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A criticality approach to monitoring cascading
failure risk and failure propagation in transmission

systems
Ian Dobson, Benjamin A. Carreras, David E. Newman

Abstract— We consider the risk of cascading failure of electric
power transmission systems as overall loading is increased.
There is evidence from both abstract and power systems models
of cascading failure that there is a critical loading at which
the risk of cascading failure sharply increases. Moreover, as
expected in a phase transition, at the critical loading there is
a power tail in the probability distribution of blackout size.
(This power tail is consistent with the empirical distribution of
North American blackout sizes.) The importance of the critical
loading is that it gives a reference point for determining the
risk of cascading failure. Indeed the risk of cascading failure
can be quantified and monitored by finding the closeness to
the critical loading. This paper suggests and outlines ways of
detecting the closeness to criticality from data produced from a
generic blackout model. The increasing expected blackout size at
criticality can be detected by computing expected blackout size
at various loadings. Another approach uses branching process
models of cascading failure to interpret the closeness to the
critical loading in terms of a failure propagation parameter λ. We
suggest a statistic for λ that could be applied before saturation
occurs. The paper concludes with suggestions for a wider research
agenda for measuring the closeness to criticality of a fixed power
transmission network and for studying the complex dynamics
governing the slow evolution of a transmission network.

Index Terms— blackouts, power system security, stochastic
processes, branching process, cascading failure, reliability, risk
analysis, complex system, phase transition.

I. INTRODUCTION

Cascading failure is the usual mechanism for large blackouts
of electric power transmission systems. For example, long,
intricate cascades of events caused the August 1996 blackout
in Northwestern America that disconnected 30,390 MW to
7.5 million customers [29], [28], [39]) and the August 2003
blackout in Northeastern America that disconnected 61,800
MW to an area containing 50 million people [38]. The vital
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importance of the electrical infrastructure to society motivates
the understanding and analysis of large blackouts.

Electric power transmission systems are complex networks
of large numbers of components that interact in diverse ways.
When component operating limits are exceeded, protection
acts and the component “fails” in the sense of not being
available to transmit power. Components can also fail in the
sense of misoperation or damage due to aging, fire, weather,
poor maintenance or incorrect settings. In any case, the failure
causes a transient and causes the power flow in the component
to be redistributed to other components according to circuit
laws, and subsequently redistributed according to automatic
and manual control actions. The transients and readjustments
of the system can be local in effect or can involve components
far away, so that a component disconnection or failure can
effectively increase the loading of many other components
throughout the network. In particular, the propagation of
failures is not limited to adjacent network components. The
interactions involved are diverse and include deviations in
power flows, frequency, and voltage as well as operation or
misoperation of protection devices, controls, operator proce-
dures and monitoring and alarm systems. However, all the
interactions between component failures tend to be stronger
when components are highly loaded. For example, if a more
highly loaded transmission line fails, it produces a larger tran-
sient, there is a larger amount of power to redistribute to other
components, and failures in nearby protection devices are more
likely. Moreover, if the overall system is more highly loaded,
components have smaller margins so they can tolerate smaller
increases in load before failure, the system nonlinearities and
dynamical couplings increase, and the system operators have
fewer options and more stress.

A typical large blackout has an initial disturbance or trigger
events followed by a sequence of cascading events. Each event
further weakens and stresses the system and makes subsequent
events more likely. Examples of an initial disturbance are
short circuits of transmission lines through untrimmed trees,
protection device misoperation, and bad weather. The blackout
events and interactions are often rare, unusual, or unanticipated
because the likely and anticipated failures are already routinely
accounted for in power system design and operation.

