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Abstract 

 
With on-going deregulation, with tighter 

interdependence between energy providers, and with 
growing demands on reliability, Power Control 
Centers (PCC) need to both scale up and to allow 
access to comprehensive real-time data.  In this paper, 
we propose to build PCCs based on geographically 
distributed and tightly coupled clusters of 
heterogeneous computer clusters.  Our proposal, 
Highly Available Distributed Random Access Memory 
(HADRAM), and Distributed Linear Hashing with 
scalable availability (LH*RS) uses the distributed 
memory in the cluster to store all data, with 
redundancy needed for recovery in case of data loss.  
This approach allows very fast fail-over, but also lends 
itself to remote data accesses.  
 
1 Introduction 
 

Currently, power flow and other power control 
applications are confined geographically to single 
Power Control Centers (PCC). Ongoing regulation and 
the need for greater reliability and security force a 
basic redesign in the implementation of PCCs.  First, 
PCCs need to be able to scale up, that is, to store and 
process much larger amounts of data.  Second, 
individually and collectively, PCCs need to become 
more reliable. In our view, this implies a simpler and 
more robust design only available in a distributed 
architecture. Third, PCCs need to provide more 
services (such as services providing a status digest to 
neighbors). 

Currently, PCCs are implemented on two mirrored 
systems.  When the main system fails, we fail-over to 
the mirror.  This might happen once daily or weekly.  
A typical time to switch would be two to five minutes.  
During this time, PCC operators loose some 

operational control over the system. The literature 
[LAC00] contains methods to mediate successfully the 
problems related to failover.  PCCs are able to survive 
a single failure, but cannot tolerate a second one. Some 
utilities install an additional backup system for 
emergency purposes.  This brings the total number of 
independent systems to four.  

The architecture of today’s systems limits the 
exchange of data.  As a consequence, current utilities 
do not routinely share operational data. The experience 
of the 2004 Northeastern blackout shows the dangers 
of this limitation.  As the national infrastructure is 
hardened against terrorist attacks, future regulations 
might even impose the capacity to control a power grid 
from a neighboring PCC in case of a successful attack 
against the local PCC.  The same capacity underlies a 
business model that offloads certain routine 
applications such as power flow computation for a 
number of utilities. 

At the heart of PCC operations are the acquisition, 
the storing, and the processing of data.  We propose a 
novel approach for this central piece of PCC 
architecture, namely using distributed memory instead 
of disks.  Such a solution is only viable if the 
distributed memory is highly reliable and if it is built 
on top of commodity systems.  This is the core of our 
proposal. 

Compared to the current system architectures, 
distributed memory has one disadvantage, namely 
slower access to data in the central database.  In order 
to allow fail-over, the current architecture has to store 
data on disks.  Storing data in distributed memory 
however, as we propose, is significantly faster. For 
example, the current bandwidth of disks is somewhat 
higher than 50 MB/sec [Se04], but lower than the 
network transfer rate (1Gb/sec = 125 MB/sec.  The 
long-time trend exacerbates the difference. Distributed 
main memory offers accesses that have less latency 



than disk drives by a factor of 10 to 100 and bandwidth 
limited only by the capacity of the network. In order to 
combine these attractive properties of distributed 
memory with high reliability, we store data 
redundantly on several computer systems.  Failure of a 
few of these computer systems does not lead to data 
loss; rather, data on lost computers is recalculated and 
distributed among the remaining machines. We can 
even geographically separate the machines (within 
reason, since the distance adds to the latency at the rate 
of the speed of light, at best), so that sabotage of a 
single server location does not bring the PCC to its 
knees.   

In the remainder of this article, we first present our 
views on current and our proposed PCC architecture.  
We then give then an overview of highly available 
distributed memory (Section 4).  Section 5 explains the 
principal ways of achieving high redundancy with low 
storage overhead.  Section 6 explains our main 
technique (HADRAM), which has a flexible usage of 
distributed memory, whereas Section 7 contains an 
alternative architecture (LH*RS) based on individual 
records that has recently been implemented.  Section 8 
presents the research challenges in our proposal and 
Section 9 concludes. 

