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ABSTRACT 

This work presents a closed-form, numerically derived 
model of a key microfluidic electrokinetic separation 
system component, the cross injector.  The model fits into a 
framework such that it can be combined with a network of 
other component models, such as a mixer, reactor, 
separation channel, and detector, to model a complete 
microfluidic separation system.  The model is based on a 
reduction of the full 5-dimensional parameter space to a 
manageable 2-dimensional parameter space.  The resultant 
model is valid for Peclet numbers ranging from 10 to 5000 
and shows a worst case variance equal to the channel width 
squared. 
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1 INTRODUCTION

The injector is a very important component of the 
microfluidic separation system since it defines the shape 
and quantity of analyte that will be used for separation and 
analysis.  Much work has been done previously to describe 
the various forms of microfluidic electrokinetic injectors, 
such as the tee, double-tee, cross, and double-cross [1-5].  
This work presents a new form of the cross injector model 
that is compatible with a system network of component 
models, [6,7].  In 2000, Ermakov, et al., extensively 
modeled the effects of field ratios on the injected band for a 
cross injector [5].  The metrics used to measure the 
performance of the injector were based on the maximum 
concentration and the standard deviation of the transversely 
averaged concentration profile.  The component injector 
model in this paper is based on similar metrics and uses 
similar notations to those in [5]. 

The methodology described here involves an 
exploration of a relevant portion of the injector parameter 
space using finite element, partial differential equation 
solutions of the convection diffusion equation.  The local 
electrokinetic velocity is proportional to the local electric 
field.  These solutions are then used to create fitted 
expressions for the desired input-output values, which are 
the input species concentration and the resulting output 
variance and maximum concentration.  The output 
parameters are sufficient to construct a Gaussian 
distribution, approximating the width averaged plug 

concentrations as a function of longitudinal position, for the 
input to the separation channel. 

2 INJECTOR DESIGN 

A 2-stage cross injector with accessory fields is shown 
in Figure 1.  The accessory fields in the loading stage 
confine the band within the injection chamber, reducing the 
variance of the band, and they provide temporal stability for 
analytes with components of varying mobilities.  These 
loading stage accessory fields are also known as pinching 
fields and were recommended for use in cross topologies 
nearly a decade ago [1].  The accessory fields used in the 
dispensing stage pull the band out of the injection chamber 
to ensure a clean exit.  The two-stage cross injector is a 
commonly implemented design due to its relative simplicity 
and good performance. 

Some alternative injector topologies and control 
schemes are summarized in Table 1.  This table provides a 
qualitative measure of the performance of each injector 
with regard to output band variance, maximum 
concentration, and uniformity of the band shape.  It also 
gives an indication of the control complexity by listing the 
number of voltage control stages that are typically used for 
each injector type.  The cross injector also sometimes 
employs 3-stage voltage control schemes.  These include, 
the gated cross injection scheme [5] and a variation of the 
2-stage injection that adds a pullback step before the 
dispensing stage [4].  Table 1 shows a qualitative 
assessment of the popularity of each topology in its final 

Figure 1 – The two stage cross injector.  In the loading 
stage, the accessory electric fields horizontally pinch 
the analyte as it is driven vertically downward by the 
driving electric field. In the dispensing stage, the 
accessory electric fields vertically pull the analyte 
away from the intersection while the driving fields 
horizontally drive the plug into the separation channel.
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row, based upon instances of use in typical designs.  Since 
the cross injector with 2-stage accessory fields combines a 
simple and popular topology with a reduced control scheme 
that is capable of good performance, it is pursued in detail 
here for incorporation into a component network model. 

3 PROBLEM SPACE 

The first step in the modeling procedure is identification 
of a complete set of non-dimensional variables that 
parameterize the problem space based on the known 
physical variables of the system.  The physical variables 
governing the dynamics of the cross injector are 
summarized in Table 2(a,b), where µ is the electrokinetic 
mobility, κ is the species diffusivity, wL is the width of the 
loading channels, wD is the width of the dispensing 
channels, EiL and EiD represent the electric field at the 
injector inlet in the ith leg for the loading, L, and dispensing 
stages, D, respectively as shown in Figure 2. 

