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Abstract-- This paper focuses on the future cash revenue flows 
required for an expected stock profile.  It is these future cash 
flow requirements that determine the bidding strategy 
implemented by a Generation Company, GENCO. Based on 
forecasted information of competitors’ product consumptions, 
forecasted demand, forecasted fuel prices, and expected 
transmission capabilities, each GENCO makes output decisions. 
Two cases of study are presented.   
 
 

Index Terms—Real Options Analysis, Net Present Value. 

I.  INTRODUCTION  

HE objective of the expansion decision process is to 
maximize the profit in future periods commensurate with 

the risk and return expected by each company within an 
industry window. Each generation company, GENCO, has a 
given production cost, market niche and competitive 
advantage as a portfolio to maximize its profit in future 
periods. As it is the GENCOs’ production that drives the risk 
and return profile, each competitive player needs to know the 
other competitor’s strategic decisions to set bidding profiles 
and thus, maximize profit. Each GENCO potentially uses 
different techniques to forecast the competitor’s decisions 
(product mix) when trying to determine its own production 
mix. 

The input consists of forecasts of competitor’s products 
based on historical consumption, the forecasted demand, the 
forecasted prices of each fuel type, and the expected 
transmission capabilities. While not all information has an 
impact in each future period, some, such as transmission 
capability, have a dramatic impact for a short period with 
profound price movements. 

The dynamic simulation focuses on the interactions 
between competitors and the resulting option value of the 
generation asset. Each GENCO in the market starts with an 
initial state based on the type of asset owned, the capital 
requirements, and the operational costs. Each GENCO then 
finds output decisions based on expectations of the major 
factors as listed previously. Each GENCO adjustments its 
bidding decisions accordingly. There may be or may not be 
equilibrium after interactions occur.  The uncertainties of 
these factors are modeled as real options to properly value the 
assets into the future periods.  
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Real Option Analysis, ROA, has been use for valuating 
generation assets in a market environment. First models 
neglected operational unit’s constraints, such as ramp 
up/down and maximum time on/off, becoming a pure financial 
modeling. Neglecting operational constraints may have a 
significant impact on value the generation assets [1]. When 
these constraints are taken into consideration, the valuation 
problem is path-dependent. Hence, the decision to turn on or 
off the generating unit not only depends of fuel and electricity 
prices but also on unit’s status. Several methodologies have 
been proposed for handling the technical unit’s constraints. 
Tseng et al. [2] apply Monte Carlo simulation in the option 
pricing. Doug Gardner and Yiping Zhuang [1] use stochastic 
dynamic programming instead. These, as well as other 
reported papers make emphasis in modeling the electricity 
price and fuel prices [3][4]. 

Considering operational characteristics seems similar to the 
traditional unit commitment, which finds the optimal 
scheduling strategy. However, what ROA does, is to 
determine the optimal bidding strategy rather than the optimal 
schedule. Under specific conditions, these two objectives can 
be equivalent. 

With the unbundling of the electric power industry, the 
generation unit has become a multi-product device. 
Generation owners may have additional means of generating 
revenues. Rajaraman et al. in [5] describes the multi-period 
optimal bidding strategy for a generator under exogenous 
uncertain energy and reserve prices. Finding the optimal 
market-responsive generator commitment and dispatch policy 
in response to exogenous uncertain prices for energy and 
reserves is analogous to exercising a sequence of financial 
options [6]. 

The optimal bidding is deficient if additional factors are 
neglected, for example transmission congestion and 
competitor’s behavior. Rajaraman et al. in [5] treats 
transmission congestions by modeling locational prices that 
are consistent with the structure of the transmission 
congestion and the transmission network. Shi-jie et al. in [7] 
and [8] also use locational prices for valuating transmission 
assets. They refer to price difference between two points as 
locational spreads.  

This paper focuses on the future cash revenue flows 
required for an expected stock profile [9] (as determined by 
Capital Assets Pricing Model, CAPM, Arbitrage Pricing 
Theory, APT, etc.). It is these future cash flow requirements 
that determine the bidding strategy implemented by a 
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GENCO. For simplicity’s sake, the future cash flows are 
dependent on a single commodity, electric energy, although a 
generating unit is a multi-product device. The remainder of 
the paper is organized as follows. The next section presents 
the CAPM. Next, ROA in the electric power industry is 
introduced. A linear programming mathematical model is then 
presented. Numerical example follows. The final section 
concludes the paper. 

