
Power Control Center Applications using Highly Available Distributed RAM
(HADRAM)

Damian Cieslicki and Thomas Schwarz, S.J.
Department of Computer Engineering

Santa Clara University
500 El Camino Real, Santa Clara, CA 95053

damian.cieslicki@us.abb.com TJSchwarz@scu.edu

Abstract

With on-going deregulation, with tighter

interdependence between energy providers, and with
growing demands on reliability, Power Control
Centers (PCC) need to both scale up and to allow
access to comprehensive real-time data. In this paper,
we propose to build PCCs based on geographically
distributed and tightly coupled clusters of
heterogeneous computer clusters. Our proposal,
Highly Available Distributed Random Access Memory
(HADRAM), and Distributed Linear Hashing with
scalable availability (LH*RS) uses the distributed
memory in the cluster to store all data, with
redundancy needed for recovery in case of data loss.
This approach allows very fast fail-over, but also lends
itself to remote data accesses.

1 Introduction

Currently, power flow and other power control
applications are confined geographically to single
Power Control Centers (PCC). Ongoing regulation and
the need for greater reliability and security force a
basic redesign in the implementation of PCCs. First,
PCCs need to be able to scale up, that is, to store and
process much larger amounts of data. Second,
individually and collectively, PCCs need to become
more reliable. In our view, this implies a simpler and
more robust design only available in a distributed
architecture. Third, PCCs need to provide more
services (such as services providing a status digest to
neighbors).

Currently, PCCs are implemented on two mirrored
systems. When the main system fails, we fail-over to
the mirror. This might happen once daily or weekly.
A typical time to switch would be two to five minutes.
During this time, PCC operators loose some

operational control over the system. The literature
[LAC00] contains methods to mediate successfully the
problems related to failover. PCCs are able to survive
a single failure, but cannot tolerate a second one. Some
utilities install an additional backup system for
emergency purposes. This brings the total number of
independent systems to four.

The architecture of today’s systems limits the
exchange of data. As a consequence, current utilities
do not routinely share operational data. The experience
of the 2004 Northeastern blackout shows the dangers
of this limitation. As the national infrastructure is
hardened against terrorist attacks, future regulations
might even impose the capacity to control a power grid
from a neighboring PCC in case of a successful attack
against the local PCC. The same capacity underlies a
business model that offloads certain routine
applications such as power flow computation for a
number of utilities.

At the heart of PCC operations are the acquisition,
the storing, and the processing of data. We propose a
novel approach for this central piece of PCC
architecture, namely using distributed memory instead
of disks. Such a solution is only viable if the
distributed memory is highly reliable and if it is built
on top of commodity systems. This is the core of our
proposal.

Compared to the current system architectures,
distributed memory has one disadvantage, namely
slower access to data in the central database. In order
to allow fail-over, the current architecture has to store
data on disks. Storing data in distributed memory
however, as we propose, is significantly faster. For
example, the current bandwidth of disks is somewhat
higher than 50 MB/sec [Se04], but lower than the
network transfer rate (1Gb/sec = 125 MB/sec. The
long-time trend exacerbates the difference. Distributed
main memory offers accesses that have less latency

than disk drives by a factor of 10 to 100 and bandwidth
limited only by the capacity of the network. In order to
combine these attractive properties of distributed
memory with high reliability, we store data
redundantly on several computer systems. Failure of a
few of these computer systems does not lead to data
loss; rather, data on lost computers is recalculated and
distributed among the remaining machines. We can
even geographically separate the machines (within
reason, since the distance adds to the latency at the rate
of the speed of light, at best), so that sabotage of a
single server location does not bring the PCC to its
knees.

In the remainder of this article, we first present our
views on current and our proposed PCC architecture.
We then give then an overview of highly available
distributed memory (Section 4). Section 5 explains the
principal ways of achieving high redundancy with low
storage overhead. Section 6 explains our main
technique (HADRAM), which has a flexible usage of
distributed memory, whereas Section 7 contains an
alternative architecture (LH*RS) based on individual
records that has recently been implemented. Section 8
presents the research challenges in our proposal and
Section 9 concludes.

Figure 1: PCC system diagram

2 Current PCC Architecture Overview

Power Control Centers (PCC) have evolved over
the last 30 years into sophisticated computational
systems that solve such problems as power flow. A
typical PCC consists of several high performance
computers linked via LAN. These computers are
organized into the online and the standby groups.
Should the first group fail, the second will take over
operations. The PCC computers are connected via a
Local Area Network (LAN), but different PCC do not

communicate with each other. Thus, every PCC
controls it own small island of automation in the whole
US Power Grid. A simplified schematic diagram of a
typical EMS system is shown in Figure 1.

