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The Problem 
 
The power industry has relied on the same reliability concepts since 1967, including Loss of Load 
Probability, Component Based Failure Analysis (especially in nuclear power), N-1 (or N-2) Maximum 
Credible Contingency Analysis, and Generation Reserve Requirements [1] [2]. These concepts generally 
involve the use of statistical engineering models for planning purposes and deterministic single (or 
double) failure avoidance rules for operations. 
 
Recently, blackout events have been occurring in many countries and on a more frequent basis than 
traditional analysis would lead us to expect [3]. The industry needs a new methodology that explains this 
trend and helps us to better understand overall reliability. The August 14, 2003 blackout in the USA and 
other blackouts demonstrate that the reliability problem is complex and that the industry requires more 
information and more sophisticated approaches capable of dealing with the uncertainties in predictive 
modeling. Furthermore, the industry needs a metric to estimate the probability distribution function (pdf) of 
bulk power load interruptions that incorporates all conceivable contributing factors and produces 
estimates that track recently observed events. The industry also needs an approach that can be used to 
estimate the quantitative impact on reliability of hypothetical investments or expenditures not only in 
copper, iron and porcelain but also in communications, control, people, and processes. If such a reliability 
pdf could be dynamically adjusted in near real time to events and operating conditions, it would give a 
“dashboard” operational indication of the reliability of the power system at a moment in time. This 
dashboard index could also become a useful metric for tracking operational performance against goals.  
 
Multiple failures have been more likely than the traditional “maximum credible” contingency mind set has 
anticipated. Contrary to the dictums of normal theory, the first failure somehow makes successive failures 
more likely to happen. Post mortem analyses indicate that the first set of problems set the stage for 
successive difficulties [3].  
 
Failures of control and protection systems are often contributing factors – factors not traditionally 
considered in reliability analyses. Human error, including inaction or inappropriate action by the system 
operator and the failure of market participants or external suppliers to behave as needed, is a new, potent 
contributing factor.  
 
These non-traditional reliability issues are not amenable to modeling in a traditional, component-based 
engineering model. The power industry needs to look to other disciplines for approaches to assessing 
reliability today. 
 
Requirements for a New Approach 
 
Instead of more detailed, complex engineering models, our industry needs a simpler modeling approach 
that is capable of being used operationally, while articulating how reliability is grossly affected by several 
major interdependent influences. What is required is a more sophisticated approach that reflects the 
many non-traditional compounding factors and one that will react dynamically to changing operational 
conditions. 
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Another requirement for measuring reliability is to acknowledge that not all failure modes have been 
identified or can even be modeled, and that not all statistics around event occurrences are known or 
observed. This new methodology could be adjusted and calibrated to align its results with real world 
observations, similar to the way in which parameters of volatility and kertosis in financial risk metrics are 
estimated based on observed market data. This preferred approach would provide information that is 
useful to operations in real time, moving from “Safe/Not Safe” to “How Safe” as the question to answer. It 
would also allow investments in Information Technology, communications and control, and people and 
procedures to be weighed against investments in copper and iron for new facilities or equipment. Most 
importantly, it would provide a mechanism for weighing reliability measures that impact markets against 
the market costs imposed. 
 
The “old” and a “new” way of looking at the problem, together with some relevant technologies and 
methodologies that are applicable to aspects of the problem are summarized in Exhibit 1. This paper will 
explore how some of these methodologies can be applied to transmission reliability and some of the 
lessons that they can provide even with simple applications. 
 

Exhibit 1: “Old” vs. “New” Approach to Viewing a Problem 
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Reliability @ Risk (R@R) a New Paradigm 
 
All sorts of things are neither modeled in typical reliability analyses nor capable of being modeled 
accurately in enough detail to affect transmission reliability. However, without accounting for them, results 
are too optimistic. 
 
The financial world deals with similar issues to the power industry, specifically that the real world is too 
complex and events are often unknown to model with a high degree of fidelity. The answer is to use 
simpler models and calibrate them to observed data at appropriate intervals. 
 
The financial world arrives at Value @ Risk (V@R) [4] as a measure of risk, defined as a function of a 
given set of obligations and the uncertainties that exist in the world. The authors offer an analogy - 
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Reliability @ Risk (R@R) - to use as a measure of risk over future time that can be updated as conditions 
change. Once a V@R or R@R is calculated, it can be used in decision making and in comparing 
alternatives. 
 
