of the electrostatic force is to apply voltagésy+Vy, and V, 4-Vy, separately across the two
comb finger gaps [17]. Helé, 4 is a fixed center voltage and, is the controlling drive voltage. The two

resulting forces are in the opposite directions and the quadratic terms cancel. This results in a net force
E = 2Vc, drVdrCF
O¢

(3.18)

which linearly depends on the controlling voltagg
3.2.5 Electrostatic spring softening model

In the sense units shown in Figure 2, when the modulation voltagés applied between the sensing
fingers, electrostatic forces are generated on the proof mass as shown in Figure 6. It will change the actual

effective spring constant of the system from its mechanical value.

The net force applied to a single finger is

2 2 2
_ EAV, eAVy,  CoVmlDO 1 1 O
k= 2 >~ "2 = 2 o (3.19)
2(9p-2° 2(go* X) Ho—0" (gp+ 0™
wheregy is the initial gap between the fingerdy = |y eratringer 1S the area of the finger sidewall, and

C, = €A/ g, isthe initial capacitance between the fingers wken0. The effective electrostatic spring

x=0 X direction
—
Fi <—X—> F>

Figure 6. Electrostatic spring model
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constant is obtained by differentiating equation (3.19)xfer, :

k, = —(F) = m _ ZSAVm (3.20)

3
9 %

The electrostatic force is in the opposite direction of the mechanical spring force, so the actual effec-

tive spring constant ik ¢ = Kk +Kg

mech

3.3 Accelerometer performance evaluation models in open-loop operation

The accelerometer can either be operated open loop or closed loop. In closed-loop operation, the dis-
placement of the proof mass due to an applied acceleration is sensed and a restoring force is generated to
counteract the motion. The open-loop accelerometer system is simple to design and is cost efficient. We
will first derive the equations that models the accelerometer performance in open-loop operation. The

models for closed-loop operation will be discussed in Section 3.4.

3.3.1 Accelerometer sensitivity

The sensitivity of the accelerometer is defined as the ratio of output voltage over the input accelera-
tion. It is determined by both the mechanical design of the sensor and the position sense circuit. We first
need to find the mechanical sensitivity which is defined as how much the proof mass moves when an accel-
eration is applied.

We use the Laplace transform to solve the second-order system given by equation (3.1):

X(s) _ m _ 1
A9 mL+Bs+ W (3.21)
X S+ K sz+sar +w$

where W, = /k,/m s the resonant frequency al = 0, m/ B is the quality factor. At frequencies

well below resonanceuf « W, ), the mechanical sensitivity is

(3.22)

QD IX

my
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From equation (3.22) we can see that the mechanical sensitivity is inversely proportional to the square
of the resonant frequency. To achieve high sensitivity, the resonant frequency should be made low. In prac-
tice, there is a limit fot, because of the mechanical shock resistance and the manufacturability.

We choose a commonly used single-ended half-bridge capacitive sense interface to translate the proof
mass displacement into output voltage, as shown in Figure 7, because this scheme is easy to implement in
both the MUMPS and the IMEMS processes.

In Figure 7, G and G are capacitors between the movable finger and its nearest fixed finger. The mod-
ulation voltages Y}, are applied between those fingers. The modulation voltages are usually operated at
high frequency to suppress offset and flicker noise [1{},{s the total parasitic capacitance at the output
V, node, including the parasitic capacitance from proof mass to substrate, parasitic capacitance due to

anchors and the parasitic from the signal conditioning circuits.

Applying Kirchhoff’s current law at nodg in Figure 7 yields:

_ C.-C Vv
° C;+C,+C m

para

\Y

(3.23)

When no acceleration occurs, the movable finger is midway between the two fixed sense@pgers,

C, = Cy, and the output voltagé, is zero. Under an applied acceleration, the proof mass moves a displace-

capacitive sense interface conditioning circuit

Figure 7. Accelerometer sensing interface
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ment x governed by equation (3.22) aB¢ andC, are no longer equal. We use a parallel-plate model to

approximate the capacitance and assume the displacement x is small compared to the ijtial gap

A A X D
C, = g =g =C (3248.)
1 O(go_x) Ogo%L %L

_e A AQ_XO- _XO
C2 = &g sogo%’L o0 CoHl o0 (3.24.b)

combine equation (3.23) and (3.24), we have

0 %CO + Cparagoﬂ m 2CO + Cparakgo m (3.25)
and the sensitivity is

Vo 20 m,, 226

a  2Co+Cpaakgg M (3.26)

The sensitivity is inversely proportional to the initial gap between the sensing fingers. Also the parasitic
capacitance should be minimized to obtain high sensitivity. Note that the sensitivity we derived here only

includes the mechanical structure and the capacitive sense interface. The outputWpltagally will be

further amplified by later conditioning circuits [6][12].

3.3.2 Minimum detectable acceleration

The minimum detectable acceleration is determined by the total noise referred back to the accelerom-
eter input. In our synthesis, we consider two noise sources. One is the Brownian (thermal) noise in the
mechanical domain which comes from the random collision of the air molecules with the accelerometer.
The second noise source is transistor noise in the front-end circuit.