PCC applications are not modularized and rely
extensively on information in the central Supervisory
Control And Data Acquisition (SCADA) database.
Measurements or process data move bottom-up, while
control information moves down. Interconnections to
other information systems, such as enterprise
information or maintenance management systems have
to be handled by specific interfaces [R01].

A PCC needs to continuously acquire, store, and
process a large set of network data. With increasing
numbers of interconnections between control areas,
real-time operation have become quite complex, so
complex in fact that adding functionality to the PCC to
enable optimization and load prediction has become
difficult. We believe that the current and future needs
(not in the least to integrate information from
neighboring utilities) will make the modularization and
commoditization of components essential. We also
believe that for the data storage unit an abstraction,
that is, provision of a simple interface akin to an
abstract data structure is beneficial. These techniques
become feasible because increases in computing power
and networking outperform latency decreases in
magnetic disks. Fifteen years ago, random access of
data on a magnetic disk took about 15 msec.
Enterprise SCSI drives have cut this to about 5 msec,
which corresponds to an annual increase of less than
8%. In this time, actual progress outperformed
Moore’s law predicting a 60% annual increase in
computing power.

3 Proposed PCC Architecture

As we have seen, the current PCC architecture has
drawbacks:

- limited scalability
- limited interoperability
- limited reliability and availability
- high operational cost
- significant failover time

In our design we propose a PCC system that is built
around a cluster of servers implementing a distributed,
but highly available memory store. The system stores
data redundantly and is built on top of cheap
commodity computers. The basic design is shown in

Figure 2.
In our proposal, applications no longer have to

reside on the same computer. They only need to be
able to communicate reliably with the HADRAM

ONLINE
Compute

STANDBY
Compute

Clusters
of Disks
Side B

Clusters of
Disks
Side A

Network (to retrieve telemetered data)

ONLINE
ComputeOnline

Computers

STANDBY
ComputeStandby

Computers

layer. We can run two copies of the same application
on different systems and we can easily add additional
applications. One or more Remote Terminal Gateways
(RTGs) update the distributed memory with
telemetered data that continuously arrives.

Figure 2: PCC/HADRAM architecture

Any application such as the power flow application
accesses telemetered data indirectly, through the
HADRAM layer. If it accesses data, it makes a request
to distributed memory, which costs time, but it is free
to cache the data locally. In the latter case, the data
might be slightly stale. The delay is on the order of
microseconds in a cluster located in the same room.
This is less than the delay to transmit the received
telemetered data and much shorter than human reaction
time.

On the other hand, the use of distributed memory
has significant advantages. The design decouples the
SCADA database layer from the application layer.
This increases the flexibility of deployment, creates
interoperability of products by different vendors, and
leads to easier design. Should an application fail, then
a replacement application can find the same data in the
central store. If a memory component fails, then the
data will be reconstructed within seconds. This
significantly increases the protection of mission critical
applications and data. We can make the distributed
memory component k –available (so that it can survive
k failures) for arbitrary, but small values of k. The
flexibility of the design allows stand-by copies of
applications that start running when we detect the
failure of the principal application.

The flexible design also makes it easy to exchange
data with external entities such as neighboring utilities.
For this purpose, we have an agent running at a utility.
The agent collects data from the distributed memory
layer, bundles it, and sends it to its home utility, e.g.
through a virtual private network (VPN). Reversely,
another agent residing at our PCC receives data from a
neighboring utility and places this data into the
distributed memory, where it can be processed by

whatever application monitors the overall health of our
system and that of its neighbors (Figure 3).

Figure 3: External data exchange using HADRAM

4 Highly Available Distributed Memory

Distributed memory implemented at the Operating

System level provides an effective and efficient
paradigm for inter-process communication in a cluster.
We propose distributed memory at the application
level used as a fast, non-volatile storage system.

We build these systems out of commodity
computers for their very attractive performance / price
ratio. A cluster can provide a total amount of random
access memory that exceeds what any custom memory
can provide in a single computer.

However, such a multicomputer contains many
more points of failure. We harden the system by
storing data redundantly and by providing automatic
failure detection and correction. When an application
stores a datum in our system, it not only stores the
datum directly in the main memory of one node in the
cluster, but it also updates one or more pieces of parity
data distributed in main memory throughout the
cluster. When a node has failed, we use this
redundancy to reconstruct the failed data on another
node in the cluster.

Using distributed main memory reduces the latency
of memory access to essentially the network latency
and the processing latency at the nodes and is 50 to
100 times faster than disk accesses. It also allows us to
recover the contents stored on a failed node within
seconds.

