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ABSTRACT

MEMS design in NODAS is based on a geometrically
intuitive schematic representation of MEMS using a small
set of atomic elements (anchors, beams, plates and electro-
static gaps), each of which is associated with a geometri-
cally parameterized lumped behavioral model. A linear
beam model is unsuitable for simulation of devices where
the beam deflection is large or where axial stress exists in
the beam. Due to the complexity of the nonlinear beam
mechanics, exact analytical solutions are generally unavail-
able. A nonlinear beam model for behavioral simulation is
presented, which captures the geometric nonlinearity caused
by large axial stress and large deflection. Very good agree-
ment of the NODAS simulation results of example problems
with available analytical solutions and with FEA simulation
results verifies the model accuracy.

Keywords: beam, geometric nonlinearity, axial stress, large
deflection.

1 INTRODUCTION

NODAS (NOdal Design of Actuators and Sensors) is a
schematic-based MEMS design methodology being devel-
oped at Carnegie Mellon University [1]. The methodology is
based on a geometrically intuitive hierarchical representa-
tion of MEMS using a small set of atomic elements
(anchors, beams, plates and electrostatic gaps), each of
which is associated with a geometrically parameterized
lumped behavioral model written in an analog hardware
description language. Implementation within the Cadence
Design Environment integrates behavioral models written in
VerilogA with electronicss MEMS schematic capture, fast
behavioral DC, AC, and transient simulations, DRC, layout
generation, and layout extraction [2]. Similar methodologies
include UCB SUGAR in MATLAB [3] and Coventor’s
ARCHITECT in Saber [4].

The beam is a key element of the NODAS library. The
linear beam is modeled with a linear stiffness matrix K,
where the axial displacements are independent of lateral
deflection. These assumptions are only acceptable in appli-
cations where the displacements are small. Although the lin-
ear model covers the basic beam bending mechanics in a
large number of surface-micromachined devices such as
folded-flexure resonators and accelerometers, it is unsuit-
able for simulation of devices such as large stroke actuators
where the beam nonlinearity is non-negligible. Beam non-
linearity arises from two main effects: material nonlinearity,

where the relation between the strain and the stress is non-
linear; and geometric nonlinearity, where the material is lin-
ear elastic but the relation between force and displacement
of an element is nonlinear. The discussion in this paper is
restricted to geometric nonlinearity.

Analytical solutions are available for several special
cases of geometric nonlinearity such as a cantilever beam
under single concentrated lateral load at the free end (the
exact shape of the elastic curve is called the “elastica™) [5], a
cantilever beam under both lateral force and moment [6],
and a fixed-fixed beam with a single concentrated lateral
load at the midpoint of the beam [7]. Due to the complexity
of the nonlinear beam mechanics and the inability to exploit
superposition in nonlinear problems, analytical solutions are
only available for these special simple cases. Nonlinear
beams can be analyzed using finite element methods, how-
ever these methods do not fully support hierarchical mixed-
domain simulations, especially for fast transient analysis
and analysis with electronics. Other prior work on nonlinear
beam behavioral modeling has concentrated on stress-stiff-
ening effects for small angle deflection [8].

In this paper, we present a lumped parameterized non-
linear beam behavioral model for use within the conven-
tional analog behavioral simulators. The model is reusable
and composable hence can be used as the building block for
complicated systems. It handles both large axial stress and
large deflection.

2 NONLINEAR BEAM MODEL

Typical applications involving geometric beam nonlin-
earity are large stroke actuators, in which the beams are
stiffened due to large deflection, and fixed-fixed beam
devices, in which the beam starts to behave nonlinearly at
very small displacements due to large axial stresses [9].
These cases represent the main sources of geometric nonlin-
earity: large axial stress and large geometric deflection.

