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Abstract—A cascading failure can be thought of as an 
alternating sequence of equipment-outages and threshold-
crossings. This paper studies the probability of such 
failures in two simple models of electric power networks. 
The experimental results display phase transitions--large 
and abrupt changes in the probability of a cascading 
failure with only small changes in network stress. We 
conjecture that such phase transitions also occur in actual 
power networks. If this conjecture is true, on-line 
techniques for assessing the risk of cascading failures 
could be based on searching the neighborhood of the 
current operating point for the nearest phase transition.  

 

I.  INTRODUCTION 
NERC data indicate that the cause of most cascading failures 
is a multiple contingency—a random disturbance, such as a 
short circuit, accompanied by a number of pre-existing but 
hidden failures in the protection system. One might think that 
multiple contingencies are extremely rare. But NERC data 
show they happen often enough to give the distribution of 
cascading failures a fat tail (in contrast to an exponentially 
falling tail, as in a normal distribution). In other words, the 
probabilities of large cascading failures are substantial; even 
failures big enough to blackout an entire network, such as the 
Eastern Interconnect, could happen.  
    
This paper deals with a) the probability that cascading failures 
will develop from multiple contingencies, and b) the variation 
of this probability with the stress of the network. Experiments 
are conducted on two types of networks—a regular, square, 
50X50 grid, and a simplified model of a 3357-node power 
network. Both types demonstrate pronounced phase 
transitions.  In what follows, the experiments are described, 
and some conclusions are drawn  
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from their results. 

II.  MODELS 
The outage of a component, such as a transmission line or 
generator, is a discrete event that suddenly changes the 
network’s configuration. The dynamic response of the 
network to such changes can over-stress some of its remaining 
components. Thousands of relays spread over the network, 
seek to keep the over-stresses from lasting long enough to 
cause harm. Each relay measures a few state variables (for 
example, vk and ik, the voltage and current at node-k), and 
checks a built-in threshold (for example, |vk/ik| > a, where a is 
a pre-set constant). When the threshold is crossed, the relay 
instructs one or more breakers to operate, taking the 
components in the relay’s care out of danger (and out of 
service). Symbolically: 

 T0 = f (E0, X0, Z0) (1) 

where E0 is a set of simultaneous outages at time t0, X0 is the 
state of the network at t0, Z0 is the configuration of the 
network at t0, and f calculates the network’s dynamic response 
to outages as well as predicting T0,  the set of threshold-
crossings caused by this response. 
  
Unless T0 is empty, it will produce E1, a set of further outages. 
If all the relays and breakers work correctly, E1 will be just as 
the network’s designers intended. But relays and breakers can 
fail, and often, these failures go undetected till the relays and 
breakers are required to act. Therefore: 

 E1 = g ( T0, H) (2) 

where H is the set of hidden failures in the network and g 
represents the mechanism by which hidden failures and 
threshold-crossings interact. 
  
The value of H is uncertain, and is perhaps the largest source 
of uncertainty in attempts to predict E1. Other sources are in 
the values of the thresholds and the models of network-
dynamics. 
 
Just as E0 leads to T0 and E1, so to, E1 can lead to still further 
crossings and outages in a long cascade. In other words, C(S), 
a cascading failure of length L and size |S|, can be thought of 
as an alternating sequence of equipment-outages and 
threshold-crossings:  
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 C(S) = {E0, T0, E1, T1, …, EL, TL} (3) 

where:  
E0 is a set of one or more outages that starts the cascade; E0 is 

usually caused by a multiple-contingency. 
Tn is the n-th set of threshold-crossings (constraint violations) 

in the sequence  
En is the n-th set of equipment-outages in the sequence  
TL is the only empty set in the sequence, and signals its end 
S = E0 ∨ E1 ∨ …∨ EL is the set of all the components lost 

during the cascade. 
 
There are two principal difficulties in accurately predicting 
C(S), given E0: 
Complexity: The relays in power networks set thresholds on 
several types of variables, including impedance, voltage, 
current, and frequency. The more detailed models for 
calculating the dynamics of these variables require large 
computational and data-gathering efforts. 
Uncertainty: The responses of power networks to sudden 
changes are profoundly uncertain. Unknown load dynamics, 
imprecise parameter values, and hidden failures are among the 
reasons.  
 
The procedures in the literature for simulating cascading 
failures invariably use DC load flows—the replacement of 
dynamic responses by a steady state approximation—to 
reduce network complexity [9,10,11].  In what follows, we 
will use DC load flows for the same reason, and probabilities 
to deal with the uncertainties.   

 

III.  PHASE TRANSITIONS 
Consider the probability, P(y), of a cascading failure, where: 

 P(y) = Probability [ C (|S| > y) |  E0 ∧ H  ∧ x ] (5) 

In words, P(y) is the probability that a random set of outages, 
E0, will produce a cascading failure of size y or greater, given 
H and x, where H is a set of hidden failures and x is a measure 
of network-stress, such as average line-loading. 
 
For the purposes of this work, a phase transition occurs when 
a small change in the stress on the network produces a large 
and abrupt change in P(y). 
 
Three experiments for estimating P(y) with simplified network 
models are described below.  
 
Ω1: The network in this experiment is a regular, square, 
50X50 grid whose branches are equal resistors  (Figure 1). 
Generators and loads are distributed over many of the 2500 
nodes. The generators and loads vary randomly in rating and 
location. The net generation is adjusted to be roughly the same 
as the net load. The difference is made-up by a slack generator 
at one corner of the grid. The power output of the j-th 
generator is set to xG,j, and the power consumed by the j-th 

load is set to xH,j, where the parameter, x, serves as a measure 
of the stress on the network, G,j is the rating of the j-th 
generator, and H,j is the rating of the j-th load. The same 
current-threshold is assigned to all the branches. Hidden 
failures are neglected. Each experiment is begun by choosing 
a value for x and randomly removing from 1 to 4 branches. 
The currents through the remaining branches are calculated 
using a DC-load-flow. If any current exceeds its threshold, the 
branch is removed. Calculations are continued till no further 
thresholds are exceeded. 

 

 
Figure 1: A 50X50 grid with equal resistors, randomly 
placed generators (G’s), and randomly placed loads 
(arrows) 

Ω2: The network for this experiment is obtained by removing 
4 branches from the network of the previous experiment. 
Otherwise, this experiment is the same as Ω1. 
 
Ω3: The network for this experiment is based on an actual 
power system with 3357 nodes (Figure 2). Branch-impedances 
are those of the transmission lines in the system, as are 
generator and load ratings. The branch-thresholds are taken to 
be the ratings of the lines. Otherwise this experiment is the 
same as Ω1. 

 
Figure 2: A 3357-node network. The darker arcs represent 
the lines lost in one of many cascading failures that were 
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studied. 
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Figure 3: P(50), the probability of a cascading failure o

Ty ical results from many repetitions of  Ω1, Ω2 and Ω3 are 

f 
size 50 or greater, plotted against x, the base load 
multiplier, for the network of experiment Ω1, and for the 
weakened network of experiment  Ω2.  As expected, the 
weakened network has an earlier phase transition.     

 
p

shown in Figure 3 and Figure 4.  
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Figure 4: P(20), the conditional probability of cascading
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