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   ABSTRACT
Analytical models to describe coupling between dif-

ferent directions of motion are derived using energy meth-
ods and verified for the U-spring, crab-leg spring and the
serpentine spring. Finite element analyses (FEA) are done
for a range of spring dimensions for each spring type in
order to verify the models and determine the validity range.
The models for the serpentine spring are then incorporated
into a macromodel for use in nodal simulation. Improve-
ment in simulation time using the macromodel over beam-
based simulation is evaluated. Cross-axis coupling in an
accelerometer structure is also simulated using this macro-
model.

Keywords: Modeling, cross-axis coupling, microme-
chanical springs, lumped parameter modeling

INTRODUCTION
Over the past few years a number of micromachined

accelerometer and gyroscope designs have been published
[1]. For these designs to be commercially viable, it is imper-
ative to characterize their inherent non-idealities. Non-ideal-
ities in these devices including offset bias, cross-axis
sensitivity and non-linearity occur due to a combination of
undesired mechanical oscillation modes and mismatched
sensing capacitances [2]. Undesired oscillation modes are
caused by inherent cross-axis coupling in the suspension
springs. In order to understand and predict the non-ideali-
ties, models for the cross-axis coupling in springs need to be
derived.

A number of inertial sensors mentioned in [1] are
made up of a mechanical proof-mass suspended by four
springs. Each spring can be represented by a 6X6 lumped-
element stiffness matrix (Figure 1). The overall system stiff-
ness matrix is obtained as a summation of the individual
stiffness matrices. When all the four spring geometries are
identical, and the layout is two-fold symmetric, the system
stiffness matrix is diagonal because the cross-axis (off-diag-
onal) terms cancel out. However, due to manufacturing vari-
ations, the springs are not perfectly matched leading to a
non-diagonal stiffness matrix. This causes the eigenmodes
of the system to deviate from the principal axes and results
in elliptical motion of the proof-mass instead of the
expected straight line motion [3].

In [4], non-linear rod theory has been applied to ana-
lyze the vibration modes of a MEMS gyroscope considering
the modes to be uncoupled. Coupling among three specific
modes of a gyroscope structure has been investigated in [5].

In this paper it is our aim to model the coupling between th
principal modes of a suspended structure by deriving line
models for three widely used types of suspension springs

The modeling approach is presented first, followed b
verification of these models using FEA. Then, the results
the nodal simulation using the serpentine spring macr
model are discussed.

MODELING
The three types of springs are parameterized as sho

in Figure 2. Linear equations for the spring constants a
derived using energy methods. A force (or moment)
applied to the free end(s) of the spring, in the direction
interest, and the displacement is calculated symbolically
a function of the design variables and the applied force).
these calculations different boundary conditions are appli
for the different modes of deformation of the spring.

When forces (moments) are applied at the end-poin
of the flexure, the total energy of deformation,U, is calcu-
lated as:

  (1)

where,Li is the length of thei’th beam in the flexure,Mi is
the bending moment transmitted through beami, E is the
Young’s modulus of the structural material andIi is the
moment of inertia of beami, about the relevant axis. The
bending moment is a linear function of the forces an
moments applied to the end-points of the flexure. The d

FIGURE 1. Elements of the stiffness matrix. This
symmetric matrix has 21 distinct terms. The number o
distinct non-zero terms reduces to 12 assuming there is n
variation in geometry along thez direction and therefore,
no coupling between in-plane and out-of-plane direction

K

kxx kxy kxz kxθx kxθy kxθz

kyx kyy kyz kyθx kyθy kyθz

kzx kzy kzz kzθx kzθy kzθz

kθxx kθxy kθxz kθxθx kθxθy kθxθz

kθyx kθyy kθyz kθyθx kθyθy kθyθz

kθzx kθzy kθzz kθzθx kθzθy kθzθz

=

Shaded elements are zero

U
Mi ξ( )2

2EIi
----------------- ξd

0

Li

∫
beam i 1=

N

∑=



e
t-

.
g

d-

-

of
he
are
i-

id
g.
s

placement of an end-point of the flexure in any directionζ is
given as:

  (2)

where,Fζ is the force applied in that direction at that end
point [6]. Similarly, angular displacements can be related to
applied moments.

The models for three diagonal elements (i.e., the trans-
lational spring constants) have been derived previously [7].
Our aim here is to obtain the displacement in a direction as a
function of the applied force (moment) in some other direc-
tion. Applying the boundary conditions, as shown in
Figure 3 and Table I, we obtain a set of linear equations in
terms of the applied forces and moments and the unknown
displacement. Solving the set of equations yields a linear
relationship between the displacement and applied force for
the cross-axis spring constant of interest [7]. The constant of

proportionality gives the spring constant as a function of th
physical dimensions of the spring. The models for the ou
of-plane cross-axis spring constants are similarly derived

For the crab-leg, the analytical model for couplin
between x andy directions for one spring is:

where,It and Is are the moments

of inertia of the crab-leg-beams.
For one U-spring, assumingLb1 ~ Lb2 and Lt << Lb1, the
derived analytical model is simplified to get:

, whereIt is the moment of inertia

of the U-spring connecting truss andE is the Young’s Modu-
lus of the beam material. For a serpentine spring thekxy for

evenn is given in (3) and for oddn .