We propose two different types of highly available
distributed memory systems, one that stores data in
records or objects identified by a single key, and one
that allows an application to request, release, and
manipulate blocks of memory. An implementation of
the first variant, called LH*RS, exists at the University
of Paris, whereas the second variant, Highly Available
Distributed Random Access Memory (HADRAM) is
currently under development at Santa Clara University.

RTG RTG

Distributed
Memory

layer

Telemetered data

APPS

APPS
APPS

APPS

The distance between the nodes of a multicomputer
obviously determines an upper bound on response time
because of the speed of light, which adds about 1 msec
round trip delay for every 150 km in distance. This
still allows us to geographically disperse the nodes so
that no single major event can destroy a sufficient
number of nodes for the memory core system to stop
functioning.

5 Reliability and Erasure Correcting

Codes

We now describe the methods to store data
redundantly. The simplest way is mirroring or
replication, in which we store the same data item twice
or several times. While replication leads to the
simplest protocols, its storage overhead makes it a poor
choice for distributed main memory. Instead, we use
Erasure Correcting Codes (ECC) based on well-known
error control codes.

5.1 Parity Code

The simplest ECC is the parity code. It came into
the fore with Redundant Arrays of Independent Disks
(RAID) Level 5. A number of data blocks on different
disks (or in our case nodes) are grouped into a parity
group to which we add a parity block. The parity
block consists of the bitwise parity (the exclusive or =
XOR) of all the data blocks. The algebraic properties
of the XOR operation imply that we can retrieve the
contents of one data block from the bitwise parity of
all other data blocks and of the parity block. In this
manner, the parity code provides 1-availability.
Instead of placing our blocks on disks as in a RAID,
we place data blocks into the distributed main memory
of the multicomputer.

5.2 Erasure Correcting Codes

The parity code allows us to recover from a single
failure, but often, we need better protection. Many
error control codes can be used to efficiently deal with
erasures caused by failed storage components. One
approach is Rabin’s Information Dispersal Algorithm
(IDA) [Ra89] that ultimately is based on an ECC
[Pr89]. IDA breaks a datum into n different chunks
such that any m < n chunks are sufficient to reconstruct
the original datum. By storing the n chunks in n
different storage locations, we can survive n − m = k
failures. Unfortunately, in order to read a datum, all n
storage locations need to be accessed.

A better way to use an ECC mimics RAID Level 5.
We describe it now. We store data in data blocks. We
group m data blocks into a reliability group and add to
this reliability group k parity blocks. We calculate the
contents of the k-parity blocks from the contents of the
m data blocks using the ECC. If there are up to k
unavailable blocks, we can reconstruct the contents of
all the blocks using the available blocks (necessarily
more than
A good ECC has the following properties:
1. Excellent encoding and decoding speed.
2. Minimal overhead: For k-availability we only need

k parity buckets of the same size as the data
buckets. This is the case if the error control code
is “maximum distance separable”.

3. Linearity: If we update a data bucket, we only
need to send the changes (the XOR of the old and
the new value) to all the parity buckets who then
calculate their new values independently from
their previous contents and the data bucket
change.

4. Extensibility: It is possible to add additional parity
buckets without having to recalculate existing
parity buckets.

5. Flexible design: The ECC should be adjustable to
a reasonable set of values of m and n.

Among the many ECC available we prefer a
generalized Reed Solomon (RS) code. RS codes use
arithmetic in finite fields, which makes them slower
than for example Turbo and Tornado codes, but unlike
these codes, they are maximum distance separable.
Our version [LS00] optimizes updates to the first
parity bucket and from the first data bucket, since it
uses only bitwise XOR to implement these operations.

6 HADRAM Overview

HADRAM implements redundant, distributed
storage in the main memory of a cluster of commodity
computers. HADRAM uses a client-server
architecture. A HADRAM application (Happ) interacts
with the systems through a local HADRAM client
(Hclient) who on behalf of the Happ interacts with the
HADRAM servers (Hservers) that together implement
the distributed memory. The Hservers are themselves
applications running on top of the operating system on
the nodes of a multicomputer. HADRAM provides an
application with storage in the form of HADRAM
blocks (Hblocks). The size of the Hblocks is not
exactly determined, but a value between 1 MB to 1GB
is appropriate.

6.1 Client View of HADRAM

A Happ uses a simple application interface (API) to
communicate with the local Hclient. We present it in
Table 1. The interface is closely related to the *NIX
file system abstraction.

HADRAM
Operation

Explanation

Allocate Causes an Hblock to be allocated.
Returns handle of Hblock.