The R@R model is a new way of looking at and measuring reliability that incorporates concepts from the 
financial services industry and the power industry. 
 
The financial world is familiar with the concept of operational risk. Financial institutions use this concept to 
quantify risks due to failures of operational systems, people, or other factors not dealt with in market 
price, credit, and similar financial issues. Operational risk deals with the problem that major operational 
failures are rare and no one institution will have a set of observed incidents to use in developing 
predictive statistics. 
 
In the power failure analysis world, the successive evolution of a system through different states due to 
random occurrences of component failures and models of recovery times (MTTR) is the normal form of 
analysis. A system is more or less exposed to unavailability due to failures based on how many failures 
have occurred and what the typical recovery times have been in the repair process. 
 
R@R constructs a simple model of a reliability “state” of the power system based on easily understood 
and accepted concepts stemming from the traditional “N-1” contingency model. The power system is 
modeled as making transitions from one reliability state to another following a Markov Process. The 
transition rates in the Markov Processes used in the R@R model are dynamic based on real time 
conditions of the power system, associated control systems, ongoing maintenance activities, and other 
factors as they occur. 
 
The R@R model provides for: 
 

• A calculation of probability that the system will move to an unacceptable failure state within any 
particular operational time horizon, as well as a simple characterization of the current state that is 
operationally useful. This failure probability becomes a useful operational index in itself. 

 
• Simplicity in providing for failure modes reflecting operator failures to correct reliability 

vulnerabilities or other non-transmission failure to perform events.  
 

• A reliability state framework that presents state probabilities that are observable and/or inferable 
from observable phenomena, and that are modeled or determined experimentally.  

 
o These state probabilities (for normal, insecure, and emergency conditions) are useful 

indicators that must be considered when the overall failure rate does not align with reality.  
 

o The framework is flexible and adaptable to different definitions or number of states. For 
instance, it can be adopted to the NERC reliability definitions and operating state 
definitions as used in the different NERC regions 

 
o State transition probabilities adjusted in real time as events and conditions change 

 
How the R@R Model Works: 
 
Operational Risk 
 
Many enterprises and organizations, are subject to business risks that arise from human error, malignant 
human activity, IT system failure, and other “non-market” or “non engineering” risk. The more severe risks 
(in terms of dollar impacts) normally are too infrequent for any one enterprise to estimate them based on 
internally observed statistics.  
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The Basel Accords in the financial services industry provide that institutions of similar size and scope 
should examine the failures encountered globally by all entities in the group over a multi-year period and 
assess gross statistics of likely exposure using this broader set of data. Rules are then established on 
how these risks should be modeled and the quantity of reserves required against those risks. [5] R@R 
proposes a similar approach to modeling power reliability operational risk.  
 
Failure Analysis and Markov Model 
 
Failure analysis models usually are developed from component level system diagrams. A Markov model 
of system states and state transitions is constructed behind these failure analysis models and the 
stochastic behavior of the system can be simulated and analyzed. 
 
The R@R approach does not address the component level, as this would necessitate very large models 
with fine degrees of detail. This level of detail is good for an engineering design but does not meet the 
objective of having a simple model we can use to develop operational views and metrics. 
 
The R@R Reliability State Model 
 
In 1967 DyLiacco proposed what has become a standard terminology and model for the operational 
security state of the system as shown in Exhibit 2: Secure, Insecure, Failed, and Restorative.  
 

Exhibit 2: DyLiacco [14] Security State of the System Terminology 
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Exhibit 3: Reliability States in a Market Environment 
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As shown in Exhibit 3, the R@R Reliability State Model expands these terms to define six states of 
reliability that are formalized in terms of specific definition with respect to operating conditions: 

 
• State I A “Secure” - The system is operating with all normal* operating limits and no N-1 

Contingency analysis reveals a normal limit to be exceeded. 
 
• State I B “Secure” - The system is operating within all 

normal operating limits but one or more contingencies will 
cause one or more normal operating limits to be 
exceeded. Also note that State IB can occur if the system 
is both operating outside Normal Limits and creates a 
contingency event that is outside of Normal Limits. No 
emergency* limits are exceeded. 