 

 

Figure 1: PCC system diagram 

 
2 Current PCC Architecture Overview 
 

Power Control Centers (PCC) have evolved over 
the last 30 years into sophisticated computational 
systems that solve such problems as power flow.  A 
typical PCC consists of several high performance 
computers linked via LAN. These computers are 
organized into the online and the standby groups. 
Should the first group fail, the second will take over 
operations. The PCC computers are connected via a 
Local Area Network (LAN), but different PCC do not 

communicate with each other.  Thus, every PCC 
controls it own small island of automation in the whole 
US Power Grid. A simplified schematic diagram of a 
typical EMS system is shown in Figure 1. 

PCC applications are not modularized and rely 
extensively on information in the central Supervisory 
Control And Data Acquisition (SCADA) database. 
Measurements or process data move bottom-up, while 
control information moves down.  Interconnections to 
other information systems, such as enterprise 
information or maintenance management systems have 
to be handled by specific interfaces [R01]. 

A PCC needs to continuously acquire, store, and 
process a large set of network data.  With increasing 
numbers of interconnections between control areas, 
real-time operation have become quite complex, so 
complex in fact that adding functionality to the PCC to 
enable optimization and load prediction has become 
difficult.  We believe that the current and future needs 
(not in the least to integrate information from 
neighboring utilities) will make the modularization and 
commoditization of components essential.  We also 
believe that for the data storage unit an abstraction, 
that is, provision of a simple interface akin to an 
abstract data structure is beneficial.  These techniques 
become feasible because increases in computing power 
and networking outperform latency decreases in 
magnetic disks.  Fifteen years ago, random access of 
data on a magnetic disk took about 15 msec.  
Enterprise SCSI drives have cut this to about 5 msec, 
which corresponds to an annual increase of less than 
8%.  In this time, actual progress outperformed 
Moore’s law predicting a 60% annual increase in 
computing power.   
 
3 Proposed PCC Architecture 
 
As we have seen, the current PCC architecture has 
drawbacks: 

- limited scalability 
- limited interoperability 
- limited reliability and availability 
- high operational cost 
- significant failover time 

In our design we propose a PCC system that is built 
around a cluster of servers implementing a distributed, 
but highly available memory store.  The system stores 
data redundantly and is built on top of cheap 
commodity computers. The basic design is shown in  

Figure 2. 
In our proposal, applications no longer have to 

reside on the same computer. They only need to be 
able to communicate reliably with the HADRAM 
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layer.  We can run two copies of the same application 
on different systems and we can easily add additional 
applications.  One or more Remote Terminal Gateways 
(RTGs) update the distributed memory with 
telemetered data that continuously arrives.   

 

 

 

 

 

Figure 2: PCC/HADRAM architecture 

Any application such as the power flow application 
accesses telemetered data indirectly, through the 
HADRAM layer.  If it accesses data, it makes a request 
to distributed memory, which costs time, but it is free 
to cache the data locally.  In the latter case, the data 
might be slightly stale.  The delay is on the order of 
microseconds in a cluster located in the same room. 
This is less than the delay to transmit the received 
telemetered data and much shorter than human reaction 
time. 

On the other hand, the use of distributed memory 
has significant advantages.  The design decouples the 
SCADA database layer from the application layer.  
This increases the flexibility of deployment, creates 
interoperability of products by different vendors, and 
leads to easier design.  Should an application fail, then 
a replacement application can find the same data in the 
central store.  If a memory component fails, then the 
data will be reconstructed within seconds.  This 
significantly increases the protection of mission critical 
applications and data.  We can make the distributed 
memory component k –available (so that it can survive 
k failures) for arbitrary, but small values of k.  The 
flexibility of the design allows stand-by copies of 
applications that start running when we detect the 
failure of the principal application.  

The flexible design also makes it easy to exchange 
data with external entities such as neighboring utilities.  
For this purpose, we have an agent running at a utility.  
The agent collects data from the distributed memory 
layer, bundles it, and sends it to its home utility, e.g. 
through a virtual private network (VPN).  Reversely, 
another agent residing at our PCC receives data from a 
neighboring utility and places this data into the 
distributed memory, where it can be processed by 

whatever application monitors the overall health of our 
system and that of its neighbors (Figure 3). 