Deallocate Releases Hblock.
Read Given handle, offset and length (in bytes)

returns contents as a byte string.
Write Given handle, allow users to write data to

the Hblock.
Set Lock Locks given Hblock of memory for

exclusive use.
Release Lock Releases a previous lock of an Hblock.

Table 1: HADRAM API

A Happ that needs to store data first asks for a new
block. The Hclient eventually returns with a handle to
the allocated Hblock. The Happ then can read and
write data by using this handle and by specifying an
offset into the Hblock. When the storage needs of the
Happ change, it can (via the Hclient) request more
blocks or release them. Figure 4 gives a schematic
overview of the system.

Happs can share Hblocks by handing out the handle
to other Happs. The local Hclients maintain a cache of
the Hservers primarily responsible for the Hblocks for
the Happs residing on this node. They also have the
addresses of the first parity Hblock in the reliability
group (Section 6.2) in case the Hserver is
unresponsive. Reversely, Hclients register their
address with all Hservers that store Hblocks that they
have a handle on. This registration needs to be
periodically renewed to flush out data on a failed
Hserver.

6.2 HADRAM Reliability

Internally, H-blocks are placed into reliability
groups (the gray boxes in Figure 4) that also contain
parity blocks. If we cannot access an H-server, we can
reconstruct the contents of any Hblock that server
stores by collecting a sufficient number of Hblocks in
the reliability group and reconstructing the Hblock
from there. Our encoding allows us to reconstruct only
parts of an Hblock from the corresponding parts of
sufficiently enough Hblocks in the reliability group.
This capacity is important because we can satisfy an

Hclient request without having to move around MBs of
Hblock data.

Each Hblock has certain metadata attached to it,
more precisely, the addresses of Hclients with handles
on the memory. This data is mirrored with all parity
Hblocks.

The system declares an unresponsive Hserver
eventually to be dead, reconstructs all Hblocks
(including parity Hblocks), and places them on
alternative Hservers. The system can survive even a
string of failures, since block reconstruction is fast and
we might have chosen a high availability level k.

Because of the properties of our codes, a write
operation proceeds in the following way: The Hclient
sends the new value to the Hserver with the Hblock.
The Hserver calculates the delta value of the update,
that is, the bytewise XOR of the old and the new data
in the region of the Hblock. The Hserver then
forwards the update by sending the delta value and the
location to all parity Hblocks in the reliability group.
The Hservers there calculate the new value of that
region in the respective parity Hblock.

Figure 4: HADRAM architecture

6.3 Hserver Failure Detection

Hservers store data redundantly. The safety of

these data depends also on the speed in which they
detect failure. Failure detection in a distributed system
is impossible [FLP85] if complete reliability is
demanded, but in practice possible through so-called
unreliable failure detectors proposed first by Chandra
and Toueg [CHT96a], [CHT96b]. Despite their name,
they are highly reliable in practice. After the seminal
article, many other authors proposed similar
algorithms. These protocols allow a distributed system
to achieve consensus on which members are to be
considered dead. The semantics of a storage system

increases their reliability. A Hserver that crashes and
reboots has lost all data in main memory. Network
trouble could make a Hserver temporarily unreachable,
but it then retains its data. The worst case scenario is a
temporary partition. In one partition, a certain Hserver
belonging to the other partition is considered dead,
whereas the Hclients in its partition continue to update
Hblocks on this Hserver. The majority of the parity
Hblocks in the reliability group is going to be in one
component of the partition. If at all, the Hblock will
be reconstructed on a new Hserver in that component.
Once the network problems are over some Hservers
and Hclients will find out that they are officially dead
and that they have to rejoin the system.

To detect failures quickly, we have Hservers with
Hblocks in the same reliability group monitor each
others heartbeat. Second, Hclients monitor the
availability of Hservers through their requests. If a
request times out, then the Hclient goes to the Hserver
storing the first parity block, which then in turn
recovers the relevant portion of the missing Hblock
and answers the Hclient’s query. This also triggers
the “unreliable failure detector”.

6.4 HADRAM modes

In the absence of unavailable blocks, HADRAM
operates in normal mode. If a Hserver appears to have
failed, then the system enters degraded mode. This
transition triggers a consensus protocol about which
servers are considered dead and eventual
reconstruction. If these operations succeed, then the
system leaves the degraded mode. However, if there
are too many failures to handle, then the system
switches to emergency mode where through extensive
broadcasting the system tries to find out which
Hservers are available and what the data on them is.

We use a distributed consensus mechanism, the
famous Paxos protocol invented by L. Lamport [La89]
and improved by many other authors [BDFG03],
[GM02], etc. to determine whether to rebuild an
Hserver’s data.