Blackouts are traditionally analyzed after the blackout by a
thorough investigation of the details of the particular sequence
of failures. This is extremely useful for finding areas of
weakness in the power system and is good engineering practice
for strengthening the transmission system [29], [38], [28], [39].
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We take a different and complementary approach and seek
to determine the risk of series of blackouts from a global,
top-down perspective. That is, we are not concerned with the
deterministic details of a particular blackout, but rather the
overall probability and risk of blackouts from a bulk systems
perspective. Our overall approach draws from probability and
statistics, power systems engineering, statistical physics, risk
analysis, and modeling and simulation.

There are two measures of blackout size that immediately
present themselves as useful for blackouts. Utilities are inter-
ested in number of failures such as transmission line failures
because these are operational data that can be monitored in a
control center and can sometimes be prevented or mitigated.
Customers, industry, regulators and politicians are interested
in quantities that directly affect them such as load shed or
energy not served.

For an extensive listing and short description of previous
work by other authors in cascading failure blackouts we refer
the reader to [18] (particularly for cascading failure in power
systems) and [22] (cascading failure in general). Much of the
authors’ previous work in cascading failure blackouts ([8], [4],
[7], [22], [6], [17]) is summarized in [18].

We now briefly summarize the most immediate technical
background for this paper. Branching processes [26], [2], [24]
are shown to approximate an abstract model of cascading
failure called CASCADE in [17]. CASCADE is compared to
a power systems model of cascading line outages in order to
estimate failure propagation in [6], [20]. Initial work fitting
supercritical branching processes in discrete and continuous
time to observed blackout data is in [21].

II. CRITICALITY AND BLACKOUT RISK

As load increases, it is clear that cascading failure becomes
more likely, but exactly how does it become more likely?
Our previous work shows that the cascading failure does not
gradually and uniformly become more likely; instead there
is a transition point at which the cascading failure becomes
increasingly more likely. This transition point has some of the
properties of a critical transition or a phase transition.

In complex systems and statistical physics, a critical point
for a type 2 phase transition is characterized by a discontinuity
of the gradient in some measured quantity. At this point
fluctuations of this quantity can be of any size and their
correlation length becomes of the order of the system size.
As a consequence, the probability distribution of the fluctu-
ations has a power tail. Figures 1 and 2 show the criticality
phenomenon in the branching process cascading failure model
that is introduced in section III. At criticality Figure 2 shows
a power dependence with exponent −1.5 before saturation. (A
power dependence with exponent −1 implies that doubling the
blackout size only halves the probability and appears on a log-
log plot as a straight line of slope −1. An exponent of −1.5
as shown by the slope −1.5 in the log-log plot of Figure 2
implies that doubling the blackout size divides the probability
by 21.5.)

A similar form of critical transition has been observed in
blackout simulations [4], [11] and abstract models of cascading

Fig. 1. Average number of failures in branching process model with n =
1000 as λ increases. Critical loading occurs at kink in curve at λ = 1 where
the average number of failures sharply increases.
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Fig. 2. Log-log plot of PDF of total number of failures in branching process
model at criticality.

failure [22], [17]. A power law distribution of blackout size
with exponent between −1 and −2 is also consistent with
the empirical probability distribution of energy unserved in
North American blackouts from 1984 to 1998 [8], [9]. This
suggests that the North American power system has been
operated near criticality. The power tails are of course limited
in extent in a practical power system by a finite cutoff near
system size corresponding to the largest possible blackout. The
distribution of the number of elements lost in North American
contingencies from 1965 to 1985 [1] also has a heavy tail
distribution [13].

Blackout risk is the product of blackout probability and
blackout cost. Here we conservatively assume that blackout
cost is roughly proportional to blackout size, although larger
blackouts may well have costs (especially indirect costs) that
increase faster than linearly [3]. The importance of the power
law tail in the distribution of blackout size is that larger black-
outs become rarer at a similar rate as costs increase, so that the
risk of large blackouts is comparable to, or even exceeding,
the risk of small blackouts [5]. For example, if the power
law tail for the blackout size has exponent −1, then doubling
blackout size halves the probability and doubles the cost and
the risk is constant with respect to blackout size. A little less
approximately, consider in Figure 3 the variation of blackout
risk with blackout size computed from the branching process
model at criticality. The pdf power law exponent of −1.5 is
combined with the assumed linear increase in costs to give
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Fig. 3. Blackout risk rP [S = r] as a function of number of failures r. Cost
is assumed to be proportional to the number of failures and is measured in
arbitrary units.