 
Figure 3: External data exchange using HADRAM 

4 Highly Available Distributed Memory 
 
Distributed memory implemented at the Operating 

System level provides an effective and efficient 
paradigm for inter-process communication in a cluster. 
We propose distributed memory at the application 
level used as a fast, non-volatile storage system.   

We build these systems out of commodity 
computers for their very attractive performance / price 
ratio.  A cluster can provide a total amount of random 
access memory that exceeds what any custom memory 
can provide in a single computer.   

However, such a multicomputer contains many 
more points of failure.  We harden the system by 
storing data redundantly and by providing automatic 
failure detection and correction.  When an application 
stores a datum in our system, it not only stores the 
datum directly in the main memory of one node in the 
cluster, but it also updates one or more pieces of parity 
data distributed in main memory throughout the 
cluster.  When a node has failed, we use this 
redundancy to reconstruct the failed data on another 
node in the cluster. 

Using distributed main memory reduces the latency 
of memory access to essentially the network latency 
and the processing latency at the nodes and is 50 to 
100 times faster than disk accesses.  It also allows us to 
recover the contents stored on a failed node within 
seconds.  

We propose two different types of highly available 
distributed memory systems, one that stores data in 
records or objects identified by a single key, and one 
that allows an application to request, release, and 
manipulate blocks of memory.  An implementation of 
the first variant, called LH*RS, exists at the University 
of Paris, whereas the second variant, Highly Available 
Distributed Random Access Memory (HADRAM) is 
currently under development at Santa Clara University. 

RTG RTG 

Distributed 
Memory 

layer 

Telemetered data 

APPS 

APPS 
APPS 

APPS 



The distance between the nodes of a multicomputer 
obviously determines an upper bound on response time 
because of the speed of light, which adds about 1 msec 
round trip delay for every 150 km in distance.  This 
still allows us to geographically disperse the nodes so 
that no single major event can destroy a sufficient 
number of nodes for the memory core system to stop 
functioning.   
 
5 Reliability and Erasure Correcting 

Codes 
 

We now describe the methods to store data 
redundantly.  The simplest way is mirroring or 
replication, in which we store the same data item twice 
or several times.  While replication leads to the 
simplest protocols, its storage overhead makes it a poor 
choice for distributed main memory.  Instead, we use 
Erasure Correcting Codes (ECC) based on well-known 
error control codes.  
 
5.1 Parity Code 
 

The simplest ECC is the parity code.  It came into 
the fore with Redundant Arrays of Independent Disks 
(RAID) Level 5.  A number of data blocks on different 
disks (or in our case nodes) are grouped into a parity 
group to which we add a parity block.  The parity 
block consists of the bitwise parity (the exclusive or = 
XOR) of all the data blocks.  The algebraic properties 
of the XOR operation imply that we can retrieve the 
contents of one data block from the bitwise parity of 
all other data blocks and of the parity block.  In this 
manner, the parity code provides 1-availability.  
Instead of placing our blocks on disks as in a RAID, 
we place data blocks into the distributed main memory 
of the multicomputer.    
 
5.2 Erasure Correcting Codes 
 

The parity code allows us to recover from a single 
failure, but often, we need better protection.  Many 
error control codes can be used to efficiently deal with 
erasures caused by failed storage components.  One 
approach is Rabin’s Information Dispersal Algorithm 
(IDA) [Ra89] that ultimately is based on an ECC 
[Pr89].  IDA breaks a datum into n different chunks 
such that any m < n chunks are sufficient to reconstruct 
the original datum.  By storing the n chunks in n 
different storage locations, we can survive n − m = k 
failures.  Unfortunately, in order to read a datum, all n 
storage locations need to be accessed. 