An Hclient contains Hserver addresses for all
Hblocks of local Happs as well as for one parity
Hblock. Reversely, a Hserver contains registration
data for all Hclients with handles of Hblocks that it
stores. We store registration data for all the Hblocks in
the reliability group with a parity Hblock. If a
Hserver is declared dead, its Hblocks are reconstructed
on other Hservers. The registration data is then used to
inform all registered Hclients about the new location of
the Hblocks.

6.5 Load Balancing, Joining, and Leaving
the HADRAM cluster

We use Paxos to achieve a distributed consensus on

membership of Hservers. A new Hserver broadcasts
its availability on the network and thus triggers a
consensus protocol to include the new server in the
system. Similarly, a different consensus problem
allows a server to leave the system. This graceful shut-
down first moves all Hblocks to alternate servers. At
the core of this process is load balancing, that is also
periodically invoked. Load balancing gains a global
overview of the system load, in particular the number
of Hblocks and then redistributes some of them to
equalize the load.

7 LH*RS: Record Based Scalable

Availability

Scalable Distributed Data Structures (SDDS)
harness the agglomerated power of a distributed
system in such a way that the speed of operations is
independent of the data structure size. The distributed
version of linear hashing, LH*, [LNS93], is an SDDS
that implements a dictionary data structure, that is, that
allows record insertion, record look-up, record
deletion, and record update given the record key and in
addition also allows a parallel scan of all records for a
given byte pattern. LH*RS is a variant with high,
scalable availability [LS00], [LMS04], [MS04].

7.1 LH* Overview

LH* supports key-based operations. Each record is

identified and addressed by a unique key. Based on
this key, the LH* addressing algorithm determines the
bucket in which the record is located. Often, though
not always, each bucket resides on its own server.
When a bucket is full, it sends a distress signal to a
central entity, the coordinator. The coordinator
responds by splitting the next bucket in line. A
somewhat counter-intuitive, though highly effective
feature of LH* is that the bucket to be split is not the
one that is about to overflow, but the one pointed to by
the split pointer. When a bucket split, about half of its
records are relocated into the new bucket on a new
server. The coordinator does not notify the clients of a
split. Thus, a client is likely to commit an addressing
error from time to time. In this case, the bucket
receiving the request forwards the request to the bucket
that – according to its view of the system – contains
the record. Usually, a single forward operation is
necessary, sometime, though rarely, a second one, but

never a third. When the request reaches the correct
bucket, the correct bucket sends a message to the client
that allows the client to update its address calculation
mechanism and prevents it from ever making the same
mistake twice. As a consequence, a somewhat active
client makes few addressing error.

Figure 5: LH* split. Even though bucket 3 is
overflowing, bucket 2 is split into a new bucket 2
and a new bucket 6 by moving about half the
records (the circles) into bucket 6.

Figure 6: LH*RS Bucket Structure. Shown are
three groups with data buckets 0 – 9. Each group
has one parity bucket.

The internal organization of an LH* bucket can
vary. The best implementations tend to be the ones
that organize the bucket using Linear Hashing itself.

7.2 LH*RS High Availability

As the number of buckets and hence the number of

sites on which an SDDS file is stored increase, the
chances of running into unavailable or failed nodes
increases. For this reason, we need to store data
redundantly. LH*RS is a variant of LH*, that groups a
number of LH* buckets, the data buckets, and adds to
them k parity buckets. The number k depends on the
size of the file and represents the number of
unavailable buckets from which the structure can
always recover. Figure 6 shows a small example with
three groups each with one parity bucket. Notice that
the third group only has two data buckets, but also a
parity bucket.
We now describe how to generate the parity bucket
contents and how to use it to reconstruct data if a data
bucket fails. When a data record is inserted into a data

bucket (determined by the LH* addressing algorithm),
it receives a unique rank, an integer starting with 0. In
case of record deletions, ranks can be re-used. We do
not store the rank of a data record explicitly. The data
records in a group with the same rank form part of a
record group. The rest of the record group is made up
of k parity records. Figure 7 gives an example. The
first record group (the diamonds) consists of records of
rank 0. Another group, the scrolls, is made up of
records of rank 3. Notice that this group only has three
data records. The missing data record is treated like a
dummy zero record.

Figure 7: LH*RS record grouping example.

A parity record contains the rank as the key, the
keys of all the data records in the group, and a field
calculated from the non-key fields with an erasure
correcting code (Figure 8).

