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ABSTRACT 

A functional modeling technique is developed for 
components of a microfluidic system and applied to three 
common injector topologies.  This technique uses sparse 
numerical simulation to train a neural network to provide 
compact, explicit, and accurate component models.  The 
resulting models are compatible with analytic system 
simulation environments, making complex design synthesis 
and optimization feasible, unlike standard techniques using 
computationally expensive numerical simulation.  The 
neural network models are accurate to numerical simulation 
with mean squared errors less than 10-4.  In explicit form, 
the neural network models are very fast taking less than 1s 
per evaluation. 

 
Keywords:  microfluidic, electrokinetic, injector, model, 
neural, network, system 

1 INTRODUCTION 

The simulation of complex LOC systems requires 
computationally expensive numerical solutions to partial 
differential equations.  The design of LOC systems then 
requires many repeated simulations.  These two 
compounding difficulties can quickly lead to 
computationally infeasible descriptions. A much more 
efficient alternative for CAD of microfluidic systems 
involves functional decomposition into a series of 
interconnected blocks, as previously proposed for the 
mixer, injector, and separator [1, 2].  Functional neural 
network (NN) modeling makes such an efficient 
decomposition possible.  In this paper, a neural network has 
been used for the first time, to the authors’ knowledge, in 
microfluidic applications to create models for the injector. 

The importance of the injector as a component in a 
microfluidic separation system derives from the fact that it 
defines the shape and quantity of analyte that will be used 
for separation and analysis.  Prior work described the 
various forms of microfluidic electrokinetic injectors, such 
as the tee, double-tee, cross, double-cross, and gated-cross 
[3-7].  A first generation injector model produced by the 
authors was specific to the cross injector and was defined 
by a two-dimensional parameter space [8].  This work 
improves on previous generation injector modeling by 
using neural network functional modeling concepts, as 
created in the context of VLSI CAD, to create a library of 

models for injectors, including the cross, double-tee, and 
gated-cross, each defined by a four-dimensional parameter 
space.  The methodology is not specific to any one injector 
topology and has been used in CAD spaces with many 
more dimensions. 

2 INJECTOR TOPOLOGIES 

The cross injector, shown in Figure 1a, operates using 
two cross flows.  In the loading stage, the analyte is 
pumped from the sample reservoir to the waste channel.  
After filling the injection chamber, defined by the 
intersection of the two perpendicular channels, the analyte 
is injected into the separation channel by using a cross flow 
from a buffer reservoir to the separation waste reservoir.  In 
the loading stage, accessory fields can be used to focus the 
band in the injection chamber.  In the dispensing stage, 
accessory fields can be used to pull the analyte from the 
injection chamber preventing sample leakage.  In both 
cases, the accessory fields are assumed to be applied 
symmetrically. 

The double-tee, shown in Figure 1b, has the same 
principle of operation as the cross.  The difference between 
the two injectors is the offset in loading channels, which 
defines a larger injection chamber for the double-tee.  The 
cross is a special case of the double-tee topology as seen in 
the analysis of the physical space shown later, however in 
this case, the two are treated separately since the double-tee 
is most commonly found with an offset between loading 
channels fixed at twice the channel width. 

The gated-cross, shown in Figure 1c, has a significantly 
different principle of operation.  The gated-cross uses two 
counter-flows to establish a gate within the injection 
chamber across which analyte does not convect.  Once the 
gate is established, sample can be injected into the 
separation channel by floating a single node to flood the 
injection chamber, then reestablishing the gate using the 
counter flows to flush the sample into the separation 
channel.   

3 METHODOLOGY 

The three injectors in Figure 1 are used to demonstrate 
the more general methodology developed here.  The same 
methodology can be applied to other microfluidic 
components.  For any components four steps are included: 

3.1 Defining the Physical Variable Space 
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Figure 1. Example injections and geometries for (a) cross, (b) double-tee, and (c) gated-cross. 
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This step defines the data used to train the neural 
network.  First, all of the physical parameters defining the 
system are identified.  Second, the performance functions 
describing the behavior of the device are chosen. 