A better way to use an ECC mimics RAID Level 5. 
We describe it now. We store data in data blocks.  We 
group m data blocks into a reliability group and add to 
this reliability group k parity blocks.   We calculate the 
contents of the k-parity blocks from the contents of the 
m data blocks using the ECC.  If there are up to k 
unavailable blocks, we can reconstruct the contents of 
all the blocks using the available blocks (necessarily 
more than   
A good ECC has the following properties: 
1. Excellent encoding and decoding speed. 
2. Minimal overhead: For k-availability we only need 

k parity buckets of the same size as the data 
buckets.  This is the case if the error control code 
is “maximum distance separable”. 

3. Linearity: If we update a data bucket, we only 
need to send the changes (the XOR of the old and 
the new value) to all the parity buckets who then 
calculate their new values independently from 
their previous contents and the data bucket 
change. 

4. Extensibility: It is possible to add additional parity 
buckets without having to recalculate existing 
parity buckets. 

5. Flexible design: The ECC should be adjustable to 
a reasonable set of values of m and n. 

Among the many ECC available we prefer a 
generalized Reed Solomon (RS) code.  RS codes use 
arithmetic in finite fields, which makes them slower 
than for example Turbo and Tornado codes, but unlike 
these codes, they are maximum distance separable.  
Our version [LS00] optimizes updates to the first 
parity bucket and from the first data bucket, since it 
uses only bitwise XOR to implement these operations. 
 
6 HADRAM Overview 
 

HADRAM implements redundant, distributed 
storage in the main memory of a cluster of commodity 
computers. HADRAM uses a client-server 
architecture. A HADRAM application (Happ) interacts 
with the systems through a local HADRAM client 
(Hclient) who on behalf of the Happ interacts with the 
HADRAM servers (Hservers) that together implement 
the distributed memory.  The Hservers are themselves 
applications running on top of the operating system on 
the nodes of a multicomputer. HADRAM provides an 
application with storage in the form of HADRAM 
blocks (Hblocks).  The size of the Hblocks is not 
exactly determined, but a value between 1 MB to 1GB 
is appropriate. 
 



6.1 Client View of HADRAM   
 

A Happ uses a simple application interface (API) to 
communicate with the local Hclient.  We present it in 
Table 1.  The interface is closely related to the *NIX 
file system abstraction. 
 

HADRAM 
Operation 

Explanation 

Allocate Causes an Hblock to be allocated.  
Returns handle of Hblock. 

Deallocate Releases Hblock. 
Read Given handle, offset and length (in bytes) 

returns contents as a byte string. 
Write Given handle, allow users to write data to 

the Hblock. 
Set Lock Locks given Hblock of memory for 

exclusive use. 
Release Lock Releases a previous lock of an Hblock. 

Table 1: HADRAM API 

A Happ that needs to store data first asks for a new 
block.  The Hclient eventually returns with a handle to 
the allocated Hblock.  The Happ then can read and 
write data by using this handle and by specifying an 
offset into the Hblock.  When the storage needs of the 
Happ change, it can (via the Hclient) request more 
blocks or release them.  Figure 4 gives a schematic 
overview of the system.   

Happs can share Hblocks by handing out the handle 
to other Happs.  The local Hclients maintain a cache of 
the Hservers primarily responsible for the Hblocks for 
the Happs residing on this node.  They also have the 
addresses of the first parity Hblock in the reliability 
group (Section 6.2) in case the Hserver is 
unresponsive.  Reversely, Hclients register their 
address with all Hservers that store Hblocks that they 
have a handle on. This registration needs to be 
periodically renewed to flush out data on a failed 
Hserver.  

 
6.2 HADRAM Reliability 
 

Internally, H-blocks are placed into reliability 
groups (the gray boxes in Figure 4) that also contain 
parity blocks.  If we cannot access an H-server, we can 
reconstruct the contents of any Hblock that server 
stores by collecting a sufficient number of Hblocks in 
the reliability group and reconstructing the Hblock 
from there.  Our encoding allows us to reconstruct only 
parts of an Hblock from the corresponding parts of 
sufficiently enough Hblocks in the reliability group.  
This capacity is important because we can satisfy an 

Hclient request without having to move around MBs of 
Hblock data. 

Each Hblock has certain metadata attached to it, 
more precisely, the addresses of Hclients with handles 
on the memory.  This data is mirrored with all parity 
Hblocks. 