For a damped suspended proof mass, the Brownian equivalent acceleration is [17]:

A/az— A/4kBTB JHeTB o 4kBTu) AT (3.27)

n—Brownain ~
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wherekg is Boltzman’s constant, is the temperatur® is the damping factor ar@ is the quality factor.
Let Vi, _circuit € the noise coming from the electrical circuit. We refer this noise into the input acceler-

ation:

_ Vn—circuit (3.28)

a . iy — —
n-circult — gensitivity

The minimum detectable acceleration equals to the total input acceleration noise:

_ 2 2
amin - f\/an—circuit"'an—Brownain (3'29)

3.3.3. Maximum detectable acceleration

In the operation of the accelerometer, a large input will cause the proof mass to hit the limit stop. The
maximum detectable acceleration is defined as the largest acceleration the system can detect before hitting
the limit stop. When the accelerometer operates in open loop and an acceleration is applied, in steady state,
the proof-mass is subjected to an inertial force, a mechanical spring force and an electrical spring force as
discussed in Section 3.2.5. With the increase of the acceleration, the mechanical restoring force may not be
able to match the sum of inertial force and the electrical spring force at some point, and the proof mass will
snap into the limit stop. At equilibrium, the mechanical force equals to the sum of inertial force and the

electrical force.

2
CVigoO O

kx = ma+ OzmgoD L 5= L 50 (3-30)
Hgo=%° (go+x)

wherex is the displacement of the proof-mass gg the initial gap between sense fingers.

Let Ey = Covﬁ/z , the equilibrium acceleration which satisfies equation (3.30) is a function of

2
kx(gg—xz) —4Eog§x (3.31)

3gy(X) =
m(dy—x")

A schematic diagram @fy(X) vs.x is shown in Figure 8.
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Differentiating equation with respectxand set the result to zea(x) is found to have a maximum at:

2E 1/3
_ 0, 2D _ 4,2 3,3/2 2 (3.32)
Xsnap = 90 /1__D = D = E— Eodok™ + Egdpk on+gokE

kdp

The snap-in accelerati@apis found by substitutingg,,pinto equation (3.31):

B kgoRD 48, H
Asnap = m %_Z—ZZD (3.33)
0 kg(1-RHD

2
where R = A/l—ZEO/D+2D/(kgO)

For accelerations smaller thag,,, the proof mass is in stable equilibrium and x increases with input
acceleration. When accelerations are larger tagg, the gap is reduced to less thajg —x,,,  and the

increase of the mechanical restoring force is slower than the increase of electrostatic force, snap-in will
occur. The proof mass is in unstable equilibrium for this case. If the gap between the proof mass and the

limit Stop Xjimit is larger thaiksna, the maximum detectable acceleratapy,in open-loop isasy,, Other-

WIiS€,amaxiS &jimit @S shown in Figure 8 which can be found byxset X, in equation (3.31)
kgy  H 4E, O
Qimit = WR%_z—zZE (3.34)
0 kgy(1-R) U

whereR" = X1t/ 90 -

stable ' unstable
3X) A equilibrium .\ equilibrium
|
Bsnap_g '
Aimit —p

Xjimit Xsnap

Figure 8. Schematic diagram for snap-in acceleration calculation
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3.3.4 Cross-axis sensitivity

Cross-axis sensitivity occurs when the primary axis output voltage is created by forces in the orthogo-
nal axis. In our design, the primary axis is the x-axis. Cross-axis sensitivity can come from the misalign-
ment of the package orientation [6] or come from process variations, for example, the mismatch in the etch
wall of the spring beam and truss [18]. In our synthesis, we only consider the process variations since the
misalignment of package is beyond the scope of layout synthesis.

The capacitive sensing units are connected in such a way that the top stator fingers are at the same
potential and so are the bottom stator fingers, as shown in Figure 9. Note here we, v{g,G C,, and
C, = Cy1 + Cyy, where G and G are the half-bridge capacitors shown in Figure 7. When there is a dis-
placement in y-direction, G and G4 will be decreased bfAC, and G, and G, will be increased by\C.
For the half-bridge sense circuit shown in Figure 7, there is zero output voltage begati§.('he dis-
placement in z direction will cause;§ C,4, C;5and G, to change by the same amount, there is also a
zero output voltage. A non-zero voltage output can be produced only when there is displacement in the pri-
mary x direction.

When a y-directed force is applied to the proof mass, displacement in x-direction is determined by the

compliance coefficientr,, in the 3-DOF (degree of freedom) compliance matrix of the U-spring suspen-

X
y direction movementyy u Y A
—_— > m y
__->
Vi Vim c
= 11 7~ C
Ciy proof Ci2 proof C Vo
Cor mass C,, Wl mass P -
Ly = Vi, — Ca —A— C22

¢ Vout Vi |

(a) (b)

Figure 9. Sense capacitor behavior during y-directed motion
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sion:

Oyx C(xy Oyo I:x

X
y| = |Oyx Oyy Ayl | Fy (3.35)
O |aex Agy dgg Mg
To findayy, we first find the 3-DOF stiffness matrix for a single U-spring:
l:x kxx kxy kxe X
Fyl = [Kyx Kyy Kya| |y (3.36)

Mg|  |kox Koy Kgg| L9

In section 3.2.1, we used energy methods to find the spring con&larks,, kgg. We apply the same
method to find the cross-coupled stiffness coefficieisk g, keg. for the single U-spring, using appropri-
ate boundary conditions. Then we add together the four stiffness matrices of the four U-springs, consider-
ing the changing direction of local coordinates. The last step is to obtain the compliance matrix as shown
in equation (3.35) by inverting the total stiffness matrix. The result shows that both the stiffness and the
compliance matrix are symmetric, as expected.

The full formula fora,y is extremely long and can not be listed here. For most designs, the four U-
spring beams and trusses are designed with the same length and width. If there are no process variations,
the spring beams are perfectly matched. In this case, the stiffness matrix and compliance matrix are both
diagonalay, = 0 and there is no cross-axis sensitivity.

However, in actual fabrication, process variations will cause mismatch of the spring beams, predomi-
nantly of the beam widths. In this casg,, is not equal to zero and the acceleration in the y-direction will
produce a non-zero output voltage.