a modest −0.5 power law decrease in risk before saturation.
The risk of the saturated case of all 1000 components failing
is substantial. We conclude that the power law tails in both
the NERC data and the blackout simulation results imply that
large blackouts cannot be dismissed as so unlikely that their
risk is negligible. On the contrary, the risk of large blackouts
is substantial near criticality. Standard probabilistic techniques
that assume independence between events imply exponential
tails and are not applicable to blackout risk.

The terminology of “criticality” comes from statistical
physics and it is of course extremely useful to use the standard
scientific terminology. However, while the power tails at
critical loading indicate a substantial risk of large blackouts,
it is premature at this stage of knowledge to automatically
presume that operation at criticality is bad simply because it
entails some substantial risks. There is also economic gain
from an increased loading of the power transmission system.

III. BRANCHING PROCESS MODEL

One approach models the growth of blackout failures using
a branching process and then estimates the branching process
parameter λ that measures both the extent to which failures
propagate after they are started and the margin to criticality.
We first summarize a basic branching process model. Branch-
ing process models are an obvious choice of stochastic model
to capture the gross features of cascading blackouts because
they have been developed and applied to other cascading
processes such as genealogy, epidemics and cosmic rays [26].
The first suggestion to apply branching processes to blackouts
appears to be in [17].

There are more specific arguments justifying branching pro-
cesses as useful approximations to some of the gross features
of cascading blackouts. Our idealized probabilistic model of
cascading failure [22] describes with analytic formulas the
statistics of a cascading process in which component failures
weaken and further load the system so that subsequent failures
are more likely. We have shown that this cascade model
and variants of it can be well approximated by a Galton-
Watson branching process with each failure giving rise to a
Poisson distribution of failures in the next stage [17], [19].
Moreover, some features of this cascade model are consistent

with results from cascading failure simulations [6], [20]. All of
these models can show criticality and power law regions in the
distribution of failure sizes or blackout sizes consistent with
NERC data [8]. While our main motivation is large blackouts,
these models are sufficiently simple and general that they could
be applied to cascading failure of other large, interconnected
infrastructures.

The Galton-Watson branching process model [26], [2] gives
a way to quantify the propagation of cascading failures with
a parameter λ. In the Galton-Watson branching process the
failures are produced in stages. The process starts with M0

failures at stage zero to represent the initial disturbance. The
failures in each stage independently produce further failures
in the next stage according to an probability distribution with
mean λ. The failures “produced” by one of the failures in
the previous stage can be thought of that failure’s children
or offspring and the distribution of failures produced by one
of the failures in the previous stage is sometimes called the
offspring distribution.

The branching process is a transient discrete time Markov
process and its behavior is governed by the parameter λ. In
the subcritical case of λ < 1, the failures will die out (i.e.,
reach and remain at zero failures at some stage) and the mean
number of failures in each stage decreases exponentially. In
the supercritical case of λ > 1, although it possible for the
process to die out, often the failures increase exponentially
without bound.

There are obviously a finite number of components that
can fail in a blackout, so it must be recognized that the
cascading process will saturate when most of the components
have failed. Moreover, many observed cascading blackouts do
not proceed to the entire interconnection blacking out. The
reasons for this may well include inhibition effects such as
load shedding relieving system stress, or successful islanding,
that apply in addition to the stochastic variation that will limit
some cascading sequences. Understanding and modeling these
inhibition or saturation effects is important. However, in some
parts of this paper such as estimating λ, we avoid this issue
by analyzing the cascading process before saturation occurs.