 
• State II A “Insecure” - All normal limits are observed but 

one or more contingencies will cause one or more 
emergency limits to be exceeded. 

 
• State II B “Insecure” - One or more normal limits are 

exceeded and one or more contingencies will cause one 
or more emergency limits to be exceeded. 

 
• State III Emergency” - One or more emergency limits are

action is required (disconnection of load, generation, or inter
 

• *State IV “Failed” - One or more emergency limits are
occurred (meaning involuntary disconnection of load/ genera
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“Normal” limit is the threshold 
under which  equipment or system 
parameters can be operated 
indefinitely.  
 
“Emergency” limit is the 
threshold under which  equipment 
or system parameters can be 
operated outside the normal limit  
for a defined period of time but  
must eventually return to the 
normal limit in that timeframe or 
create a failure to operate. 
 exceeded and immediate dramatic 
connection). 

 exceeded and system failure has 
tion/ interconnection). 
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While different control areas, utilities, and reliability regions have different terminologies, it is feasible to 
adapt all variations to some version of this model.  
 
Note that the “failed” states do not include a quantitative assessment of the severity of a failure - that is 
how much load, generation, or interconnection is affected. The R@R model can be extended to 
incorporate a quantitative measure as discussed later in this paper. At this point, the failed state has not 
been quantified other than to note that there is a significant unplanned loss of load at the bulk power or 
transmission level. Quantifying the extent of a failure in the R@R model is discussed below. 
 
The six states and the transition probability (modeled as a Markov Process model) [6] are shown in Exhibit 
3. Some transitions are not allowed because they are inconsistent with the model, for instance from 
Secure IA or IB directly to Emergency III or Failed IV.  
 
Below, some of these paths are added as ways of allowing for “N-2” events that are modeled as 
successive events happening in rapid-fire order. Transitions between states are allowed in R@R that will 
either decrease or increase reliability. Successful operational action or fortuitous changes in condition 
over time, for instance, will cause a state transition from a less reliable state to a more reliable state. 
Assuming a set of numeric state transition probabilities, the probability of being in state IIA or IIB within 
any future time window can be computed as a function of factors affecting the probability of being in the 
current state. 
 
One or more transitions from the “Failed”, “Emergency”, or “Insecure” states back to “Secure” states must 
exist. It is mathematically critical to have this restoration transition so that the Markov model is 
”irreducible” - that is, it is possible to communicate from any state to any other via sufficient transitions. 
This enables us to compute the steady state or “stationary” state probabilities in a straightforward if 
tedious fashion via Monte Carlo simulation. If the system is not irreducible, multiple stationary probability 
distributions are possible. (In this case with infinite time sequences, there is zero probability of emerging 
from the failed state.) 
 
In Exhibit 4 we have assumed some logical transition probabilities: the “downhill” transitions of decreasing 
reliability due to contingency and loading events are put at 0.5 percent, corresponding to a contingent 
event occurring a little less than once a week. Further, the “restorative” transitions due to operational 
action are designated to be 0.95, meaning that 95 percent of the time operations will correct the problem 
within one hour. Anecdotally, these are conservative values in the experience of at least one large North 
American RTO (implying that contingent events happen once every two weeks and/or operator success 
rates are higher than 95 percent). 
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Exhibit 4: The Markov Process Model 
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These transition probabilities can then be used to simulate/analyze the system and determine the overall 
probabilities of a reliability failure within 10 years. These statistics are shown in Exhibit 5. The net result is 
that the system shows a failure frequency of 1.8 e-07, i.e., a reliability failure once in 1600 years. 
 

Exhibit 5: Example of Transition from “Failed” State back to “Secure” States with Final Failure 
Probability 

Secure IA Secure IB

Insecure
II B

Insecure
II A

III
Emergency

IV Failed

Failure Frequency = 1.8 e-07

Secure IA Secure IB

Insecure
II B

Insecure
II A

III
Emergency

IV Failed

Failure Frequency = 1.8 e-07

 
 
However, even the most reliable grid operations have had localized outages more than  once in 10 years. 
The simple model at this point is off by 2 or 3 orders of magnitude given “typical” event rates [3]. Additional 
reliability factors must bring the simple R@R model closer to observed behavior. The difficulty is to match 
observed statistics not to two decimal places but to an order of magnitude.  
 