 

II.  CAPITAL ASSET PRICING METHOD (CAPM) 
CAPM is an important tool used to analyze the relationship 

between risk and rate of return [9][10]. An average-risk stock 
is defined as one that tends to move up and down in step with 
the general market as measured by some index such as the 
Dow Jones Industrials, the S&P 500, or the New York Stock 
Exchange Index [11]. 

If a stock is in equilibrium, then its required rate of 
return, r , must be equal to its expected rate of return, r̂ . 
Further, its required return is equal to a risk free rate, fr , plus 
a risk premium, whereas the expected return on a constant 
growth stock is the stock's dividend yield ,1 oPD plus its 
expected growth rate, .g  
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Fig. 1 shows the security market line, SML, as a function 

of risk (β).  The riskless return has a β=0, where the SML 
crosses the expected return axis. 

 
 

Fig. 1. The security market line  

 
β indicates how sensitive a security’s returns are to changes 

in the return on the market portfolio. If a security’s β=1.0, its 
return tend to track the market portfolio. 

 If the market portfolio increases/decreases by 10%, the 
stock also tends to move up/down by 10%. If a stock has a β < 
1.0, it will tend to rise/fall less than the market. For instance, 
assume a stock has a β=0.5. If the market portfolio increases 
by 10%, the stock will tend to move up only 5%.  

A stock with β > 1.0 will rise/fall more than the market. 
For example, a stock with a β=1.5 will tend to rise/fall by 15% 
when the market portfolio increases/decreases 10%. 

The utility’s forecasted market clearing price is essential in 
its market strategy. Price variations are the result of 
competitors’ interaction and system conditions. Competitors’ 
decisions are strongly correlated with input price variations. 
Even when the forecasted prices reflect the normal stochastic 
variations in system operating conditions, the forecasted 
prices may not be accurate enough to guarantee a winning 
decision. The producer has to live with the uncertainty of 
negative profits. Possible losses may occur due to the 
difference between the spot price at delivery time and the 
forecasted price. 

There exist two basic models that can be used to determine 
the risk management benefits of alternative strategies. The 
first is to conduct a historical analysis and determine how a 
given strategy would have performed had it been employed in 
the past. Historical information would be used to simulate the 
future cash flows. The second method would be conducted a 
forward-looking analysis by forecasting future system and 
market variables. 

The planning of scheduling for a GENCO will determine 
the future cash flows. These need to recover costs, fixed and 
variable, plus an additional expected return. 

Operational constraints of the generating units, the interest 
rate, forecasted electricity and fuel prices error deviation, 
among others, will create a SML bandwidth instead of a strict 
SML, as depicted in Fig 1. 
 

III.    REAL OPTIONS ANALYSIS 
Real options have become an important tool on valuation 

of power generation asset. Real options represent 
opportunities to act which provide their holder with the right, 
but not the obligation, to exchange the value of the cash flow 
stream of underlying asset against the value of the cash flow 
stream of an exercise asset [12]. 

The financial concepts applied to the electricity market 
results in the spark spread option. The spark spread option is 
based on the difference between the electricity price, t

Ep , and 

the price of a particular fuel, t
Fp , used to generate it [8]. The 

spark spread payoff associated with a specific heat rate, H  is 
defined as: 

   
t
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A generation asset’s value over a period of time is 

commonly estimated by a series of European call spark spread 
options.   
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Each period has an associated cost and revenue. It is 
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common practice to distribute the fixed costs within the 
existing periods. It means that fixed costs are periodized over 
its useful economic life. Fixed costs as well as variable costs 
must be covered during the periods when bids are accepted by 
the market. For instance, when the fixed costs are covered 
during the fist periods seems more favorable, but this is 
disputable given that profits strongly depend on spot prices, 
which may be higher in later periods. However, selling during 
the earliest period with a lower profit provides additional 
flexibility since they have extra periods to adapt their strategy 
base on new market information. Hence there exists a trade-
off of when to scheduling output becoming a timing problem.     

Real Options could be used to take the uncertainty due to 
different factors such as uncertainty about an opponent’s bid, 
uncertainty about future demand, and uncertainty about future 
failures and inefficiencies in power plant operation, and 
uncertainty about congestion on transmission lines, and reduce 
all these uncertainties to a single number. 
 