Analytic formulas for the total number of components
failed can be obtained in some cases. For example, assume
that there are M0 initial failures, the offspring distribution
is Poisson with mean λ, and the process saturates when
n components fail. Then the total number of failures S is
distributed according to a saturating Borel-Tanner distribution:

P [S = r] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M0λ(rλ)r−M0−1 e−rλ

(r − M0)!
; M0 ≤ r < n

1 −
n−1∑

s=M0

M0λ(sλ)s−M0−1 e−sλ

(s − M0)!
; r = n

(1)
Forms of saturation different than that in (1) are described in
[17], [20].

Approximation of (1) for large r < n using Stirling’s
formula and a limiting expression for an exponential yields
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Fig. 4. Log-log plot of PDF of total number of failures in branching process
model for three values of λ. λ = 0.6 is indicated by the diamonds. λ = 1.0
(criticality) is indicated by the boxes. λ = 1.2 is indicated by the triangles.
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Fig. 5. Blackout risk rP [S = r] as a function of number of failures r for
three values of λ. λ = 0.6 is indicated by the diamonds. λ = 1.0 (criticality)
is indicated by the boxes. λ = 1.2 is indicated by the triangles. Cost is
assumed to be proportional to the number of failures and is measured in
arbitrary units.

P [S = r] ≈ M0√
2π

λ−M0 r−1.5e−r/r0 ; 1 � r < n (2)

where r0 = (λ − 1 − lnλ)−1

In approximation (2), the term r−1.5 dominates for r � r0

and the exponential term e−r/r0 dominates for r0 � r < n.
Thus (2) reveals that the distribution of the number of failures
has an approximate power law region of exponent −1.5 for
1 � r � r0 and an exponential tail for r0 � r < n.

The qualitative behavior of the distribution of blackout size
as λ is increased can now be described. This behavior is
illustrated in Figure 4. For subcritical λ well below 1, r0

is well below n and the exponential tail for r0 � r < n
implies that the probability of large blackouts of size near n is
exponentially small. The probability of large blackouts of size
exactly n is also very small. As λ increases in the subcritical
range λ < 1, the mechanism by which there develops a
significant probability of large blackouts of size near n is that
r0 increases with λ so that the power law region extends to
the large blackouts. For near critical λ ≈ 1, r0 becomes large
and exceeds n so that power law region extends up to r = n.
For supercritical λ well above 1, r0 is again well below n
and there is an exponential tail for r0 � r < n. This again
implies that the probability of large blackouts of size near n is

exponentially small. However there is a significant probability
of large blackouts of size exactly n and this probability of
total blackout increases with λ.

Figure 5 shows the distribution of risk with respect to the
number of failures for the same values of λ considered in
Figure 4. The essential point is that, given an assumption about
the blackout cost as a function of blackout size, the branching
process model gives a way to compute blackout risk in terms
of λ. Both the expected risk of Figure 1 and the distribution
of that risk over blackout size of Figure 5 can be computed.

A variant of the branching process produces potential fail-
ures at each stage according to the offspring distribution. Then
the potential failures fail independently with probability p. For
example, if one thinks of each failure as overloading other
components according to the offspring distribution, then this
corresponds to either the failure overloading and failing only
a fraction of the components [19] or only a fraction of the
overloaded components failing [20]. This is a simple form
of emigration added to the branching process in the sense
that the potential failures leave the process [2, page 266].
If the offspring distribution without emigration has generat-
ing function f(s) and propagation λ, then the process with
emigration is a branching process with generating function
g(s) = f(1 − p + ps). It follows that

λemigration = g′(1) = pf ′(1) = pλ (3)

IV. DETECTING CRITICALITY IN BLACKOUT MODELS

We suggest and outline methods of detecting subcriticality
or supercriticality and the closeness to criticality from a
generic blackout simulation model.