2.1 Large axial stress

The mechanics of nonlinear beam bending with axial
stress has been studied extensively [6] and is given by the
Euler-Bernoulli equation:
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where the axial force, N, is the external force applied to the

beam in its axial direction and only concentrated loads are

applied. A geometric stiffness matrix K is then derived
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using the energy methods [10], yielding a nonlinear force-
displacement relation:
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where a and b subscripts represent the two ends of the beam,
K is the linear stiffness matrix, and the axial force is

N = ETA(xb—-xa). €))

Consider a fixed-fixed beam example with a non-zero
axial force; K is then a non-zero matrix, and the beam is
stiffened. If we apply (3) directly to a fixed-fixed beam with
a force Fy in the middle (Figure 1), we will see that due to
the symmetric boundary condition at the center of the beam,
x displacements are forced to be zero, leading to a null axial
force N and hence null K5, which is not true physically.
Equation (3) has to be modified in order to correctly model
the internal axial stress.

When a beam is in tension, the actual beam length L’ is
longer than the original length L. Although there is no dis-
placement in the x direction at the beam ends, the bending
from tensile stress generates an axial force

EA -
N==2C-1), @

where L’ is the actual length along the center line of the
beam. This length is calculated by integrating the arc length
ds along the curved beam based on the cubic shape func-
tions for small angle beam bending, y(x):

L= fas= [ /1-1-(%)2(13:. )

The axial force can be substituted into (2) as the axial force
in x-direction only when the lateral deflection is small, i.e., it
is only valid for small angle deflection.

Now consider a cantilever beam loaded with a lateral
force Fat the free end and no external axial force F,. In (2),
the axial elements in K (row 1 and 4) are all zeros, result-

ing in zero x displacement, as in the linear case shown in
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Figure 1: Lateral deflection of a fixed-fixed beam.
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Figure 2: Cantilever beam (a) linear case (b) actual
case (elastica).

Figure 2(a). However, the cantilever beam is free to bend in
the x direction, thus the axial stress in the cantilever beam is
zero for small deflection and the beam length remains
unchanged. The self-consistent solution (Figure 2(b)), is that
the nonlinear displacement in x comes from geometric fore-
shortening of the beam, where L’ = L. To include this effect,
the force-balance equation for the axial direction in (2) must
be altered to F,, = -F,; = N, where N is calculated from (4).

2.2 Large deflection

The across and through variables at the connection ter-
minals are the variables used to form the system matrix [1].
They represent the displacements and forces/moments of the
elements in the chip frame. Communication between the
elements is thus performed in the chip frame, following the
Kirchhoff’s network laws specified by the topology.

To deal with large deflection accurately, a physical
beam should be composed of multiple beam elements. As is
the case with finite elements, this allows the element cubic
shape functions to more closely fit the actual shape function
of the structure. These elements are related through dynamic
coordinate transformations, as illustrated in Figure 3.

The beam mechanics stated in previous sections is only
valid in the local frame of each beam element, therefore, the
displacements and forces/moments in the chip frame must
first be transformed into the local frame before being
applied to the force-balance equation, then be transformed
back to the chip frame to join the analysis of the entire net-
work. The transformation is done through the coordinate
translation about the left end of the beam, node a, and the
rotational coordinate transformation about the angular dis-
placement of the left end in the chip frame, ¢,:

IRE / displaced beam

undisplacgbeam
Figure 3: Dynamic coordinate transformation.
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As long as enough beam elements are used to compose

the physical beam, the displacements of the beam ends in
the local frames of each beam segment will be small enough
to satisfy the small deflection assumption of the nonlinear
beam model. Since ¢, is a variable varying in time along
with the beam bending dynamics, the coordinate transfor-
mation stated in (6) is a dynamic transformation rather than
the static coordinate transformation used in the linear beam
model [1].

The beam length integral (5) is also calculated in the
local frame, because small angle deflection is the assump-
tion used in the derivation of the cubic shape functions. The
explicit solution to the integral is implemented using a first-
order Taylor series expansion. Both the displacements used
in the shape functions and the limits of the integration must
be the values measured in the local frame, as shown in Fig-
ure 4.