The cross-axis sensitivity of an accelerometer is formulated as the ratio of voltage output due to

orthogonal axis acceleration (y-axis) over the voltage output due to the same amount of acceleration in the
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primary axis (x-axis) [6]:

aa
= Mreft®hy _ o dhyein] (3.37)

(M @) Ky, N,

X, ef
where my ot and my o1 are the effective mass in the y and x directions, respectively. In most cases,

My et =My fr - aNd Sg Ok a,, . We compare our cross-axis sensitivity model with finite element

simulation results in Section 5.3.

3.3.5 Mechanical bandwidth
From equation (3.21), lettirsg jw, the amplitude is
IX(w)l _ 1

|A(jw)| 3.38
/\/(oorz—ooz)2+ goéwgz (3.38)

We define the mechanical bandwidth of the accelerometer as the -3dB cut-off frequency, where
|X(jo_gqp)| = IX(0)|/ 2.

W_34g = wr&/l_i+_1._dl_4Q2+ 8Q4 (3.39)

2Q2 2Q2

wherew is the resonant frequend,is the quality factor.

3.4 Force-feedback control for accelerometer
3.4.1 Feedback system formulation

Closed-loop operation can improve the performance of the accelerometer in several ways. It increases
the maximum detectable acceleration by providing feedback force against large accelerations. Sensitivity
and bandwidth can be made independent from their mechanical values, and can be controlled by the feed-
back loop. The control can be implemented with either analog feedback [6] or a digital sigmazd¢lta (
approach [12]. Details of different circuit implementations for the feedback loop are beyond the scope of
our layout synthesis and will not be discussed. However, we model an analog feedback system at a generic

conceptual level to include closed-loop effects in our synthesis.
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A schematic of the feedback system is shown in Figure 10. The feedback system consists of a mass-
spring-damper system representing the mechanical part of the accelerometer, a position sensor represent-
ing the capacitive sensing interface, a proportional plus derivative compensator and a force transducer. The

compensatoG, + G;sis basically a lead filter to increase the stability of the system by putting a left-plane

zero into the loop gain. The force transducer has a linear force-voltage relation of equation (3.18),

Kg = 2V¢ «Ce/g¢ . From discussions in Section 3.3.1, the coefficient of the position sensor

Ky

(Vm/go)ZCO/(ZCO + Cpara). Compensator coefficien@, andG; need to be found for the feed-

back system.
From Figure 10, the closed-loop transfer function is
Voul® _ Ky

n ms™+ (B + G;KgKy/)s + (KgK,,Gj + k)

The steady-state value \gf (t) can be found by the final-value theorem [19]:

Voui(s K
lim Vg, (0 = lim sH24 0= v

Fin (3.41)

The steady-state value of the displacemxgft} for an input acceleratioay, is:
Voul® _  Map

X = [|lim =
0, steady t L oo KV KFKVGO +k (3-42)
mass-spring-damper system position sensor
Fin 1 Xo Vout
—> () — > K,
ms +Bs+ k
Fro
VE
K: 4— GO + G]_S
force transducer compensator

Figure 10. Analog feedback loop
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Gg andG; are determined by two equations. The first one comes from the system stability requirement.

By letting the second-order system critically damped, we have

2 _ (3.43)
(B+ G KEK,)™ = 4m(KcK, Gy +k)

The second equation is obtained by settingX,qyt0 some fixed value. Solving equation (3.42) and

(3.43), we hav&sy andG, as

—B+2m __ET___
_ Mg, - kXo, steady N Xo, steady (3.44)

G, = G, =
0 1 KFKV

KFKVXO, steady

In our synthesis formulation, if the proof-mass displacement caused by user-specified maximum input
accelerationByay spec Xmax open™ M@nax sped K, IS less than the open-loop snap-in displacemeghyy,
discussed in Section 3.3.8, steady'S Set t0 themay operPeCaUse snap-in will not occur. In this case, there
is no feedback force in steady state, i.e. the system is open-loop for the steady state. However, feedback
force is required to meet an user-specified transient responggalfperds larger tharnks,,, thenx, steady

is set toxsnap Figure 11 shows example step response waveformg(gfand F(t) for open-loop and

closed-loop operation.

x107 feedback force Ffb(t), amax = 20g and 100g
T T T T

x107 displacement Xout(t), amax = 20g and 1009
T T

Xo(t) 7 T T T Ffb(t) 7

6 ¢ e L
— ""m:lt_:lx,spec/—G

! Xsnap - Oog

@

1 0pen-loop ¢i5sed-loop ] !

=

w
T

displacement, (meter)

Xmax,open |
B 2

8max,spec

I L I I I
35 4 0 05 1 15 2 25 3 35 4 45
time (sec) x10"

time (sec) x10°

(@) (b)

Figure 11. Step response Y and Fy(t) for specifiedByay spec 209and100g Fip = Mamay spec
(a) open-loop t) (solid line), closed-loopyft) (dotted line). (b) [5(t) (solid line). There is

no open-loop ¥t) waveform forayay spec 100gbecause of snap-in.
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In both cases, the proof-mass displacemg(t) in closed-loop operation are settling much faster than
that in open-loop because of the lead compensation. In Figure Xg)epeds smaller thax,,,because
of the smalla,,,, (20g) specification. There is no feedback force in steady state, but transient feedback
force is needed if critical damping is specified. The closed-loop and open-loop displacg(tjestttled at
the same valugmay open IN Figure 11(b), the largemay (100g) specification requires feedback force even
in steady state. The steady state closed-loop displacexg@his xsna, Open-loop displacement is not
shown because the snap-in will occur in this case iRg€oper™ Xsnap

A critically damped closed-loop system increasggyin two ways. First, it eliminates the displace-

ment ringing so that the maximum displacement occurs only in the steady state. Second, a feedback force
is provided to pull the proof-mass back in steady state when a large input acceleration is applied. We will
discuss other device performance parameters affected by the feedback force in the following sections.
3.4.2 Accelerometer performance evaluation models in closed-loop

3.4.2.1 Sensitivity in closed-loop

From equation (3.41) and (3.44), the closed-loop sensitivity is obtained as:

Moug  _ MKy _ o Xo steady (3.45)
[ a D:Iosed K|:KVGO+k Vamaxspec

WhenX, steady's 1€Ss than or equal tQnax openthe closed-loop sensitivity is same as the open-loop sensi-

X
tivity given by equation (3.26) becausd==2P="=

m
max spec k

. In this case, there is no feedback force in the

steady state. Whex, steaqyis €qual toxsn,p the sensitivity can be set independently from its open-loop
value because of the feedback force in steady state. Sensitivity will be specified as input to the synthesis,

which will constrain values 06, steadqy2ndGo.