A. Blackout model assumptions

For a given initial failure and a given loading or stress level
L, the model produces

1) A sequence of failures. The failures correspond to the
internal cascading processes such as transmission line
outages. Often models will naturally produce failures in
stages in an iterative manner. If not, then the failures
need to be grouped into stages. In run j, the model
produces failures Mj0, Mj1, Mj2, .... where Mjk is the
number of failures in stage k.

2) A blackout size such as load shed or energy unserved.
In run j, the model produces blackout size Bj .

There is a means of randomizing the initial failure and the
system initial conditions so that different sequences of failures
at the loading level L are generated for each run. There are a
number of different blackout models that satisfy these generic
assumptions [4], [11], [23], [25], [27].

Although L may often be chosen as an overall system
loading such as total system load or total mean of random
loads, there are other important ways of parameterizing the
overall system stress. L could measure the overall system
margin or reserves, as for example in [6], where the system
“loading” is measured by the ratio of generator reserve to load
variability or the average ratio of transmission line power flow
to line maximum power rating. L could also be the amount of
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a power transfer across a system. In the sequel we will refer to
L as “loading” for convenience while retaining its expansive
interpretation as a measure of overall system stress.

One important issue is that instead of regarding all the
failures as equivalent and counting them equally, one can
weight them according to their importance. For example, the
relative impact of a transmission line failure on the system
is roughly proportional to the power flowing on it, so that
an appropriate weight is the maximum power rating. If the
maximum power ratings for individual lines are not available,
then the nominal voltage squared (proportional to the surge
impedance loading) could be used for the weight.

B. Distribution of blackout size

The model is run to accumulate statistics of the pdf of
blackout size. Inspection of the probability of a large blackout
at saturation and the extent to which there is a power law
region reveals whether the pdf is subcritical or supercritical.
This method has been applied to several power system black-
out models [4], [11] and was also used to process observed
blackout data from NERC [8]. The method does not quantify
the closeness to criticality and it is very time consuming to
approximate the pdf accurately, especially for the rare large
blackouts near criticality. For example, in [4] 60 000 runs were
used to estimate the pdf of blackout size of a 382 bus network.

C. Mean blackout size

The mean blackout size µ(L) at the loading level L can be
estimated by J runs using

µ(L) =
1
J

J∑
j=1

Bj (4)

Then the sharp change in the slope of the expected blackout
size at criticality can be exploited to test for subcriticality
or supercriticality (this assumes a type 2 phase transition at
criticality). Suppose it is known from previous computations
that the slope of the mean blackout size with respect to loading
L is approximately slopesub below the critical value of L and
approximately slopesuper above the critical value of L. Define
the average slope

slopeaverage =
1
2
(slopesub + slopesuper) (5)

Estimate the local slope by evaluating with the model µ(L +
∆L) and µ(L) for small ∆L and using

slopeµ(L) =
µ(L + ∆L) − µ(L)

∆L
(6)

Then

stress L is

{
subcritical if slopeµ(L) < slopeaverage

supercritical if slopeµ(L) > slopeaverage
(7)

This approach gives as a useful byproduct the slope of the
mean blackout size with respect to loading.

Now the critical loading and hence the margin to critical
loading can be found with further computations of µ(L) at
different values of L. Since (7) gives a way to test whether L

Fig. 6. Standard deviation of the total number of failures S as a function of
λ for saturation at n = 20 failures and n = 100 failures.

is less than or above the critical loading, it is straightforward
to approximate the critical loading by first finding an interval
containing the critical loading and then interval halving. The
interval containing the critical loading is found by increasing
L until supercriticality if the first tested L is subcritical
and decreasing L until subcriticality if the first tested L is
supercritical.