2.3 Numerical implementation

Because of the small angle deflection assumption, an
incremental load method is needed to obtain accurate simu-
lation results for large deflections. A nonlinear numeric
method, such as Newton-Raphson, is also needed to solve
the nonlinear equations. These techniques have to be
included in the numeric solver, as done in commercial FEA
tools and in behavioral simulation tools with self-main-
tained numeric solvers such as SUGAR. Since the NODAS
models are embedded in Cadence, we take advantage of the
incremental loading method and Newton-Raphson already
included in the Spectre simulator. Accurate nonlinear solu-
tion can be obtained either by sweeping the load or by set-
ting initial values at critical nodes.

3 SIMULATION VERIFICATION

To verify the nonlinear beam model, multiple spring
topologies, including the cantilever beam, the fixed-fixed
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Figure 4: Calculation of effective beam length.
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Figure 5: Static analysis of a cantilever beam with Fy

ill_.plplied to the free end (100 um long, 2 um wide, 2 um
ck, E=165GPa). (a) normalized x displacement (b)

normalized y displacement.

beam, the crab-leg spring and the folded-flexure spring,

have been simulated and compared with FEA and exact ana-

lytical results.

Figure 5 shows the static analysis of a cantilever beam
with a force applied in the y-direction, modeled with two
and five beam elements respectively. The normalized dis-
placements vs. normalized force Fy are plotted and com-
pared to the elastica solution. With two beam elements,
large deflections up to 50% of the beam length are modeled
with an error less than 5%. Using five beam elements, the
applicable range is increased to more than 80% of the beam
length. The simulation (DC sweep of Fy) takes about 20 s
on a 450 MHz Sun workstation.

Figure 6 shows the static analysis of a fixed-fixed beam
with a central concentrated load, Fy, modeled with two, four
and ten beam elements. Results are compared to FEA simu-
lation in ABAQUS. Because the force is applied to the mid-
dle of the beam, at least two beam elements are needed for
the entire simulation, one for each half. The normalized
axial force in the fixed-fixed beam starts to be on the order
of mN at a displacement of 5 um. The nonlinearity starts to
be evident at a very small lateral displacement of 1 um. Dis-
placement is very small even for a very large normalized lat-
eral force of 27 (i.e., 600 uN). As the lateral displacement is
small, even two elements provide very accurate results with
the error less than 5%. Using four and ten elements further
reduce the error to within 2% and 1%, respectively. Similar
simulation accuracies are obtained for crab-leg springs and
folded-flexure springs.
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Figure 6: Static analysis of a fixed-fixed beam with Fy
applied to the middle (100 wm long for each side, 2 um
wide, 2 pum thick, E=165GPa). (a) normalized y
displacement (b) normalized axial force.

A folded-flexure resonator excited by a large sinusoidal
force is simulated to verify existence of the duffing effect, a
well-known phenomenon caused by beam nonlinearity. The
amplitude of the force is set to be such that the displace-
ments are small at low frequencies but are large enough to
cause the nonlinearity at frequencies near to the resonance.
Figure 7 shows the steady-state envelope of the displace-
ment magnitude obtained from a series of transient analysis
with varying excitation frequencies. Results given by the
linear and nonlinear beam models are compared. The fre-
quency shift due to the beam stiffening is clearly shown.
The transient simulation with a simulation time of 1 ms
(~20,000 time steps) takes about 10 min when the frequency
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Figure 7: Duffing effect simulation.

falls outside of the resonance, and about 1 hr when the fre-
quency is very close to the resonance.

CONCLUSIONS

The nonlinear beam behavioral model presented cap-
tures the geometric nonlinearity caused by large axial stress
and large deflection. It gives excellent simulation accuracy
for very large deflections and axial stresses, when about five
beam elements are used. The excellent accuracy of the
model positively impacts the general applicability of com-
posable design of MEMS using commercial electronic
design tools.
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