3.4.2.2 Minimum detectable acceleration in closed-loop

Since an ideal feedback network does not add noise into the system[12], the minimum detectable accel-
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eration is given by same equation (3.29). But sensitivity used to refer circuit noise to the input in equation
(3.28) is the closed-loop sensitivity.
3.4.2.3 Maximum detectable acceleration in closed-loop

As discussed in Section 3.4.1, the closed-loop improves the accelerometer range by reducing ringing
during the settling time and providing feedback force in steady state. From Figure 10, the transfer function

for the feedback force controlling voltaye is:
Ve(s) Ky (Gg + G;9)

| _ (3.46)
Fln(s) m32+(B+GlKFKv)S+(KFKVGO+k)

By using Equation (3.43) and taking Laplace transform, its transient response to a stap(ihpit

K — —
Ve() = ain(t)_\Z/[Go_Goe o(t—O((GO—OlGl)te O(t] (3.47)
a

wherea = (B+ G,KgK,)/2m . It has a maximuM peiat

G,

theak = aG, -G, (3.48)

The appearance of a maximuv ,eacan be seen from Figure 11(b), sin¢g(t) has a same waveform
shape a&(t).

As the input acceleration is increased, the controlling volges increased to provide enough feed-
back force. The maximum detectable acceleration occurs Whgp,reaches its largest available value

VEmax From equation (3.47), we have

2
_ VF, ma@

max closed ™ K

t

-1
a [GO_GOe_q Deak_G(Go_aGl)tpea@_qtpeak] (349)

3.4.2.4 Cross-axis sensitivity in closed-loop

From the definition in Section 3.3.4, the cross-axis sensitivity in closed loop is

my,effaaxy = k..o my,eff (3.50)

S —
XX X
fa)/kxx ymx, eff

cr,closed — (m

X, ef

which is the same as Equation (3.36) of the open loop operation.
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3.4.2.5 Bandwidth of the close-loop system

From Figure 10, we can write the transfer function for the proof-mass displacement as

m
X(s) = — ALY (3.51)
ms + (B + G KKy)s+ (KK, G, + k)
The resonant frequency, cjoselS
® - Jw _ [maxspec (3.52)
r,closed m Xo, steady

Note again that, Whe’%,steady: Xmax,open ®r,closed™ ®Wropen

Also defining the close-loop bandwidth as the -3dB cut-off frequency as we did in open-loop, we have

1 2 4
W_3dB,closed = wl’,closed 1- 2 * ’\/1 4Qr closed * 8Qr closed (3.53)
2Qr,closed 2Qr closed
W
whereQ; ¢iosed = ﬁ-é'—f—f{———f& is the closed-loop quality factor.

3.4.3 Issues in feedback control

In Section 3.3.1, we made an assumption that, for the capacitive sense interface, the displacement x
caused by the input acceleration is much smaller than the initial finger gap, i.e. the proof mass is approxi-
mately centered during the sensing. This assumption is not valid when large input is applied. Using the

exact value o€, andC, into Equation (3.23), we have:

: i
2C
_ 0 Xy 0O 1 O
Vg = oLy (3.54)
0
2C0+Cparag m% Cpara D(QZD
2C

0 + Cparam‘:JD b
Applying the Taylor's series expansion to Equation (3.54) and lethng C,,./ (2C, + Cp4ra) , we find

the position sensor coefficient,

\% 2C

K‘O Ym
vEX S

0 [ o, 20t A3cP }
_ 1+A +A +A (3.55)
2C+Cpara 9 [g0 e Cg0
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Whenx is not much smaller thag, the high-orderZ—; terms cannot be neglected, and the position sensor is

nonlinear. The large displacement will also affect the linearity of the mechanical springs. All of these
effects will cause the sensitivity to be nonlinear.

To solve this problem, feedback control systems tend to be designed to null the proof-mass position
when the signal is applied. This can be done by a digital approach [17]. In analog approach, the simple sin-
gle-zero leading compensation we introduced reduces proof-mass displacement but does not completely
null its position. A possible approach to nulling is to add an integrator into the feedback loop so that the
deflection of the proof mass from the center point is integrated. In the frequency domain, this approach is
equivalent to adding a pole at= 0 in the glane. Additional left-plane zeros must be included to provide

phase leading compensation for stability.

V. Synthesis methodology

In order to model our design problem as a formal numerical synthesis problem, we need to identify the
design variables which represent our accelerometer topology. Then the design space is defined by setting
maximum and minimum values for the design variables. Design constraints which come from manufactur-
ability and user specifications are formulated to further limit the design space. The design variables must
meet the constraints for the design to be acceptable. The next step is to define the objective functions which
drive the synthesis tool toward the optimum design. We will discuss the synthesis methodology in detail in

next several sections.