We now roughly estimate the number of runs J needed to
accurately obtain µ(L) at a single loading level L. We assume
that the runs correspond to independent samples, each starting
from one initial failure, and that the failures are generated by
a branching process with a Poisson offspring distribution with
mean λ and saturation at n failures. Then in run j, the total
number of failures Sj is distributed according to the Borel-
Tanner distribution (1) with M0 = 1. We also make the simple
assumption that the blackout size Bj is proportional to the
total number of failures Sj . The standard deviation of µ(L)
is then proportional to σ(S)/

√
J , so that the number of runs

depends on the standard deviation σ(S) of S. If saturation
is neglected, σ(S) =

√
λ/(1 − λ)3 becomes infinite as λ

increases to criticality at λ = 1. The saturation makes σ(S)
larger but finite near criticality as shown in Figure 6. (To obtain
Figure 6, the variance of S was obtained via evaluating D2

t EtS

at t = 1 with computer algebra.) For example, if saturation is
at 100 components and λ = 1.3, then σ(S) = 48 and a mean
blackout size standard deviation corresponding to 0.5 failures
requires (48/0.5)2 = 9200 runs. If saturation is instead at
20 components then σ(S) = 9 and the same accuracy can
be achieved with (9/0.5)2 = 320 runs. The number of runs
depends greatly on λ, the accuracy required and the saturation.

The mean blackout size µ(L) was computed for a range of
system loadings for several different power system cascading
failure models in [4], [11], [27].

D. Propagation λ

We would like to estimate the average propagation λ over a
stages. The a stages are limited to the period before saturation
effects apply, because the branching process model assumed
for the estimation is a branching process model without
saturation that only applies to the propagation of failures
before saturation. Define the total number of failures in each
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stage by summing over the J runs

Mk = M1k + M2k + ... + MJk, k = 1, 2, ..., a (8)

Define the cumulative number of failures up to and including
stage k to be

Sk = M0 + M1 + M2 + ... + Mk (9)

Then an estimator for λ is [24], [15]

λ̂ =
M1 + M2 + ... + Ma

M0 + M1 + ... + Ma−1
=

Sa − M0

Sa−1
=

Sa − M0

Sa − Ma
(10)

λ̂ is a maximum likelihood estimator when observing numbers
of failures in each stage for a wide class of offspring distri-
butions, including the exponential family. λ̂ is biased and its
mean underestimates λ, but the bias is inversely proportional
to the number of runs J [24, pp. 37-39]. In the special case
of a = 1, λ̂ = M1/M0.

The first stage is usually comprised of the initiating failures.
The number of stages a could be limited by one of several
methods. For example, to avoid the saturation effects the
number of stages could be limited so that the fraction of
components failed was below a threshold.

If grouping failures into stages is needed, then, since (10)
only requires Sa, M0, and Ma, it is only necessary to group
failures into the first stage to obtain M1 and into the last stage
to obtain Ma. To group failures into stages, the failure data
will be assumed to include the time of each failure and perhaps
some additional data explaining the causes of the failure and
specifying the type and location of the failure. Factors that
would tend to group several failures into the same stage could
be their closeness in time or location, or being caused by
failures in the previous stage.

We now roughly estimate the number of runs J needed
to accurately obtain λ̂. We assume that the runs correspond
to independent samples, each starting from one initial failure,
and that the failures are generated by a branching process with
a Poisson offspring distribution with mean λ. Then as J tends
to infinity, the standard deviation of λ̂ is asymptotically [24,
p. 53]

σ(λ̂) ∼ σS1a
(λ, a)√
J

=
1√
J

√∑2a
j=0 λj+1 − (2a + 1)λa+1

(λ − 1)2
(11)

where σS1a(λ, a) is the standard deviation of the total number
of failures S1a produced by one initial failure M10 = 1. That
is, S1a = M10 + M11 + . . . + M1a. Note that σS1a(1, a) =√

(a + 3a2 + 2a3)/6. Figure 7 shows σS1a(λ, a). For exam-
ple, if λ = 1.3 and the number of stages a = 5, then
σS1a

(1.3, 5) = 15 and σ(λ̂) = 0.05 requires (15/0.05)2 =
90 000 runs. If instead the number of stages a = 2 then
σS1a(1.3, 2) = 3 and the same accuracy can be achieved with
(3/0.05)2 = 3600 runs. The number of runs depends greatly
on λ, the accuracy required, and the number of stages a.