When a lookup encounters an unavailable data
record, it complains to the coordinator who initiates a
recovery procedure. First, the coordinator recovers the
record by scanning the parity bucket for the key, and
then by collecting sufficient records in the record
group to use the erasure correcting code to recalculate
the non-key field of the record. The coordinator then
recovers the missing bucket and places it on a spare
server.

Since recovery moves data to a new server, any
client accessing this data suffers a time-out, before it
goes to the coordinator and updates its mapping of
servers to net addresses.

7.3 LH*RS Operations

LH*RS allows key-based access to records and also
supports a distributed scan operation. If a client wants
to access a record through its key, it first uses the LH
address calculation algorithm to find the bucket
number of the key.

If the update is a write operation, then the bucket
with the record calculates the delta value, that is, the
bytewise XOR of the old and the new record data, and
forwards this to all its parity buckets. The buckets
send the delta values and the record identifier to all
parity buckets. The parity buckets update the

0 1 2 3 4 5 6

Rank 0
Rank 1
Rank 2
Rank 3
Rank 4

0 1 2 3 A
0 1 2 3

4 5 6 7

8 9

A

B

C

respective parity record and acknowledge to the
bucket. The bucket then acknowledges to the client.

Figure 8: Structure of data record (top) and parity
record (bottom)

 If a client or another server runs into an
unavailable server during an address based operation,
it informs the coordinator who triggers a
reconstruction. The coordinator is a distributed failure
tolerant entity. When the coordinator receives such an
alarm, and the client wanted to read a record, it first
reconstructs the record from data and parity records in
the same record group and sends the result to the
client. In any case, the coordinator also causes the
bucket to be reconstructed and located on a spare
server.

LH*RS allows a scan operation that finds matches
for given string in all the non-key fields. This scan is
performed at all data buckets in parallel.

7.4 LH*RS Performance

LH*RS has been implemented by Rim Moussa at

CERIA, University of Paris 9 on a 1 Gb/sec network
with 1.8 GHz Pentium 4 machines. The complete
performance numbers are described in [LMS04], and
we only give a few highlights here. A record lookup
takes 0.2419 ms individually and on average 0.0563
ms with bulk requests. To recover a record takes
around 1.3 msec. Bucket recovery takes less than half
a second for three out of four data buckets of 31,250
records with 104B each. With other words, LH*RS
accesses are about 30 times faster than disk for
individual records and can reach a throughput of
almost 15 Mb/sec. These numbers support our thesis
that distributed, highly available memory systems are
quite feasible for PCC applications.

8 Research Problems

We have presented two different mechanisms to

implement highly available distributed memory.
LH*RS is implemented in a prototype version, whereas
HADRAM is currently in implementation. A central
data-store obviously allows a completely different
PCC architecture that promises to be more scalable, to

be much more modular, and therefore much easier to
modify.

Distributed memory has been around for a long
time, but implemented as part of the operating system.
To our knowledge, only Scalable Distributed Data
Structures (SDDS) [LNS93] propose to use distributed
memory at the application level.

8.1 HADRAM Scalability

The proposed HADRAM design maintains explicit

tables linking the Hclients to the Hservers and vice
versa. In a sense, the tables at an Hclient are like the
page tables and reverse page tables for virtual memory.
While this simple design promises to be very efficient
for small systems with a few thousands Hblocks at
most, maintaining the tables will become hard for
systems with hundreds of nodes offering main
memory. Similarly, the number of client applications
running in a control center is small. However,
HADRAM in this proposed form will not scale to very
large systems. While the lack of scalability of
HADRAM is not an issue for systems the size of a
PCC, it limits its usability. To use the HADRAM
mechanism of reliability, a scalable design needs to
find a way to access data quickly, to resolve group
membership locally, and to distribute load through a
dispersed algorithm involving only few nodes of the
computer. Continued research in P2P systems and
SDDS will contribute to finding solutions here.

8.2 Concurrency of Updates

A distributed memory system like HADRAM or

LH*RS can receive updates from many competing
applications. We deal with this problem at the data
bucket through locking. Frequently however, any type
of ordering will do at the data bucket. But even in this
case, it appears that we might have a problem with
competing updates to the different parity records.
More in detail, application 1 might be updating Hblock
1 and application 2 might be updating Hblock 2.
Hblocks 1 and 2 happen to be placed in the same
reliability group. Any parity Hblock in that reliability
group will receive a forwarded update from Hblock 1
and from Hblock 2. Most of the time, the updates will
be to different regions of the parity Hblock. However,
what happens if the two updates go to the same
region? It would seem that the two updates at the
parity buckets need to be made in the same order at all
parity buckets. Luckily for us, the semantics of the
parity update operation and the fact that we are using a
linear erasure correcting code imply that the parity

key non-key field

rank key0 key1 key2 key3 parity of n.-k. fields

rank:

updates commute. Thus, the order of the updates at the
parity Hblock updates does not matter.