4.1 Design variables

There are seventeen design variables identified for the accelerometer design. The design variables are
shown in Figure 12(a). Table 1 shows the definition of the variables and their maximum and minimum val-
ues which are usually set by the polysilicon fabrication process. Maximum beam lengths are satrio 400
to prevent beam curling due to stress gradients in the polysilicon film and possible sticking and breakage

during the wet etch [20]. The minimum beam lengths, widths and beam spaces are set by technology-
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figure 12. Design and style variables of accelerometers.
(a) Design variables (b) Style variables

driven design rules. Maximum beam widths are set tu&0by the limited undercut of silicon-oxide to
release the structures. The maximum length of the proof mass is constrained fori/BQ the size of the
layout and the maximum width is constrained to 4@t for the release of the mass. The minimum value
of limit stop gap in x and y direction is set tui. Although this gap size violates the design rules in some
polysilicon processd.g. MUMPS), the small gap is necessary to avoid fingers of different voltages from
touching.

The style geometric variables are necessary to completely define the layout, but do not affect the per-

formance of the accelerometer. The 10 style variables are shown in Figure 12(b) and also listed in Tablel.

Table | Design and style variables for the accelerometer. Lengths and widths are in units
of um exceptN and V.

DESIGN VARIABLES

Var.| Description Min| Max | Var. | Description Min [Max
Ly1 | length of spring beam 1 2| 400| 9s | gap between sense finger 2 20
Ly | length of spring beam 2 21 400| 9 gap between feedback finger 2 20
W, | width of spring beam 2|1 20| Xg | comb finger overlap 2| 400
L; | length of truss beam 21 400| 9yiml 9ap limit x displacement 1 20
w; | width of truss beam 2| 20| 9yim| 9ap limity displacement 1 20
Lom| length of proof-mass 2| 700/ Ns | number of sense comb fingers 1! 100
Wpm| width of proof-mass 2| 400| N | number of feedback comb fingers 1| 100
L. | length of comb finger 2| 400

W, | width of comb finger 2|1 20|V voltage amplitude 1v| 2.5v
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STYLE VARIABLES
Osy | gap between sense unit 2 2| Lsa | length of stator anchor 11 11

Oy | gap between feedback unit 2 2| Wsa | width of stator anchor 11 11
Osfy | gap of sense andfbk unit 10 10| Lp,m| length of limit post
Lsfor| length of stator over rotor fgr 21| 21| Wy jn{ Width of limit post

Lssot length diff. of stator fingery 16| 16| La | Spring anchor length 15 15

They define the stationary parts of the accelerometer, such as the gap between sensing and feedback units,
the length of stator finger over rotor finger. These variables are set to fixed values, usually minimum values

the fabrication process allowed to reduce the device size.

4.2 Design constraints
4.2.1 Geometrical constraints

Geometrical constraints are design constraints related to the layout dimensions and are necessary for a
physically valid design. In our accelerometer design, we have 11 geometrical constraints as shown in Fig-
ure 13 and also listed in Table 2.

The first three constraints determine the size of the device. The length and width should not be over an

arbitrary fixed size, 70@um in our example. The width of the device could be the U-spring length or the

X -—— mass-comb width——p»
T
A

|<— U-spring Iength—jl

stop stroke m|n| um truss length

.—l_ "5
L "
accel, " e
length m® uj
(i LT
(i LT
| |4 comb stroke
"
"

|| Timit stop position

— > |-
spring-comb gap springlanchor width

Figure 13. Geometric constraints of accelerometer layout
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total mass-comb width, so both of them must less than#@0The width of the spring anchor is calcu-

lated fromLy, Ly, andW,and must be greater or equal to the minimum anchor widtipn1To prevent

fingers of different voltages from touching each other, the gap between sense fingers and feedback fingers
must be larger than the limit-stop gap in x directgn,i;, and the comb stroke in y direction should be
larger thangy jimit- There is an additional constraint &g; and Ly, that ensures the limit-stop posts are
attached to the proof mass instead of the spring beam. The gap between the limit stop and the spring should
be larger than the minimum space Pufd and constrains the minimum truss length. It also must be larger
than gy imit to makeg, jimit an effective displacement limit in the x direction, which is called the stop
stroke. All the above constraints are linear constraints. However, there is one nonlinear geometric con-
straint, the gap between the spring and comb finger.

Table 2: Geometric constraints

Constraint Description Expression min max
[um] [um]
accelerometer length Lpmt2(LetL o) 0 700
mass-comb width Wonit2(Le+2LsgortLsso) 0 700
spring length Wit 2(LpgtWy) 0 700
spring anchor width Whit2(LpoLp) 11 100
x displacement limit | §0x limit 0.2 20
x displacement limit 11 89 limit 0.2 20
comb stroke k=X o~ Gy, limit 2 20
limit stop position ly1-L b2 Gy, limit-Wp,Im 0 400
minimum truss length EWhLpim 2.0 400
stop stroke EWhL g im 9y, limit 0 400
spring-comb gap [bm-2Wp-2Ng (3W+20)-2(N-1) o 10 20
Ng(3W+20y)-(Ns-1)gsy -204/2

4.2.2 Functional constraints

In Section 3.3 and 3.4, we discussed models for the parameters used to specify the accelerometer per-
formance. In order to synthesize a valid design, these specifications must be assigned realistic values,

which are bounded by the functional constraints listed in Table 3.
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The minimum sensitivity, maximum noise, minimum range and maximum cross-axis sensitivity are
specified by users. The bandwidth could be the mechanical bandwidth in open-loop or loop bandwidth in

close-loop. Resonant frequencies of other in-plane mddesd fg, must be at least three times greater
thanf, to decouple the modes adequately.