The non-dimensional variables in Table 2(c) are 

obtained using the Buckingham-Pi Theorem [8].  
Performance for each stage (loading and dispensing) is 
determined by 3 dimensionless parameters, the ratio of the 
channel widths, ω, the ratio of accessory to driving field, ε,
and the Peclet number, Pe.  The Peclet number is based 
upon the maximum electric field, E3L in the loading stage 
and E4D in the dispensing stage.  The parameters εL and εD

fix the ratio of accessory fields to driving fields in the 
respective stages. 

In order to define the extent of the injector as a system 
component, the lengths of the legs of the cross are taken as 
four times the channel width, =4w.  This value, based upon 
numerical experiments, results in containment of the entire 
injection plug within the leg after injection, and isolates the 
injection chamber of the cross, within which the non-
uniform electric fields are the dominant factor in the 
shaping of the injection plug.   

3.1 Electric Fields 

Four electric fields, measured at the injector inlets, are 
involved in each stage of injection, as seen in Figure 2.  For 
the loading stage, E1L represents the field that moves the 
fluid into the injection chamber and drives an inward 
current density.  E2L and E4L represent the accessory fields 
that pinch the analyte fluid in the injection chamber, with 
inward current densities.  For symmetric pinching: 
E2L=E4L E2,4L.  Finally, E3L is the field with the largest 
magnitude, with an outward current density transporting the 
tail of the injection plug into the waste reservoir.  
Conservation of current for a surface that surrounds the 
injection chamber results in:   

L
L

D
LL E

w

w
EE 4,213 2+=  (1) 

For the dispensing stage, E2D is the driving field that 
carries the plug into the separation channel and has an 
outward current density.  E1D and E3D are the accessory 
fields with outward current densities that symmetrically 
pull the analyte out of the injection chamber, so that 
E1D=E3D E1,3D. E4D is the dispensing field with the largest 
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Loading Stage Variables – (a) 
Species Geometry Stimuli 

µ wL E2,4L

κ wD E1L

Dispensing Stage Variables – (b) 
Species Geometry Stimuli 

µ wL E2D

κ wD E1,3D

Non-Dimensionalized Variables – (c) 

ω=wL/wD εL= E2,4L/E1L εD= E1,3L/E2L

PeL=µE3LwL/κ PeD=µE4DwD/κ

Table 1 – Injector topologies and control schemes.  L, 
M, H refer to low, medium, high.  w is the channel 
width, and  is a channel separation length. 
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Figure 2 –The general layout of the cross injector 
with respect to the rest of the separation system for 
loading and dispensing stages. 
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Table 2 – Cross injector physical variables for loading (a) 
and dispensing (b) stages.  The resulting non-dimensional 
variables for both stages (c) reduce the number of 
degrees of freedom from 8 to 5.
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magnitude; it flushes out the injection chamber pushing the 
plug into the separation channel.  Again, conservation of 
current relates the dispensing stage inlet fields: 
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Based upon eqs. 1 and 2, for any specific choice of the 
width ratio, ω, and field ratio, ε, all fields are determined in 
terms of the maximum field, E3L or E4D.

Finally, to determine the voltages that are necessary to 
achieve the desired fields for each stage, a linear system 
describes the relation between the applied voltage and 
electric field for any cross injector with legs of length 
=4w.  With electric fields normalized to the channel width, 

w, the linear relationships are: 
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where EmL and EmD are the desired field values with 
appropriate signs, and ΦmL and ΦmD are the resulting 
voltages to be applied to injector’s inlets.  The matrix 
coefficients are determined through numerical solutions of 
Laplace’s equation for conduction problems within the 
injector.  One of the node voltages is a reference ground 
node in each stage (Φ3L and Φ2D), so that a 3x3 matrix fully 
describes the relationship between applied voltages and 
fields.  The voltages obtained in eqs. 3 and 4 are used solely 
for obtaining the fields in the injector.  When connected to 
the rest of the network, these voltages are appropriately 
biased by the reference node voltage. 

3.2 Reduced Problem Space 

In order to create a simple analytic model for the output 
variance and peak concentration, the 5-dimensional 
parameter space must be considerably reduced.  To do this 
the following assumptions are made: 

• The channels widths are the same, ω=1.
• The loading electric field ratio is fixed at εL=1/2.
• The dispensing electric field ratio is fixed at εD=2.