We still have to guarantee though that we perform
exactly the same parity updates at all parity Hblocks
and that if we update a data Hblock, we also update all
parity Hblocks. If we fail to do so, then it will be
impossible to reconstruct data. In [LMS04], we
propose a method yielding a guarantee based on
acknowledgements for LH*RS. We could use the same
technique for HADRAM, but it would be less wieldy
because in HADRAM, we can update any portion of
the Hblock.

Instead, we are currently implementing and
measuring a simple log based mechanism that allows
all us to bring all data and parity Hblocks to the same
view before recovery begins. This implementation
uses cumulative acknowledgments and should prove to
be more efficient.

8.3 LH*RS Coordinator Design and

Implementation

SDDS coordinators like the LH*RS coordinator

have a small, but essential role to play. While they
probably do not pose a performance problem even for
large SDDS, the system cannot function without them.
Their basic design is simple using known algorithms
such as Paxos. Unfortunately, no one has yet
implemented and measured a failure tolerant SDDS
coordinator.

8.4 LH*RS Load Balancing

The LH* address algorithm extends a LH* file adds
more and more buckets, as the file grows. The basic
scheme places a single bucket on a new server. In an
applications like the central store of a PCC, the number
of servers changes very little. We therefore store LH*
buckets on virtual servers. Each actual server contains
a number of these virtual servers. When a server fails,
all the virtual servers located on it are lost and
reconstructed on “spare virtual servers” located on
other actual servers. We can control the allocation
through a distributed address resolution protocol that
maps the address of a virtual server to a physical
server. Thus, to calculate the address of a record, we
first calculate the bucket address, i.e. the virtual server
address, with the LH* algorithm and from that the
actual solution. For a small to medium system, we can
implement the bucket to actual server addressing with
tables and table look-up, i.e. an explicit mapping. This
mapping should not map buckets belonging to the
same LH*RS reliability group to the same server, for

the failure of that server destroys the availability of
more than a single bucket and thus causes data loss for
sure or with higher probability than designed. The
mapping needs to be updated every time when a server
leaves the system gracefully or enters the system. The
location of the spare buckets is part of the mapping
algorithm so that the mapping does not need to be
updated when a server fails.

As we have seen, the bucket to server mapping
needs to avoid placing buckets in the same reliability
group on the same physical server. In addition, it
should balance the load of all servers, which amounts
to allocating about the same number of buckets to each
server even as the number of buckets varies. A result
by Choy, Fagin, and Stockmeyer shows that this is
difficult to solve exactly [CFM96], but hopefully, an
approximate solution is not so difficult.

If the number of physical servers is large, then
good approximately load-balancing, and efficient
assignments of buckets to servers exists [HM03],
[HM04], but even these algorithms could be improved.

8.5 Geographically Dispersed PCCs

Distributed memory decouples many PCC

applications from each other. We could take
advantage of this modularization to geographically
disperse the PCCs so that it would remain functioning
despite total loss of one or more of the dispersion sites.
The PCC as a whole could then continue to function
despite a local catastrophe such as a fire or a limited
terrorist attack.

Existing technology such as Virtual Private
Networks (VPN) allow using existing internet
connections while protecting the contents of
communication cryptographically. Unfortunately, the
availability of such a VPN network can be hard to
estimate, since several VPN links might pass through
the same physical cable or through the same router
location. In other words, seemingly high availability
at a higher level can hide single points of failure in the
underlying infrastructure.

Network delay is another problem for geographical
dispersed VPNs and depends on the ability of
applications to cache records locally in order to avoid
multiple repetitive fetch operations. Experimental
confirmation of the viability of this structure is needed
before we can implement PCC in this manner.

8.6 PCC Architecture

A central, highly available, but slower repository

for all data records in a PCC opens up more possibility

for PCC design than merely allowing outside status
assessment. A discussion of these possibilities is
beyond the scope of this paper.

9 Conclusions

In this paper, we proposed the use of highly

available distributed memory as the central component
of a new architecture for power control centers. This
architecture allows cheaper, more robust, and more
modular designs for power control centers. We have
identified a number of important research questions.
We are currently implementing and measuring central
components of this design.