The (input) physical parameters fall into four categories:  
the species, electrical, transient, and geometric properties of 
the system.  These physical parameters, respectively, are 
the independent variables of the desired (output) 
performance functions:   

 

 ( )TLEfP ,,,μ=  (1) 

 
The over-bar vector notation indicates that there could 

be any number of performance functions and any number of 
dependent variables in any of the four categories.  For 
injectors, the performance functions are defined to be the 
peak height and variance of a Gaussian distribution for the 
transversely average concentration with the same area and 
variance as the actual output of the injectors.  This reduces 
the complexity of the number of parameters that need to be 
passed between the injector and separator in a system 
simulation environment.  The approximation becomes very 
accurate after the band travels a small distance into the 
separation channel.  By examining two particles diffusing 
from opposite sides of the channel, a bound for when this 
approximation is accurate can be derived: 

 

 2
/
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where Pew is the Peclet number based on the channel width, 
w, and L is the length the band must travel before reaching 
the detector or other significant source of dispersion. 

Figure 2 shows the results of this approximation for a 
double-tee injection.  The picture on the left shows a band 
immediately after the injector, and the picture on the right 
shows the good agreement between the approximate 
Gaussian parameters and the actual concentration profile 
after 4.7 mm. 

Before the training data for the neural network is 
generated, Buckingham’s pi theorem is used to minimize 
the number of independent variables.  The result of this 
reduction for the injectors is summarized in Table 1. 

The dynamic parameters of the three injectors, π1(C,D,G) 
through π4(C,D,G), are used to create the data to train the 
neural network.  The remaining geometric parameters are 
fixed at their most common values, π5(C,D,G) = 1 and π6D = 2.   

From a synthesis point of view, the cross is simply a 
special case of the double-tee, where π6D = 0.  For both of 
these topologies, the π1(C,D) and π2(C,D) parameters describe 
the ratio of the accessory fields to the driving fields.  For 
the loading stage, this describes the amount of pinching that 
is applied to the incoming analyte stream, and for the 
dispensing stage, this describes the amount of pullback 
applied to the dispensed band.  The π3(C,D) and π4(C,D) 
parameters describe the Peclet number for each stage. 

The gated-cross has a set of parameters that differ from 
those of the cross and double-tee.  The first parameter, π1G, 
represents the extent to which the gate is closed.  As 
discussed in [7], as long as E1 ≥ E2, the gate will remain 
closed in the limit of no diffusion.  As π1G is reduced, the 
gate is further closed.  The second parameter, π2G, 
represents the ratio of the buffer electric fields (E3, E4) to 
the analyte electric fields (E2, E1).  As π2G increases, the 

Figure 2. Actual output of double-tee injector (top) compared 
to effective parameterized output of analytical model 

(bottom).  The band on the right traveled 4.7 mm, which is 
when τ = 2.  For these simulations Pe = 186. 
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buffer fields become larger relative to the analyte fields.  
The third parameter, π3G, represents the Peclet number 
during the loading phase.  The final dynamic parameter, 
π4G, measures the ratio of injected plug length, as 
determined by the floating time, TLD, to the channel width. 

A significant concern in the operation of a gated-cross 
injector is the leakage that can occur in the separation 
channel if the gate is not sufficiently closed, as seen in 
Figure 3.  If the leakage is too great, the injector will not 
operate because the increased noise floor will make a 
separation impossible.  A region of feasibility must be 
determined within which the injector can be modeled.  
Ermakov, et. al., analyzed this leakage as a function of the 
gate closure and the system Peclet number [7].  They 
determined a boundary indicated by 1% leakage of the flux 
of the analyte from the source reservoir into the separation 
channel.  In this work, we show results for a more complete 
set of physical parameters to create a region of feasibility. 

3.2 Numerical Simulation 

As a one-time computational expense, numerical 
simulations are created to train the neural network on the 
performance function relationships.  These simulations 
were completed using FEMLAB 3.0a [9].  Less than 200 
simulations were needed per injector, with the average 
simulation taking approximately 1 hour, and the 
simulations can be run in parallel. 