The majority of designs use channels with the same 
widths, justifying the first assumption.  The second and 
third assumptions are based on a case study of optimal 
injector performance at PeL=PeD=100.  For this study, 
numerical experiments were run on an injector with varying 

values of εL and εD.  As suggested by Ermakov, the 
performance was measured by the ratio of the maximum 
concentration to the standard deviation of the resulting plug 
after the dispensing stage [5].  This metric gives a measure 
of the quantity of the analyte injected and how dispersed it 
becomes.  High performance results from large quantity and 
small dispersion, and reaches a maximum at εL=0.5 and 
εD=2.0.  This agrees qualitatively with Ermakov’s results 
for his case study at PeL=PeD=250, where he found 
εL=0.33, εD=1.2.  Both cases suggest that the exit control 
field ratios should be higher than the pinching field ratios.  
After w, εL, and εD are fixed, the remaining non-
dimensional parameters are PeL and PeD.

4 RESULTS

With the reduced parameter space, numerical 
simulations were run using Femlab for PeL and PeD ranging 
from 10 to 5000.  Peclet numbers below this range for an 
injector lead to completely undesirable performance due to 
the large amount of diffusion that dominates each step.  
Peclet numbers above this range represent diffusion 
coefficients below 7x10-12 m2/s for fields of 50kV/m and 
electrokinetic mobilities of 1.4x10-8 m2/Vs.  Therefore, the 
range of Peclet number from 10 to 5000 encompasses the 
majority of practical system properties. 

Simulations were run at 64 points in the parameter 
space.  After the numerical results were obtained, they were 
converted to a closed-form analytical expression by fitting 
the numerical results with a two dimensional polynomial.  
The order of the polynomial in each dimension was chosen 
to minimize the error.  The result was the product of a 7th

order polynomial in Log10(PeL) and Log10(PeD) for 
describing the normalized variance (σ2/w2), and the product 
of a 6th order polynomial in Log10(PeL) and 7th order 
polynomial in Log10(PeD) for describing the normalized 
peak concentration (Cmax/Co, where Co is the input 
concentration). 

Figure 3 shows the plug variance and peak 
concentration as functions of PeL and Ped on logarithmic 
scales.  These results indicate that the larger the Peclet 
numbers become, the better the injector performs.  The 
worst expected performance for this injection scheme is 
approximately the width of the channel squared.  The 
analytical model has a maximum error of less than 2% 
based upon the Femlab simulations.  After the analytical 
model has been established through fitting to the numerical 
simulations, it takes less than ~0.5s to evaluate any point in 
the space, whereas the numerical simulations take ~4.5hrs 
per point, yielding a 32,000X increase in speed. 

5 SYSTEM LEVEL INTEGRATION 

Integration of the injector model with the other 
component models in a network requires a global 
determination of the node voltages.  This is accomplished 
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through construction of an equivalent resistor network 
representing all legs of the system, as seen in Figure 4.  The 
equivalent resistances are: 
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where L1,3,4 are the lengths of the channels connected to the 
injector, L2i are the lengths of the separation channel 
segments, σ is the buffer conductance, w is the channel 
width, h is the channel depth, θ is the turn angle, ro is the 
outer turn radius, ri is the inner turn radius, N is the number 
of straight segments, and M is the number of turns.  Eq. 6, 
accounts for the radially varying field structure in 
calculating the resistance of the curved separation channels. 

The resulting network is then solved for the global node 
voltages (V1L, V4L, VoL, V2L, V1D, V4D, VoD, V3D), as seen in 
Figure 4.  Then the internal separation channel node 
voltages are solved using a Kirchoffian linear system with 
the individual resistances.  A complete description of the 
implementation in VerilogA is provided in [9]. 

6 CONCLUSION 

In this paper a closed-form analytical model of a 2-stage 
cross injector is developed.  The full 5-dimensional 
parameter space is reduced to only the Peclet numbers in 
the loading and dispensing stages for given field ratios and 
constant channel widths.  The resulting polynomial fit 
model is 32,000 times faster than pure numerical 
simulation, and is integrated into a system network of 

component models using the input concentrations and 
providing the plug variances and peak concentrations as 
outputs.  The model predicts a worst case variance of ~w2

and has less than 2% maximum error relative to the original 
PDE solutions.  The integration with the rest of the system 
is completed with a Kirchoffian network analysis to provide 
voltages for all ports and nodes in the network using 
equivalent resistor networks. 

Future similar models for more complex injector types 
will permit system network representations of tradeoffs 
between alternative injector designs in interactions with 
other system components. 
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Figure 3 –Results of the injector model in the PeL and 
PeD problem space, showing the normalized variance 
and the normalized peak concentration. 
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