Factors Affecting State Transition Probabilities  
 
Some contributing factors have the effect of increasing the probability of the “first” N-1 transmission or 
generation contingency. Familiar examples are weather and load dependencies – that is, high 
temperatures or severe storms that change probabilities of transitioning from state to state. Less familiar 
but arguably more important factors include activities such as maintenance activity. For example, the 
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presence of maintenance crews in an energized substation automatically increases the probability of an 
“event.” 
 
Some contributing factors  will increase the probability of the “next” N-1 or even N-2 event. Occurrence of 
the first N-1 event should a priori increase the probability of the second event. Ann integrated cumulative 
loading effect increases the probability of a failure (i.e., transformer temperature and line sag) even if 
normal limits are not exceeded, as well as a rapid cumulative effect of limits being exceeded. 
 
The effect of total load and load versus forecast can be included. Loads much greater than forecast 
inherently imply riskier conditions as conditions deviate from plan.  
 
Some factors decrease the probability of successful “return” transitions. If a primary Energy Management 
Systems (EMS) is already down, if data communications have failed, or if an inexperienced operations 
crew is on duty, the probability that a successful recovery may not be achieved is increased. A failed 
primary EMS increases the possibility that operations could be without system visibility upon a back-up 
failure. This increases the probability that limit excursions would go unnoticed. Just as with transmission 
maintenance in a substation, software maintenance activity in an EMS or telecommunications 
maintenance activity temporarily increases the probability of a failure. 
 
While truly unplanned transmission outages appear to occur at a rate of once every week or two, a delay 
in the completion of planned outage activity can also upset operating plans. Statistics on these delays 
from planned outage recovery may be different from the unplanned events as planned outages occur 
almost on a daily basis. 
 
Additional factors that might be considered include whether restorative actions require the cooperation of 
market participants, the probabilities of successful unit start ups based on unit types, temperature, as well 
as similar types of operational concerns. As a factor in developing contingency probabilities the likelihood 
of protection system failures would need to be considered, as discussed further below.  
 
The overall impact of Standard Market Design (SMD) and Locational Marginal Price (LMP) based system 
operations may not be fully understood. The major advantage of SMD is articulated to be that reliability 
and market economics are handled in an integrated way. This is certainly correct, in so far as the analysis 
goes. [7]  
 
However, an LMP-based system dispatch will always have some transmission paths loaded up to 
“normal” limits whenever congestion is present. On the one hand, “regional” oversight of this process by 
an ISO leads to an improved security dispatch process compared to a number of control areas performing 
localized security dispatch. On the other hand, in a pre-deregulation world many control areas would not 
normally engage in economy transactions right up to security limits. In fact, systems are often operated 
with transmission “slack” due to the lack of rigorous security dispatch programs. 
 
On balance, the system is probably operated closer to reliability boundaries under an LMP paradigm. This 
leads to the observation that any errors in the LMP process due to seams issues, data errors, software 
errors, failure of participants to follow instructions all can add to the probability of a downhill state 
transition. 
 
A version of the R@R model that produces failure probabilities more in line with the real world is shown in 
Exhibit 6. Here, additional transition paths representing failures in the security dispatch/contingency 
analysis process and increased likelihood of operational errors due to market participant failures, seams 
coordination issues, etc., have been factored in. The model produces a failure rate of 8.3 e-05 - or 
something between once in one and two years. This is probably realistic on a continental level but 
pessimistic on an ISO level. Fine-tuning the transition probabilities will result in rates representative of 
particular grid operations. 
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Exhibit 6: R@R Model Producing Failure Probabilities Closer to Real World Occurrences 
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A representative list of factors affecting transition probabilities and their order of magnitude impact is 
shown in Exhibit 7. 