Table 3: Functional constraints

Constraint Description Expression min max
Sensitivity S = \,/ap Sspec 1000 mv/g
Noise (min detectable accel.) | a . 0.0 mg &in, spec
Range (max detectable accel.)| a ., 3max, spec 10% g
Cross-axis sensitivity > 0.0 Sr,spec
Bandwidth W.39B W.3dB, spec 10° Hz
Spring softening Ky eledKx. mech 0 0.9
Self test force test_force/(mx*range*9.8) | 0.2 103
In-plane mode separation I, x/fq 0 1/3
Beam buckling b/Lcr 0 1/2

As we discussed in Section 3.2.5, the modulation voltagew! cause an equivalent electrical spring,
Ky elec Its reaction force acts in the opposite direction of the mechanical sgting.., When it is greater
or equal taky nmecn the sense fingers will snap in for a very small input or even no input. Obviously, it is not
a valid design. So we need to constrain that 0.9k,ecn Another constraint is added to generate enough
self-test electrostatic force. In our synthesis, we want to generate a self-test force equivalent to 20% of the
maximum detectable acceleration force [6].

In the fabrication process of the accelerometer, deposition of the structural material (usually polysili-
con) will cause either compressive or tensile stress in the film. The stress will cause released beams to
break in tension or buckle under compression. For example, in the MUMPs process, polysilicon beams
have a compressive residual stress with a nominal value of -10 MPa. In the case of the U-spring, beams are
free to expand outward to relieve residual axial stress. But the expansion of the proof mass will create addi-

tional axial stress in the inner beam (beam 2) and tension in outer beam (beam 1). A first-order value of the
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critical buckling lengthL, is given by the Euler column formula,Cr =Tt 2Lb/3A , Whetés the

minimum of the width and thickness of the beafis the expansion length of the proof mass and calcu-

lated by A = meorE , Whereg, is the residual ané is the Young’s modulus. To ensure no buckling,

the constrainLy, < L, is added.

4.3 Synthesis algorithm

In accelerometer synthesis, several designs or no designs may satisfy the constraints. We select the
design which minimizes an objective function, and may be considered optimal. Usually, devices of smaller
area are preferred for low cost. Also accelerometers with low noise (minimum detectable acceleration) are
preferred for their ability to detect very small signals. And there are situations in which high-G accelerom-
eters are needed, for example, accelerometers used for shock and impact measurement. So we choose four
possible objective functions: minimize total area, minimize noise, minimize the sum of noise and area nor-
malized to the maximum possible area and noise, and maximize detectable range (maximum detectable
acceleration). Sensitivity is also a very important specification, but it can be easily increased by the ampli-
fying circuit after the capacitive sense interface, so we did not list it as an objective function.

The synthesis problem is mapped onto a constrained optimization formulation that is solved using a
nonlinear constrained optimization technique. During the optimization, designs defined by lumped-param-
eter macromodels are evaluated by the values of the constraints and the objective functions. Due to the
complex nonlinear characteristics of the equations in the lumped-element macromodel, there can be more
than one minimum point in the optimization for different objective functions. To perform synthesis in the
entire design space, our tool should be independent of any choice of the starting point.

To solve for the global minimum of the objective function, we used a gridded multi-start algorithm
coupled with a gradient-based constrained optimization (NPSOL) [21]. The use of a starting grid elimi-

nates the need to provide good starting points to the gradient-based optimization. The starting grid is gen-
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erated by assigning 3 values (low bound, up bound and middle value) to each of the 17 design variables,

leading to 37 starting points. Each of these points in the design space is evaluated and 100 designs which
best meet the constraints are stored. These 100 points are then used as the starting points for the gradient-
based optimization and a final design is chosen from the 100 optimization runs by comparing the con-
straints and objective function.
The nonlinear constrained optimization formulation can be written as:
k
minl_J zZ= Z Wlofi(g)
i=1
st h(u) =0 g(u <0 ubUp

whereu is the vector of independent design variables given in Tabf@u}ljs a set of objective functions;

w; is the scalar weights to balance competing objectivegu) = 0 a@id) <0 are each a set of

functions that implement the geometric and functional constraints given in Table 2 and Tablel, iand
the set of allowable values of(described by the bounds in Table 1).

In our synthesis, some of the design variables (such as the number of comb fingers) are integer in
nature. So we cannot completely model the design problem in the nonlinear constrained optimization for-
mulation, which uses real numbers. We use a branch-and-bound algorithm to overcome this. Initially, a
relaxedoptimization which treats the number of comb fingers as continuous variables is run. Then the
number of comb fingers are truncated to the nearest integer and removed from the list of design variables.
The final synthesis design is obtained by runningpa-relaxedoptimization with the result of theelaxed
problem as the starting point. In addition, all the geometry parameters in the physical design should be rep-
resented as integers with centi-micron units to describe a valid layout. idterelaxedoptimization, the

values of the design variables are rounded off to the nearest centi-micron units.

4.4 Layout generation

After a set of optimized design variable values are obtained from the synthesis, a parameterized layout
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generation tool, CAMEL[1] is used to generate a CIF file which contains the mask information required
for fabrication of the accelerometer. The original version of CAMEL was extended to include modules for

U-spring, differential comb finger and proof-mass layout generation.

V. Synthesis results and verification

The synthesis tool is used to generate layouts for both open-loop and closed-loop control. In this sec-
tion, we present the layouts generated for different objective functions and discuss design trade-offs
between these objective functions. The accuracy of the lumped-models used in the synthesis is evaluated

by comparing the predicted values with finite-element simulation results.

5.1 Synthesis results for open-loop operation

Four sets of accelerometer layouts are synthesized for four different objective functions: noise, area,
noise plus area, and range, as shown in Figure 14. Sensitivity of 5, 10, 20 and 30 mV/g are used as the
input sensitivity specification.