The above models are for a single spring. These mo
els suggest design directions for reducingkxy, and thereby,
the device non-idealities. It is possible to eliminate the nom
inal systemkxy by symmetrically placing four springs. Man-
ufacturing variations are commonly modeled as functions
wafer position, implying that closely placed beams (as in t
same spring) have less width variation than beams which
farther apart (like those on two different springs). In add

FIGURE 2. Design variables for crab-leg-spring, U-spring
and serpentine spring with proof-mass. The external forces
and moments are applied at C, the centroid of the plate
mass, with only one spring in the analysis so that all the
cross-axis terms can be clearly observed.
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FIGURE 3. Forces and moments applied at the centro
of a proof-mass attached to the free end of a crab-le
Boundary conditions are applied as equality constraint
on the three displacements.
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Table I Boundary conditions and equations to be solved
for calculating spring constants

Spring constant
Boundary
conditions

Force/Moment
to be solved for

kxy δx = 0, δθz = 0 Fx

kxθz δx = 0, δy = 0 Fx

kyθz δx = 0, δy = 0 Fy
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tion to eliminating nominal systemkxy, long range width
variations can also be nullified by designing the two beams
with equal lengths and widths for a U-spring or by choosing
n to be odd for a serpentine spring. In Figure 4 it is seen
that it is possible to design the U-spring such that the values
of kxy andkxθz are very small. Similar trends for the serpen-
tine spring are shown in Figure 5.

MODEL VERIFICATION
The models derived above are compared to FEA

results. There are three design variables for the crab-leg,
four for the U-spring and four for the serpentine spring. A
convergence analysis was done to determine the granularity
of the finite element mesh that was required. Consequently,
each beam was split into 40 divisions along the length and
10 divisions along the width. FEA with 3D quadratic brick
elements was done on 8 crab-leg designs, 16 U-spring
designs and 8 serpentine spring designs. For the crab-leg
spring and the U-spring it was seen from the FEA results
that, for beam widths of 2µm, when the beam lengths are at

least 0.75 times the mass dimensions, all the models ma
the FEA values to within 10%. For smaller beam lengths t
mass ceases to be rigid. Mass deformations are not con
ered in this spring modeling exercise. For the serpenti
spring it was not possible to obtain accurate values ofkxy

from FEA when the values were low. All the models othe
thankyθz match FEA results to within 10% for beam widths
of 2 µm. Thekyθz also matches within 10% except when Lb

is much greater than La.
Further, keeping all other design variables consta

the variation ofkxy with the beam length was studied. As
seen in Figure 6, Figure 7 and Figure 8 respectively the a
lytical models match the FEA values to within 2% for th
crab-leg, 5% for the U-spring and 9% for the serpentin
spring.

ACCELEROMETER SIMULATION
A macromodel for the serpentine spring was incorp

rated in NODAS, a nodal simulator for microelectrome
chanical systems [8][9]. AC analysis of a proof-mas
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FIGURE 4. Trends in the variation of in-plane spring
constants for the U-spring for varying beam lengths (Lb1).
The design variables are set to: w=2.0µm, Lt=10.0 µm,
Lb2=200.0µm
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FIGURE 5. Trends in the variation of in-plane spring
constants for the serpentine-spring for varying beam
lengths (a). The design variables are set to: w=2.0µm,
Lb=20.0µm, n=4.
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FIGURE 6. Comparison of analytical model and FEA fo
crab-leg-springkxy for varying crab-leg thigh lengths (Lt).
The design variables are set to: w=2.0µm, Ls=50.0µm
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FIGURE 7. Comparison of analytical model and FEA fo
U-springkxy for varying U-spring beam lengths (Lb1). The
design variables are set to: w=2.0µm, Lt=10.0 µm,
Lb2=Lb1-30.0µm
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suspended by four serpentine springs was done using the
spring macromodel as well as individual beam elements.
The macromodel-based simulation (with n=4) was about 5
times faster than the individual beam element-based simula-
tion. For higher n, the speedup will be greater.

The serpentine spring, proof-mass structure described
above was employed as ay-accelerometer. Input accelera-
tions were applied in both thex and they directions. Mode
coupling is observed in FEA when diagonal springs are
identical and one pair of diagonal springs is wider than the
other pair. This configuration was simulated using the ser-
pentine spring macromodel in NODAS. As expected, a sig-
nificant cross-axis sensitivity (resulting from mode
coupling) is seen in theVout waveform in Figure 9.

CONCLUSIONS
Analytical models are derived for the spring stiffness

matrix for the U-spring, crab-leg spring and the serpentine

spring. From comparison with FEA it is seen that thes
models are accurate to within 10% over a range of values
the design variables. These models are intended to be u
for understanding and modeling more complex effects su
as beam width-mismatch caused by manufacturing var
tions. Higher level macromodels enable iterative designi
of interial sensors by allowing rapid evaluation of perfor
mance criteria such as cross-axis sensitivity. They can a
be embedded into synthesis tools for faster evaluation
candidate designs. Simple pointers (for instance, equate
spring beam lengths or use serpentine springs with odd n
eliminatekxy) to aid MEMS designers can be deduced from
the model equations.
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