Exhibit 7: Factors Affecting Transition Probabilities 

RT Limit Violations 
N-1 Limit Violations 
Weather 
Scheduled Outages 
Unscheduled Outages 
Maintenance 
Equipment Failures 
EMS Problems 
Labor Problems 
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Engineers may complain that this approach is imprecise and inaccurate. However, existing 
methodologies are already arguably shown to ignore the biggest causes of major outages. The purpose 
of R@R is NOT to precisely compute an alternative figure of merit to LOLP, for instance, that can be used 
in the same way that a detailed stochastic model is used to compute the value of a Congestion Permit 
Hedge1. Rather, R@R’s purpose is to determine a gross measure of reliability that is sensitive to 
changing conditions and which reflects many factors not considered in engineering models. 
 
If the only observed data available for use to “fit” the model is the failure rate, then there are too many 
degrees of freedom (the 17 transition probabilities) in even this simple model. In order to fit the model with 
intellectual integrity we need to 
 

• Develop observations of the stationary probabilities of all the states in the model – an exercise 
which could readily be performed but for which published data is not available today and which in 
any case are not stationary due to all the operational factors identified above, and 

• Reduce the degrees of freedom by parameterizing some of the transition probabilities – fixing 
their relationships to each other, for instance. 

• Formally recognize that the transition probabilities are themselves unknown and time varying 
 
Determining State Transition Probabilities 
 
Rough estimates for the transition probabilities can be developed via a number of paths: 
 

• Using statistics that are already collected in transmission operations and planning, 
including: 

 
o Probabilities for generator, line and transformer, and other outages 
o Probabilities for successful starts of generators (Combustion Turbines especially) 
o Statistics for various levels of operating reserves 
o MTTF and MTTR statistics for EMS systems and telecommunications 

 
These kinds of statistics can be used to build up transition probability contributions in aggregate 
from component-based analyses. 

 
• Inferring statistics from other observed data that may be available. Statistics not directly 

observed today but where data is available include the probabilities of line and transformer 
outages based on existing severe weather conditions. In many systems, sufficient historical data 
also is kept to allow the derivation of such statistics. Other inferred statistics include probabilities 
of transmission outages given the local presence of maintenance activity, and probabilities of 
transformer failures based on short-term historical loading and ambient temperature conditions. 

 
• Conducting experiments, especially with regard to operator effectiveness. A number of 

statistics can be experimentally observed. Many control areas – statistically less than 50 percent 
today but likely more in the future under new NERC guidelines - conduct operator simulator 
training. Statistics can be collected on how frequently operators fail to take appropriate corrective 
action against simulated emergency conditions and these can be used in modeling the “return” 
transitions.  

 
• Developing models that provide some insight into how statistics might evolve. There are 

also statistics that must be modeled without significant observations to support them. These 
include failures of market participants to follow instructed actions, and failure of protection 
systems due to incorrect settings versus component failure. Here it may be appropriate to 
consider that if secondary protection has been observed to act correctly within some time span, 
for example one to two years, it can be assumed that it will function correctly. If it has not been 

 
1 Congestion permits compensate the holder financially for day-ahead congestion. 
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observed to work then it is suspect. This has the effect of increasing particular contingency 
probabilities. 

 
Even with the most diligent efforts to pursue all the possible ways of quantifying transition probabilities, 
the non-stationary nature of the model and the extent to which it is an extreme reduction of a very large, 
complex physical process will guarantee that the probabilities assigned to the various transitions will 
always have some uncertainty. Other engineering disciplines (robotics, telecommunications, web 
architectures and loading analysis, for example) deal with similarly complex and hard to observe 
phenomena and have had success with the application of Fuzzy Markov Processes.  
 
Fuzzy Markov Processes 
 
The Fuzzy Markov Process [8] [9] [10] explicitly contemplates that the state transition processes are 
themselves unknown members of fuzzy sets – which seems to perfectly fit the problem defined above. 
Under fuzzy probabilities, we “sort of” know the transition probabilities within some rough boundaries that 
are not sharp. The mathematics allows us to transform the fuzzy transition probabilities into fuzzy state 
probabilities, that is, to incorporate the uncertainty in the transition probabilities themselves into the pdf of 
the states. An exposition of the Fuzzy Markov Process is beyond the scope and space of this paper but 
three observations about the use of fuzzy logic relative to this problem can be made. First, working the 
examples is more difficult because readily available failure analysis software usually does not incorporate 
the methodology. Second, the fuzzy process is mathematically robust and not sensitive to small errors in 
the transition probabilities when there are order of magnitude differences among them as is the case in 
this problem and where classical Markov chains are sensitive to errors. Third and most important, the 
gross conclusions will be the same but incorporating a fuzziness to the state probabilities reflecting the 
uncertainties in the transition probabilities. 
 