IV.  MODEL AND SOLUTION  
How can a GENCO gauge the expected cash flows of 

revenue that would result from a specific strategy? These cash 
flows are not exogenous at all. The future cash flows depend 
upon future scheduling decisions, however the fixed cost are 
certain to be incurred and those have to be recover.  

Consider that any quantity produced can be sold in the spot 
market in the subsequent periods as long as it is priced 
competitively. The optimization problem is formulated as a 
maximizing linear program. 
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where the t

GP is the electric power generated at period t, 

( )t
GPC  represents the fix and variable cost, tD is the demand 

at period t, and  ( )tr+1 is the time value of money, and H a 
matrix of output coefficients. It is assumed a linear 
relationship between input and output transformation. This 
assumption permits to model GENCO’s bid in block contracts. 
The formulation also assumes that there is no limitation on 
fuel supply. 

The cost function is given by the equation: 
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where a represents the fixed cost and b is the variable costs 

of production.  
A network flow interpretation of the mathematical model is 

depicted in Fig. 2. 

 

 
Fig. 2. N-periods production decision network flow 

 
The previous diagram portrays the spark spread option. 

This option adds value to the power generation assets when 
the contracted fuel is sold back to the fuel market or swapped, 
which is beyond the scope of this paper. 

It is possible to include additional inputs in the described 
model permitting to market participants adaptively adjust 
market strategies as soon as each new piece of information is 
available. 
 

V.  CASE STUDIES 
In this section numerical examples are presented. A 

GENCO is designing the bidding strategically for the next 4 
periods. Fixed cost, variable production cost, and an expected 
rate of return must be recovered. Historical market 
information was taken from a random electric utility [13]. 

 For the purpose of this example, forecasted electricity spot 
prices for the upcoming periods are assumed known. Except 
as noted elsewhere, all other parameters values used are listed 
in Table I and Table II. Fuel price is assumed constant for all 
the periods. 

 
TABLE I 

EXPECTED DEMAND AND EXPECTED ELECTRICITY PRICES 

Period Demand (MWh) Price 
1 500 20.0 
2 600 24.3 
3 550 26.5 
4 580 28.0 

 
TABLE III 

BASE CASE PARAMETER VALUES 

Parameter Value 
MAX

GP (MW) 50 

a  ($) 120 

b ($/MWh) 1.0 

fr (%) 8 

Mr (%) 12 

β  1.2 

Fuel ($) 21 
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The expected rate of return is calculated as follows: 
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With the previous information, the optimization program 

gives the results shown in Table III: 
 

TABLE IIIII 
OPTIMAL FORWARD POWER COMMITTED 

Period Power (MWh) 
1 0 
2 50 
3 50 
4 50 

 
Prices, committed power, and revenues are shown in Fig. 3. 
 
   

Fig. 3. Expected price of electricity and committed power: case I  

 
From Fig. 3, we can observe that expected price of 

electricity is lower than the production costs at period 1. It 
implies that GENCO is not selling energy in such period. The 
subsequent periods, expected prices seem more favorable 
allowing him to sell its energy. No selling power in period 1 
generates negative profits which are transfer to next periods.  

In order to recover the cost acquired at those periods, 
GENCO will need to raise the bidding price in subsequent 
periods. This can be done basically in two different ways: 
distributing in two or more periods or in a single period. 
Distributing in more than two periods seems more credible 
which also distribute the risk. However, such decision will 
depend much on market information. The most disruptive 
factor that leads to violation of theoretical predictions is 
information uncertainty on the part of market participants. 

From the same Fig. 3 we also observed the price difference 
between the electricity expected market price and the expected 
selling price. This information is also provided for the 
optimization program and is presented in Table IV. 

 
 

TABLE IVV 
PRICE DIFFERENCE AT EACH PERIOD 

Period 1 2 3 4 
Difference ($) - 2.549 3.832 4.324

 
Note that the values take in consideration the time value of 

the money. For instance, the expected market price at period 2 
is $24.3  

In this case, it was possible to allocate forward contracts 
such as the future cash flows recover all the cost and the 
expected return. However, there exists always the possibility 
that this condition does not happen. Two alternatives need to 
be considered: To reduce the expected return or to increase 
bid prices.  