When minimizing area is the objective function and the sensitivity specification increases, the number
of sense fingers increase from 4 to 24 as shown in Figure 14(a). This increases the sensing capacitance and
the effective mass. It also reduces the effective spring constant because of the increase of electrostatic
force. All these facts effectively increase the sensitivity. However, the increase of comb fingers also causes

an increase in device area, so there is a trade-off between the sensitivity and the area as shown in Figure

15(a), corresponding to the layouts in Figure 14(a). Noise and range specifications are setdg (J#iz
and 10 g respectively for this case. Accelerometer designers usually want to use many sense fingers and a
large mass to increase the sensitivity when the fabrication process allows.

The layouts in Figure 14(b) are generated for minimize noise. All the devices have the maximum
allowed dimension, 70Am each side. The large area has several effects on the noise. First, it increases the

effective mass which will reduce the Brownian noise (see Equation (3.27)). Second, the mass increase will
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increase the sensitivity which will reduce the input-referred circuit noise (see Equation (3.28)) if the circuit
noise is fixed. Third, the increase of area also increases the air damping. To a first-order approximation, the
effective mass and the Couette and Strokes damping coefficient increase linearly with area. The Hagen-
Poiseuille damping coefficient is a function of the structure thickness, the finger gap, the finger overlap and
number of the fingers. It is not a direct function of the area. The number of fingers will not increase with
the area when the finger width and gap is made larger. From Equation (3.27), the Brownian noise is propor-
tional to the square root of the damping coefficient and inversely proportional to the effective mass, so the
net result is that noise will be reduced by the large area.

There is a trade-off between the sensitivity and the noise because both Hagen-Poiseuille damping and
the sensitivity change with the finger ggg the finger overlagXy and number of sense fingexs. Figure
15(b) shows the change of the minimum noise with the sensitivity specification, corresponding to the lay-
outs in Figure 14(b). The range specification is set to 10 g for this case. As the sensitivity specification
increases, we see that the minimum noise increases. To minimize noise while meeting the sensitivity con-
straint, trade-offs are made amogg X andNg. In sensitivity of 5 and 10 mv/g case, the width and length
of the proof mass are at their upper limit. This leads to maximum effective mass while keeping the finger

overlapXy small to reduce the damping. The widths of the comb fingers in all four cases are substantially
larger than the minimum value to increase the mass while ke&piamall. The sense gagsfor sensitiv-

ity of 5, 10, 20 mv/g are also not at their minimum value to reduce the damping.
The minimize-area-and-noise layouts in Figure 14(c) are larger in size than the minimize-area layouts
and smaller in size than the minimize-noise ones, as expected. The device area increases as the sensitivity

specification increases, because both small noise and large sensitivity demand large area. The noise and

range specifications are set to gy’ ./ Hz and 10 g respectively.
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Figure 14(a). Synthesized accelerometer layouts for minimize-area with 4 sensitivity specs in
open-loop operation.
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sensitivity 20 mV/g sensitivity 30 mV/g

Figure 14(b). Synthesized accelerometer layouts for minimize-noise with 4 sensitivity specs in
open-loop operation.
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Figure 14(c). Synthesized accelerometer layouts for minimize-area-and-noise with 4 sensitivity
specs in open-loop operation.
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Figure 14(d). Synthesized accelerometer layouts for maximize-range with 4 sensitivity
specs in open-loop operation.
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The maximize-range layouts shown in Figure 14(d) all have the maximum dimensions too. In open-
loop operation, the range of the accelerometer increases quickly with the sense finger gap because of the
guadratic relation between the electrostatic force and the gap width. To maximize range in small sensitiv-
ity, the gap is made larger than the minimum value. To maintain the required sensitivity, more sense finger
and mass are needed. This leads to the large area. For large sensitivity specifications, large number of comb
fingers, small gap and large sense finger overlap are needed. All these facts increase the electrostatic force
and reduce the range. So there is also a trade-off between maximize-range and maximize-sensitivity as

shown in Figure 15(c), corresponding to the layouts in Figure 14(d).
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Figure 15. The change of minimum area, noise and maximum range with the sensitivity specifications.
(&)minimum area vs. sensitivity specs (b)minimum noise vs. sensitivity specs (C) maximum
range vs. sensitivity specs

5.2 Synthesis results for closed-loop operation

The same four objective functions and four sensitivity specifications are used to generate layouts
shown in Figure 16 for closed-loop operation. The relations between minimum area, noise, maximum
range and different sensitivity specifications in closed-loop are also shown in Figure 15 for comparison.

The curves in Figure 15(a), (b) and (c) correspond to the layouts in Figure 16(a), (b) and (d) respectively.

In Figure 16(a), the noise and sensitivity specification are set ton@/L/Hz and 10 g. Both open-

loop and closed-loop cases have very small areas as shown in Figure 15(a). For small sensitivity, sensing
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capacitance and mass required to meet the sensitivity are not at their maximum values, which makes the
range specification easy to meet for both open-loop and closed-loop operation because large sensing
capacitance and mass reduce the range. The small sensing capacitance and small number of feedback fin-
gers (1 for both cases) also make the noise specification easy to meet. As the sensitivity specification
increases, the number of sense fingers and mass are increased. In open-loop, more sense fingers are needed
(Ns=24 for open-loop compared td~=17 for closed-loop for a sensitivity specification of 30 mV/g) for a

required sensitivity because the gap of the sense fingers is made larger than the minimum valae of 2
(3.2um for 30 mV/g sensitivity) to meet the range requirement. In closed-loop, the sense-finger gap can be

set to its minimum value (m for 30 mV/g sensitivity) and still meet the range specification because of

the feedback force.