To illustrate the choice of the number of stages a to avoid
saturation, suppose that the failures saturate at n = 100 and
that we can assume that λ ≤ 1.5. Then in the most rapidly
saturating case of λ = 1.5, the mean number of failures in
stage k is 1.5k. The mean total number of failures in stage 6

Fig. 7. σ(λ̂)
√

J = σS1a
(λ, a) as a function of λ for number of stages

a = 1, 2, 3, 4, 5.

is 32 and the standard deviation of the total number of failures
is σS1a(1.5, 6) = 38. Therefore to avoid saturation we can
choose the number of stages a in the computation of λ̂ in the
range 1 ≤ a ≤ 6.

V. CONCLUSIONS AND RESEARCH AGENDA

This paper discusses branching process models for cas-
cading failure and shows how assuming these models gives
a way to roughly estimate expected blackout risk and risk
of blackouts of various sizes as a function of the branching
process parameter λ. λ describes the average extent to which
failures propagate and measures the closeness to criticality.
At criticality λ = 1 and the branching process models show
a power tail in the distribution of blackout size and a sharp
rise in expected blackout size. The way in which the power
law region extends as criticality is approached is described.
Then we suggest approaches to determining the closeness
to criticality via the expected blackout size or λ from runs
of a generic cascading failure blackout model. Some rough
estimates of computational effort are made. The approaches in
this paper augment previous work relating branching models
and other abstract models of cascading failure to power
system blackout models and power system data [6], [20], [21].
Further development and testing of measures of closeness to
criticality is needed. In particular, estimating λ and assuming
a branching process model can yield the distribution of the
risk of blackouts of various sizes as well as the average risk.

We now expand our focus and address more generally the
research needed to further explore and develop the possibilities
of bulk statistical analysis of blackout risk. We consider
key research issues for two aspects. In the first aspect the
power transmission system is assumed to be fixed and the
main objective is to determine how close the system is to
a critical loading at which the expected blackout size rises
sharply and there is a substantial risk of large blackouts. In the
second aspect, the power transmission system slowly evolves
subject to the forces of rising demand and the upgrade of
the transmission system in response to the blackouts. These
dynamics of transmission system evolution can be seen as a
form of self-organization in a complex system [7], [5].
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A. Measuring proximity to criticality in a fixed network

Some research issues are:

Research access to blackout data. To develop models and
methods based on reality, it is essential for blackout data to
be collected and for researchers to have access to the data.
Although the precise data needs have not yet evolved and
will require iteration, it is clear that bulk statistical analysis
of blackouts will neglect much of the blackout detail, so that
concerns about confidentiality and homeland security can be
addressed by only releasing a suitably and substantially filtered
record of the blackout events. Discussion about which filters
succeed in resolving confidentiality and homeland security
concerns would be helpful. One specific goal is to gain
research access to the data from the August 2003 blackout
of Northeastern America that was collected for the blackout
report [38].

Blackout costs. To estimate blackout risk, blackout cost
needs to be approximated as a function of blackout size and,
while there is considerable information available for smaller
blackouts, the direct and indirect costs of large blackouts seem
to be poorly known.

Confirm criticality phenomenon. While criticality has been
observed in several power system blackout models [4], [11],
it needs to be confirmed in power system blackout models
representing different interactions and with varying levels of
detail in order to be able to conclude that it is a universal
feature of cascading failure blackouts. If no criticality or
a different sort of criticality is observed, this needs to be
understood.

Power system blackout models. The main issues are the
tradeoffs between what interactions to model and in what
detail to model them, test system size and computational
speed.