How Insecure Are We? 
 
The R@R model is deliberately kept very simple for two reasons: 
 

1. It is far easier to understand what it tells us about gross system reliability as influenced by all the 
operational and non-engineering factors we want to consider, and  

2. It will be much easier to fit the model to the thin set of observations that we really have.  
 
Much more detailed system models could be incorporated while still having tractable Markov process 
transition matrices to manipulate. In fact component failure analysis does precisely this in other 
disciplines. However, it is preferable that this level of detail and dimensionality be kept behind the scenes, 
as it were, being subsumed in the gross transition probabilities visible in the simple model. Better to be 
fuzzy about whether we are really insecure than to have angst over how insecure we are. 
 
However, this philosophy is still unsatisfying in one important sense. Not all reliability failures are equal, 
and it would be highly desirable to be able to quantify the expected magnitude of a reliability failure. In 
other words, what is the pdf of MW of service lost due to a reliability failure? If we can generate this pdf 
then we have a true R@R measure analogous to V@R in the financial world. In order to do this we have 
to return to the engineering model of transmission contingency analysis. 
 
Role of Probabilistic Contingency Analysis in R@R 
 
Work has been performed over the years on probabilistic contingency analysis. However, emphasis 
waned, as with all reliability research, while intellectual capacity was devoted to “market” and deregulation 
issues.  
 
The concept is simple: assign a probability of occurrence within the time window of interest to each 
independent single contingency and then look at the aggregate results of all contingencies. If we use 
contingency analysis to produce “safe or not safe” answers only, then we can get an aggregate 
probability of “safe” or “not safe” at the moment that the contingency analysis is performed.  
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This can be put in the context of the R@R model above and could be used to drive state transition 
probabilities. However, all the arguments as to why equipment failure statistics alone do not suffice to 
explain observed reliability failures still apply. If we accept that the calibration of the reliability model state 
transition probabilities creates, in effect, a scaling factor to the results of contingency analysis particular to 
each state then the probabilistic analysis can be used as a factor in driving state transition probabilities at 
a moment in time. 
 
In the end the Markov model above always has contingency and other physical (load change, for 
instance) events on the transmission/generation system as the causes of state transitions. The various 
non-contingency factors affecting the transition probabilities are in the end affecting contingency and 
return probabilities. So we can use the lessons of the Markov model to determine the probability 
weightings or scalings to be used in a probabilistic contingency analysis. 
 
An obvious advantage of this approach is that most large grid operators perform contingency analyses 
today. The computation of a probabilistic security index does not complicate the simulation/solution 
process at all and has minimal effect on the overall complexity and computational cost of the contingency 
solution. 
 
Extending R@R to a Metric of Quantitative Failure 
 
Conceptually, the model has been developed to allow an operational computation of a probability of 
failure – useful in itself as an index. However, it is not likely to be useful in decision making without some 
quantitative measure of “how insecure” the system is – how can we quantify the magnitude of a probable 
failure.  
 
This requires a quantitative assessment of the impact, in terms of potential load lost, of each potential 
chain of contingencies that lead to an emergency/failure condition. We have to say “potentially” lost as 
contingency analysis - either linear DC load flow or AC load flow based - will never actually get to which 
load is lost (buses/stations deenergized). Only dynamic or transient models claim to actually identify 
protective equipment actions and subsequent switching to deenergize parts of the grid. Arguably, these 
methods can be used, with great effort, to analyze what did happen after the fact once sequence of 
events data is available. However, they are less likely to be able to predict precisely “what will happen” for 
all the reasons discussed above of non-engineering risk.  
 
If each contingency has an a priori probability of occurrence and an analyzed security index impact then 
we can develop a pdf of the post contingency security index from all the contingencies as approximated 
by the resulting index values bucketed into the quantitative failure buckets. In other words, we can 
compute an R@R that provides a pdf of “load at risk” for a specified future time period, very analogous to 
a V@R calculation (see Exhibit 8).  
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Exhibit 8: R@R 
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Mapping the security index to a magnitude of reliability failure is the most difficult aspect of the problem. 
The classic security index is a weighted sum of squares of post contingency values normalized to limits, 
and this does not directly map to MW interrupted. However, there are several possible ways to attack this 
problem. 
 