The system declares an unresponsive Hserver 
eventually to be dead, reconstructs all Hblocks 
(including parity Hblocks), and places them on 
alternative Hservers.  The system can survive even a 
string of failures, since block reconstruction is fast and 
we might have chosen a high availability level k. 

Because of the properties of our codes, a write 
operation proceeds in the following way: The Hclient 
sends the new value to the Hserver with the Hblock.  
The Hserver calculates the delta value of the update, 
that is, the bytewise XOR of the old and the new data 
in the region of the Hblock.  The Hserver then 
forwards the update by sending the delta value and the 
location to all parity Hblocks in the reliability group.  
The Hservers there calculate the new value of that 
region in the respective parity Hblock.   

 

 

Figure 4: HADRAM architecture 

 

6.3 Hserver Failure Detection 
 
Hservers store data redundantly.  The safety of 

these data depends also on the speed in which they 
detect failure.  Failure detection in a distributed system 
is impossible [FLP85] if complete reliability is 
demanded, but in practice possible through so-called 
unreliable failure detectors proposed first by Chandra 
and Toueg [CHT96a], [CHT96b]. Despite their name, 
they are highly reliable in practice. After the seminal 
article, many other authors proposed similar 
algorithms.  These protocols allow a distributed system 
to achieve consensus on which members are to be 
considered dead.  The semantics of a storage system 



increases their reliability.  A Hserver that crashes and 
reboots has lost all data in main memory.  Network 
trouble could make a Hserver temporarily unreachable, 
but it then retains its data.  The worst case scenario is a 
temporary partition.  In one partition, a certain Hserver 
belonging to the other partition is considered dead, 
whereas the Hclients in its partition continue to update 
Hblocks on this Hserver.  The majority of the parity 
Hblocks in the reliability group is going to be in one 
component of the partition.  If at all, the Hblock will 
be reconstructed on a new Hserver in that component.  
Once the network problems are over some Hservers 
and Hclients will find out that they are officially dead 
and that they have to rejoin the system. 

To detect failures quickly, we have Hservers with 
Hblocks in the same reliability group monitor each 
others heartbeat. Second, Hclients monitor the 
availability of Hservers through their requests.  If a 
request times out, then the Hclient goes to the Hserver 
storing the first parity block, which then in turn 
recovers the relevant portion of the missing Hblock 
and answers the Hclient’s query.   This also triggers 
the “unreliable failure detector”.  
 
6.4 HADRAM modes 
 

In the absence of unavailable blocks, HADRAM 
operates in normal mode.  If a Hserver appears to have 
failed, then the system enters degraded mode.  This 
transition triggers a consensus protocol about which 
servers are considered dead and eventual 
reconstruction.  If these operations succeed, then the 
system leaves the degraded mode.  However, if there 
are too many failures to handle, then the system 
switches to emergency mode where through extensive 
broadcasting the system tries to find out which 
Hservers are available and what the data on them is. 

We use a distributed consensus mechanism, the 
famous Paxos protocol invented by L. Lamport [La89] 
and improved by many other authors [BDFG03], 
[GM02], etc. to determine whether to rebuild an 
Hserver’s data.   

An Hclient contains Hserver addresses for all 
Hblocks of local Happs as well as for one parity 
Hblock.  Reversely, a Hserver contains registration 
data for all Hclients with handles of Hblocks that it 
stores.  We store registration data for all the Hblocks in 
the reliability group with a parity Hblock.   If a 
Hserver is declared dead, its Hblocks are reconstructed 
on other Hservers.  The registration data is then used to 
inform all registered Hclients about the new location of 
the Hblocks. 
 

6.5 Load Balancing, Joining, and Leaving 
the HADRAM cluster 

 
We use Paxos to achieve a distributed consensus on 

membership of Hservers.  A new Hserver broadcasts 
its availability on the network and thus triggers a 
consensus protocol to include the new server in the 
system.  Similarly, a different consensus problem 
allows a server to leave the system.  This graceful shut-
down first moves all Hblocks to alternate servers.  At 
the core of this process is load balancing, that is also 
periodically invoked.  Load balancing gains a global 
overview of the system load, in particular the number 
of Hblocks and then redistributes some of them to 
equalize the load. 