Abstract cascading failure models. These models presently
include branching process models in discrete and continuous
time and CASCADE models. These models require substantial
refinement and further comparison and validation with real
and simulated blackout data to ensure that the main features
of blackouts are represented. In particular, blackouts being
inhibited and saturating at a fraction of the system size needs
to be understood and better modeled.

Monitoring closeness to criticality. Suggested initial ap-
proaches are described in this paper and [6], [20], [21].
Much more needs to be done to establish practical statistical
methods for monitoring closeness to criticality. Processing of
failure data into stages and the appropriate scalings need to
be investigated.

The critical loading as a power system limit. The critical
loading essentially provides an additional system limit that
guides power system planning and operation with respect to
the risk of cascading failure. In contrast to an indirect way of
limiting cascading failure such as the n-1 criterion, the critical
loading directly relates to the risk of cascading failure. The
appropriate operating margin to this limit should be based
on risk computations and is not yet known. Little is known
about the properties of the critical loading as power system

conditions change. It would be very useful to be able to
identify some easily monitored quantities that are strongly
correlated to the critical loading [6], because this would open
up the possibility of monitoring the closeness to criticality
via these quantities. It would also be useful to evaluate the
performance of the n-1 criterion when used as a surrogate for
the critical loading limit.

Progression from understanding phenomena to offline
models to online monitoring. The research questions above
focus on understanding phenomena, developing and validating
models and measuring closeness to criticality in power system
models and in past blackouts. Once these questions start
to be resolved, there is a natural progression to consider
the feasibility of schemes to practically monitor closeness to
criticality of power systems online.

B. Complex systems dynamics of power systems.

The complex systems dynamics of transmission network
upgrade can explain the power tails and apparent near-
criticality in the NERC data [8]. The complex system studied
here includes the engineering and economic forces that drive
network upgrade as well as the cascading failure dynamics. As
a rough explanation, below criticality increasing load demand
and economic pressures tend to increasingly stress the system.
But when the system is above the critical loading, blackout
risk rises and the response to real or simulated blackouts is
to upgrade the system and relieve the system stress. Thus the
system will tend to vary near criticality in a complex systems
equilibrium. The system can be said to self-organize to near
criticality. A power systems model that incorporates slow load
growth and a simple form of transmission upgrade at lines
involved in cascading blackouts converges to such a complex
systems equilibrium [7]. Moreover, as might be expected in a
complex system, simple forms of blackout mitigation can have
the desired effect of decreasing small blackouts but also the
somewhat counterintuitive effect of ultimately increasing large
blackouts [5]. Other theories that can generate power laws
or similar behavior include the influence model [34], highly
optimized tolerance [35], graph-theoretic network analysis
[40] and cluster models for line outages [13].

Some research issues are:

Reframing the problem of blackouts. Instead of simply
avoiding all blackouts, the problem is to manage blackout risk
both by manipulating the probability distribution of blackout
size [5] and by finding ways to minimize blackout costs [36].
Blackout mitigation should take into account complex systems
dynamics by which the power system and society slowly
readjust themselves to any changes made.

Models for complex system dynamics. For theories such
as the influence model, highly optimized tolerance, or graph-
theoretic network analysis the challenge is to construct models
of power systems and their evolution with an explicit corre-
spondence to the abstract model and study their properties.
For the self-organizing complex systems theory, such a model
already exists and the challenge is to improve its representation
of the engineering and economic forces, and particularly the
transmission upgrade, economic investment and human factor
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aspects. Part of the challenge is understanding cascading fail-
ure and complex systems dynamics across several interacting
or coupled complex systems [31]. It is necessary to balance
the requirements for computational speed and accessibility of
data against the requirements of a detailed model. It may be
necessary to develop a hierarchy of models of varying detail to
accommodate varying emphases on speed versus model detail.

Analysis tools. Diagnostics for monitoring and studying com-
plex systems dynamics need to be developed.
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