We postulate that failures, which interrupt load, are a result of an imbalance among load, generation, and 
imports over a region of a network. Each region affected has to be dynamically determined as a result of 
post contingency loads computed in each case. Then the loads at risk for each case can be weighted by 
the contingency probabilities and summed to get a load at risk figure. 
 
We can use DC load flow mathematics to compute distribution factors for post contingency flows as a 
result of line/generator outages and extend this to a linearized model for second and third contingency 
analysis over a wide number of cases. The industry is both familiar and comfortable with this 
methodology. For each final contingency state that causes overloads we can identify the cut set of 
branches determining a region and identify the magnitude of load at risk. [11] [12] 
 
It is also possible to formulate an index of load at risk based on the post contingency voltages from an AC 
contingency analysis. This avoids the need for cut set analysis but requires AC solutions, which do not 
allow as straightforward a linearization. 
 
R@R in Operations 
 
The model can be used in operations to determine an index useful to compute and track over time. Like a 
stock market index, it will be useful primarily as a “change indicator” and can evolve to something used to 
drive dashboard style presentations of conditions. 
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R@R in Planning 
 
The Markov model can be used to create an “expected” R@R value over time, including risk as a function 
of load, seasons, and scheduled maintenance. 
 
If control areas determine an acceptable level of R@R then the impact of planned construction and the 
like (or maintenance for that matter) on R@R can become a metric in evaluating competing plans. Most 
significantly, this can be used to compare dissimilar types of initiatives aimed at improving reliability. For 
instance, the impact of an extensive operations coordination and training program within a region could 
be compared to specific transmission investment or load relief programs. 
 
Summary 
 
A process chart for the development of R@R is shown in Exhibit 9. We collect available statistics on 
reliability failures, infer additional statistics; experiment or model other statistics, and prepare a model that 
drives the transition probabilities in the state model. 
 

Exhibit 9: Process Chart for Development of R@R 
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The state model is calibrated to achieve a probability of “failure” that is within range of observed history 
for the region/grid of interest and for a group of similar grids. This results in a set of contingency 
probabilities that are generally higher than we might otherwise anticipate to account for the various non-
engineering failure factors. 
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The probabilistic contingency analyses (operationally) are performed to determine the amount of load at 
risk by each chain of contingencies that lead to failure. This yields a pdf of load at risk given a failure; the 
state model leads the pdf of a failure; the two together provide an R@R pdf as desired. 
 
In the financial world, the concept of portfolio optimization is well known – how to optimize the risk/reward 
trade-offs inherent in investment decisions. The energy industry employs portfolio optimization to 
determine how to best hedge retail delivery portfolios or how to apportion investments in supply contracts 
and generation assets. 
 
It has been difficult if not impossible to apply these methodologies to transmission planning for two 
reasons. First, there has not been a way to relate reliability to economics; that is, to make improved 
reliability fungible. So instead, the transmission planning analysis is driven by “requirements” or by the 
economics of congestion costs. Second, true measures of reliability have been hard to come by.  
 
Furthermore, the “requirements” based analysis only addresses grid hardware investments; it does not 
allow the consideration of investments in IT, communications, and people in the process. Budget 
allocations between the two kinds of investment are at best made at a gut level, or more realistically, are 
left to the politics of grid charges, department budgeting, and the like. 
 
The concept of an R@R measure will not solve the fungibility problem – the question of how much should 
the consumers pay for reliability (for a similar VAR based approach to this problem see [13]) - nor will it 
solve the problems of how to fund transmission investment. 
 
However, it does provide a framework for balancing investments/expenses in non-transmission 
investments with grid investments. A very good set of questions can be posed as follows: 
 

• What is the improvement in reliability obtained from an increase in grid charge driven by 
investments in IT and people?  

• How will we know after the fact that we have obtained that proposed increase?  
• How do we balance that investment/expense with money spent on copper, steel, porcelain, and 

maintenance? 
 
An R@R methodology as laid out in this paper will go a long way to establishing a quantitative framework 
for answering these questions. 
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