3.3 Neural Network Training 

A neural network is a mathematical structure that is 
adept at learning non-linear functional relations and 

complex item categorizations [10].  The general principle of 
operation of the feed-forward neural network is shown in 
Figure 4a, and the topology of the two layer neural network 
used to model the injectors for this work is shown in Figure 
4b.  The feed-forward neural network is a set of nodes that 
are connected only to the layers above and below.  Each 
node takes the weighted sum of the outputs of the layer 
below as the argument of an activation function.  If the 
network is to perform non-linear regression, the hidden-
layer consists of arbitrary bound non-linear activation 
functions, and the output nodes are unbound linear 
activation functions.  If the network makes discrete 
classifications, then all nodes are bound non-linear 
functions.  The adeptness of neural networks at functional 
modeling has been demonstrated in VLSI CAD where 
many of the techniques described here were inspired [11]. 

Using the algorithms of Matlab 7 [12], a single-hidden 
layer neural network with 20 nodes is trained to learn the 
data from the numerical simulation of the dynamic non-
dimensional parameters using the Levenberg-Marquardt 
algorithm.  To measure the accuracy of the trained neural 
network, the mean square error (MSE) is used to verify the 
network is not underfitting the data, and a k-fold cross 
validation (KFCV) technique is used to verify the network 
is generalized and does not overfit the training data [10]. 

Figures 5 and 6 show the results of the neural networks 
for only the double-tee and gated cross injectors, since the 
regular cross does not provide significant additional insight.  
Figure 6a shows the results of a classification network for 
the region of feasibility for the gated cross.  Figure 6b 
shows this network working with a regression network for 
the performance functions, as evidenced by the data 
missing from the surfaces in infeasible regions.  For all 
graphs representing the performance functions, a two-
dimensional slice of the four-dimensional pi-space is 
extracted for visual clarity.  For each performance function, 
the result of the sparse numerical simulations is shown on 
top compared to the much more dense results achieved with 
the neural network that has been trained on that data.  The 
neural network evaluations take less than one second, 
allowing many thousands to be done in the time it takes one 
average numerical simulation to complete.  This increase in 
speed is obtained while maintaining accurate results relative 
to the original numerical simulations, as summarized by 
low values of MSE and KCFV, shown in Table 2. 
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Figure 3. Gated-cross leakage tested at Peclet numbers from 
19 at contour 1 to ∞ at contour 5.  The contours are defined 
by 7% of the maximum concentration, and agree very well 
with the numerical and experimental results found in [7]. 

 

Figure 4. (a) The activation, zk, of a node is a function of the 
weighted inputs of the previous layer’s activations. (b) 

Feedforward neural network topology utilizing one hidden 
layer with non-linear activation functions, and a single output 

node using a linear activation function. 
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3.4 Analytical Form Extraction 

The feed-forward configuration of the neural network 
allows the extraction of an explicit relation for the output 
node of the following form for the two layer topology: 
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where yk is the output of the network, gout[ξ] is the linear 
output node activation function, ghid[ζ] is the non-linear 
hidden node activation function from Figure 4a, and vkj and 
wji are the weights between layers. 

4 CONCLUSION 

The neural network modeling technique works well for 
injectors, and can be extended to other microfluidic 
components.  The neural networking methodology, 
borrowed from the VLSI CAD community, allows 
functional models to be built with increased degrees of 
freedom compared to the previous generation injector 
modeling methodology.  These injector models combined 
with other component models allow for a functional block 
decomposition of the system for efficient simulation.  The 
speed and accuracy of these analytic block models present a 
far more feasible method of CAD than using numerical 
solutions of partial differential equations for whole complex 
systems. 
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MSE KFCV  
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Double-Tee 1.8e-5 1e-5 8 3e-6 2e-5 
Gated-Cross 4e-5 4.2e-5 10 1.1e-4 2.4e-4 

Figure 5. (a) variance and (b) effective peak concentration 
results for the double-tee, where π1D and π2D fixed at 0.05 and 
0.3 respectively.  The top plots show FEMLAB simulations 

at a course set of points, and the bottom plots show the much 
faster and higher resolution evaluations produced by the NN 

trained on the FEMLAB simulations. 
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Table 2. Neural Network MSE and Cross Validation:  For all three 
injectors, both validation parameters are very small. 
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