From Figure 15(b) we can see that the minimum noise of the closed-loop is larger than that of the
open-loop in all four cases. For the small sensitivity case, this is mainly due to the increase in the number
of force fingers. In open-loop, the force finger is only used to generate self-test force and the number of
force fingers is one for all cases. While in closed-loop, the force finger is used to generate feedback force
and the range specification constrains the number of force fingers. The number of force fingers for sensitiv-
ity of 5 mv/g and 10 mv/g for closed-loop is 9 and 2 respectively. However an increase in the sensitivity
specification requires more sense capacitance and leads to only one feedback finger for sensitivity of 20
mV/g and 30 mV/g in closed-loop. The larger noise for these two cases is due to the smaller finger gap and
larger number of sense fingers which will increase the Hagen-Poiseuille damping. The range specification
is setto 10 g.

In the maximize-range comparison shown in Figure 15(c), the ranges in closed-loop are much larger
than those in open-loop, demonstrating the advantage of the force feedback. As the sensitivity specification
gets larger, the maximum-range is also reduced because the number of sense fingers must be increased at

the expense of a decrease in the number of feedback fingers numbers for a fixed device size. The number of
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Figure 16(a). Synthesized accelerometer layouts for minimize-area with 4 sensitivity
specs in closed-loop operation.



sensitivity 20 mV/g sensitivity 30 mV/g

Figure 16(b). Synthesized accelerometer layouts for minimize-noise with 4 sensitivity specs
in closed-loop operation.
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Figure 16(c). Synthesized accelerometer layouts for minimize-area-and-noise with 4 sensitivity
specs in closed-loop operation.

45



] o o o ool - i s s
(e ana [aaEeaE e EaaEaaEgangn ooEenEas

sensitivity 5 mV/g sensitivity 10 mV/g

8
sensitivity 20 mV/g sensitivity 30 mV/g

Figure 16(d). Synthesized accelerometer layouts for maximize-range with 4 sensitivity
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feedback fingers are 16, 8, 7, 5 respectively for the four sensitivity specifications. The widths of the proof

masses in Figure 16(d) are made small to allow large finger overlaps to generate large feedback forces. The

noise specification is set to Omg/ JHz  for all four cases.

In conclusion, force feedback can increase the range of an accelerometer substantially and it also helps
in reducing device area by allowing small sensing gaps. However, it increases the noise slightly even
assuming no noise is added into the system by the feedback network. Whether an accelerometer should be
designed as open-loop or closed-loop is a trade-off among accelerometer specifications such as range,

noise, cost and linearity.

5.3 Finite element simulation verification

The finite-element analyses (FEA) tool ABAQUS [22] is used to verify the analytic expressions for
mechanical spring stiffness, resonant frequencies and cross-axis sensitivity. In the simulation, 2D 8-node
quadratic plane-stress elements are used to model the accelerometer structure. In Figure 17, the spring con-
stants and resonant frequenciesjry and6 directions from the FEA simulations are compared with our
analytic models for the four designs in Figure 14(b). The analytical spring constants in x direction are
within 7% of the FEA results. The x direction frequencies are within 5% of the FEA results which shows
the accuracy of our effective mass models. The spring constants and frequencies in y direction (Figure
17(b)) are within 10%, 40% of the FEA results respectively. Predicted spring constants and resonant fre-
guencies irB direction have about 8%, 45% errors comparing with FEA results. So the primary x-mode
which determines the mechanical sensitivity of the accelerometer is modeled within 7% accuracy, while
other two modes are modeled within 45% accuracy. The large error for yBamedel occurs when the
spring beam length is much larger than the truss length, for exampler 342.4%m andLt = 6um in
sensitivity of 20 mV/g case. The error is mainly due to the effective mass model which does not include the

spring velocity effects accurately.
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We also verified the analytic model for the compliance coefficiggtused in cross-axis sensitivity
calculation with FEA results, as shown in Figure 17(d). For the four different designs,jimaodel is

accurate to within 6%.
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Figure 17. Comparison of predicted spring stiffness, resonant frequencies and compliance cogfficient
with finite-element simulation for the accelerometers shown in Figure 14(b). (a) spring constant and reso-
nant frequency for x mode (b) spring constant and resonant frequency in y mode (c) spring constant and
resonant frequency #imode (d) compliance coefficieay,,

VI. Conclusions and future work

This report describes a layout synthesis tool which can generate accelerometer layout from high-level
specifications for different objective functions. An ADXL76 style accelerometer is chosen as the synthesis
topology. Analytical models for spring constants, effective masses, air damping, electrostatic comb drive

force are derived. A cross-axis sensitivity model which considers the manufacturing variation is also
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derived. The results from finite-element simulation show that our analytical models for the spring con-
stants, resonant frequencies in the primary x-direction and cross-coupled compliance coefficient are accu-
rate to within 7%. A generic analog force-feedback loop is used to describe the closed-loop operation of
the accelerometer. In the feedback loop, a simple phase-leading compensator is used to stabilize the accel-
erometer system. The analytic expressions for accelerometer performance evaluations are derived as func-
tions of the lumped models for both open-loop and closed-loop operations. Layouts for different objective
functions are generated. Trade-offs between different synthesis objectives are discussed based on the gen-
erated layouts. The synthesis results from open-loop operation and closed-loop operation are compared.

The synthesis work can be further investigated in several ways. The synthesized devices need to be
manufactured by either MUMPSs or IMEMS process and tested to verify and improve the analytical mod-
els. As stated in Section 3.4.3, a more sophisticated compensation scheme can be implemented for the
force feedback to avoid the nonlinearity of system. Besides cross-axis sensitivity, more manufacturing
variation issues need to be considered for accurate synthesis results, for example, incorporating the manu-
facturing variations into the spring stiffness, effective mass and air damping models. Another direction for
the future work is to extend the synthesis methodology to any general MEMS device by automatic model-
ing and constraint generation from layout extraction.
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