References

[BDFG03] R. Boichat, P. Dutta, S. Frøland, R.
Guerraoui: Deconstructing Paxos. In ACM SIGACT
News, vol. 34(1), 47-67, 2003.
[CHT96a] T. D. Chandra, V. Hazilacos, and S. Toueg:
The Weakest Failure Detector for Solving Consensus.
In Journal of the ACM, vol. 43(4), p. 685-722, 1996.
[CHT96b] T. D. Chandra, S. Toueg: Unreliable Failure
Detectors for Reliable Distributed Systems. In Journal
of the ACM, vol. 43(2), p. 225-267, 1996.
[CFS] D. Choy, R. Fagin, L. Stockmeyer: Efficiently
Extendible Mappings for Balanced Data Distribution.
In Algorithmica 16, 1996, pp. 215-232.
[FLP85] M. Fischer, N. Lynch, M. Paterson:
Impossibility of Distributed Consensus with one Faulty
Process. In Journal of the ACM, vol. 32(2), p. 225-
267, 1985.
[GM02] G. Chockler, D. Malhki: Active disk paxos
with infinitely many processes. In Proceedings of the
21st ACM Symp. on Principles of Distributed
Computing (PODC-21), 2002.
[HM03] R. Honicky, E. Miller: A fast algorithm for
online placement and reorganization of replicated data.
In Proceedings of the 17th International Parallel &
Distributed Processing Symposium (IPDPS 2003),
Nice, France, April 2003.
[HM04] R. Honicky, E. Miller: Replication under
scalable hashing: A family of algorithms for scalable
decentralized data distribution. In Proceedings of the
18th International Parallel & Distributed Processing
Symposium (IPDPS 2004), Santa Fe, NM, April 2004.
[LAC00] Q. Li, M. Allam, D. Cieslicki: Improving the
availability and fault-tolerance of network-attached
drives storage system. In Proc. Intern. Conf. on
Parallel and Distributed Processing Techniques and
Applications, PDPTA 2000, Las Vegas, USA.

[La98] L. Lamport: The part-time parliament, ACM
Transactions on Computer Systems (TOCS), v.16 n.2,
p.133-169, May 1998.
[LNS93] W. Litwin, M.-A. Neimat, D. Schneider:
LH*: Linear Hashing for Distributed Files. ACM-
SIGMOD Intl. Conf. on Management of Data, 1993.
[LS00] W. Litwin, T. Schwarz, S.J.: LH*RS: A High
Availability Scalable Distributed Data Structure using
Reed Solomon Codes. Proc. of the 2000 ACM
SIGMOD Intern. Conf. on Management of Data, May
16-18, 2000, Dallas, Texas, also SIGMOD Records,
vol. 29 (2), June 2000, p. 237-248.
[LMS04] W. Litwin, R. Moussa, T. Schwarz: LH*RS –
A Highly-Available Scalable Distributed Data
Structure, Transactions on Database Systems (TODS),
(submitted May 2004.) Also: CERIA Research
Report, April 2004, http://ceria.dauphine.fr/rev-
thomas-rim-wl-june.pdf
[MS04] R. Moussa, T. Schwarz: Design and
Implementation of LH*RS – A Highly-Available
Scalable Distributed Data Structure, WDAS 2004,
Lausanne. To appear in: Distributed Data & Structures
6, Carleton Scientific Proceedings in Informatics.
[Pl97] J. Plank. A tutorial on Reed-Solomon coding
for fault-tolerance in RAID-like systems. In Software
Practice and Experience. Vol. 27(9). 1997. p. 995-
1012.
[Pr89] F. Preparata: Holographic dispersal and
recovery of information. In IEEE Transactions on
Information Theory, 35(5), p. 1123-1124, September
1989.
[Ra89] M. Rabin: Efficient dispersal of information for
security, load balancing, and fault tolerance. In Journal
of the ACM. Vol. 36(2). p. 335 – 348, 1989.
[Re01] J. Rehtanz: Autonomous Systems and
Intelligent Agents in Power System Control and
Operation. Springer. New York 2003.
[Se04] Seagate Cheetah 10K.6 datasheet:
(www.seagate.com).

	Introduction
	Current PCC Architecture Overview
	Proposed PCC Architecture
	Highly Available Distributed Memory
	Reliability and Erasure Correcting Codes
	Parity Code
	Erasure Correcting Codes

	HADRAM Overview
	Client View of HADRAM
	HADRAM Reliability
	Hserver Failure Detection
	HADRAM modes
	Load Balancing, Joining, and Leaving the HADRAM cluster

	LH*RS: Record Based Scalable Availability
	LH* Overview
	LH*RS High Availability
	LH*RS Operations
	LH*RS Performance

	Research Problems
	HADRAM Scalability
	Concurrency of Updates
	LH*RS Coordinator Design and Implementation
	LH*RS Load Balancing
	Geographically Dispersed PCCs
	PCC Architecture

	Conclusions
	References