Now, consider that the price in period 1 = $23.6 and in 
period 2 = $20.3. The optimal solution is shown in Table V. 

 
TABLE V 

OPTIMAL FORWARD POWER COMMITED WITH NEW EXPECTED PRICES OF 
ELECTRICITY 

Period Power (MWh) 
1 50 
2 0 
3 50 
4 50 

 
From Table V we can see that due to lower expected price 

of electricity at period 2, GENCO’s decision is not to sell. 
Thus, GENCO is incurring in negative profits at that period. 
The negative profits are essentially the periodized fixed costs. 
Form the unit’s operational viewpoint, it can be said that the 
unit is banking. Prices as well as committed power and 
revenues for the 4 periods are shown in Fig. 4.  

 
 

Fig. 4. Expected price and committed power: case II 

 
The future profits per period for both cases are shown in 

Table VI.  
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TABLE VI 
FUTURE EXPECTED PROFITS 

Period Case I ($) Case II ($) 
1 - 115.248 
2 129.678 - 
3 191.604 191.604 
4 216.188 216.188 

NPV 10.526 10.78 

 
From Table VI we observe that the NPVs are different. The 

difference is due to time value of money between selling 
today (period 1) and selling tomorrow (period 2) since the 
values at period 3 and 4 are the same. In both cases, the fixed 
costs are fully recovered.  

 

VI.  UNCERTAINTY 
Simple capital budgeting analysis, based on the assumption 

of a given time flows of receipts, is perfectly valid if future 
production plants are known. However, this assumption 
neglects futures events introducing substantial uncertainty in 
the decision making process. Uncertainty is best thought of as 
representing a spectrum of unknown situations, ranging from 
perfect knowledge of the likelihood of all the possible 
outcomes at one end to no knowledge of the likelihood of 
possible outcomes at the other.  

By taking in consideration uncertainty, the company will 
gain a flexibility option allowing him to modify operations 
depending on how conditions develop as time progresses. 

Decision trees have been a traditional tool for analyzing 
and valuating embedded options when uncertainty is 
considered. Setting up a decision tree forces the GENCOS´s 
decision maker to consider embedded options.  

In this document we basically are evaluating a single path 
of the decision tree. The branch at each new node, assumes 
the same rate of return and external variables are forecasted 
with accuracy, price of electricity. 

Our approach, LP optimal committed power for multiple 
time periods can be expanded by using the decision tree. For 
each path, we form a LP problem to forecast the optimal 
decision that maximizes profits. 

The introduction of uncertainty for fuel and electricity 
price for a given period t can be graphically represented as 
follows: 

 

 
Fig. 5 Expected fuel and electricity price at period t 

 

Other exogenous variables can be modeled similarly to fuel 
or electricity price variables depending whether it is a input or 
output variable. Additionally, different rate of return inter-
period would also be simulated.  

 

VII.  SUMMARY 
GENCOs operational planning is not only constrained for 

its technical operational limits and fuel inventory, but also for 
the financial requirements.  

A GENCOs financial requirement is the expected rate of 
return within a specific period of time. According with CAPM 
in order to increase the expected rate of return, GENCOs 
portfolio will be exposing to higher risk. 

By committing forward contracts in the earliest deadline, 
the company will gain a flexibility option allowing him to 
modify operations depending on how conditions develop as 
time progresses. One of these options is to modify financial 
requirements, expected rate of return, in order to obtain a 
higher profit. 

In order to reduce risk in the allocation on forward 
contracts a less expected return may be chosen otherwise the 
expected electricity price must be higher.  

Another alternative would be to increment the number of 
periods. This generally is an option for investment decisions. 
However, for operational decision this condition is not 
available; bookkeeping time is fixed usually quarterly. 

The previous analysis can be applied to any price taker 
forward contract, intermediate load unit, or contracts within a 
bandwidth at the money from financial option viewpoint. Peak 
generators need as well as any other unit to recover the full 
cost in a certain period of time. This justify why for some 
periods electricity prices experience sparks unless other 
allocating mechanism helps GENCOs to recover all the costs 
smoothly. 

An intertemporal LP optimization program has been 
proposed in this document. The problem is formulated as 
deterministic optimization problem since a single path of a 
decision tree is evaluated. However, the incorporation of 
uncertainty was discussed and it is issue of future work. 
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