 
7 LH*RS: Record Based Scalable 

Availability 
 

Scalable Distributed Data Structures (SDDS) 
harness the agglomerated power of a distributed 
system in such a way that the speed of operations is 
independent of the data structure size.  The distributed 
version of linear hashing, LH*, [LNS93], is an SDDS 
that implements a dictionary data structure, that is, that 
allows record insertion, record look-up, record 
deletion, and record update given the record key and in 
addition also allows a parallel scan of all records for a 
given byte pattern.  LH*RS is a variant with high, 
scalable availability [LS00], [LMS04], [MS04]. 
 
7.1 LH* Overview 

 
LH* supports key-based operations.  Each record is 

identified and addressed by a unique key.  Based on 
this key, the LH* addressing algorithm determines the 
bucket in which the record is located.  Often, though 
not always, each bucket resides on its own server.  
When a bucket is full, it sends a distress signal to a 
central entity, the coordinator.  The coordinator 
responds by splitting the next bucket in line.  A 
somewhat counter-intuitive, though highly effective 
feature of LH* is that the bucket to be split is not the 
one that is about to overflow, but the one pointed to by 
the split pointer.  When a bucket split, about half of its 
records are relocated into the new bucket on a new 
server.  The coordinator does not notify the clients of a 
split.  Thus, a client is likely to commit an addressing 
error from time to time.  In this case, the bucket 
receiving the request forwards the request to the bucket 
that – according to its view of the system – contains 
the record.  Usually, a single forward operation is 
necessary, sometime, though rarely, a second one, but 



never a third.  When the request reaches the correct 
bucket, the correct bucket sends a message to the client 
that allows the client to update its address calculation 
mechanism and prevents it from ever making the same 
mistake twice.  As a consequence, a somewhat active 
client makes few addressing error.  
 

 
Figure 5: LH* split. Even though bucket 3 is 
overflowing, bucket 2 is split into a new bucket 2 
and a new bucket 6 by moving about half the 
records (the circles) into bucket 6. 

 
 

                       
 

Figure 6: LH*RS Bucket Structure.  Shown are 
three groups with data buckets 0 – 9.  Each group 
has one parity bucket. 

The internal organization of an LH* bucket can 
vary.  The best implementations tend to be the ones 
that organize the bucket using Linear Hashing itself. 

 
7.2 LH*RS High Availability 

 
As the number of buckets and hence the number of 

sites on which an SDDS file is stored increase, the 
chances of running into unavailable or failed nodes 
increases.  For this reason, we need to store data 
redundantly.  LH*RS is a variant of LH*, that groups a 
number of LH* buckets, the data buckets, and adds to 
them k parity buckets.  The number k depends on the 
size of the file and represents the number of 
unavailable buckets from which the structure can 
always recover. Figure 6 shows a small example with 
three groups each with one parity bucket.  Notice that 
the third group only has two data buckets, but also a 
parity bucket.   
We now describe how to generate the parity bucket 
contents and how to use it to reconstruct data if a data 
bucket fails.  When a data record is inserted into a data 

bucket (determined by the LH* addressing algorithm), 
it receives a unique rank, an integer starting with 0.  In 
case of record deletions, ranks can be re-used. We do 
not store the rank of a data record explicitly.  The data 
records in a group with the same rank form part of a 
record group.  The rest of the record group is made up 
of k parity records. Figure 7 gives an example.  The 
first record group (the diamonds) consists of records of 
rank 0.  Another group, the scrolls, is made up of 
records of rank 3.  Notice that this group only has three 
data records.  The missing data record is treated like a 
dummy zero record. 
 
   

 
Figure 7: LH*RS record grouping example. 

A parity record contains the rank as the key, the 
keys of all the data records in the group, and a field 
calculated from the non-key fields with an erasure 
correcting code (Figure 8 ).   

When a lookup encounters an unavailable data 
record, it complains to the coordinator who initiates a 
recovery procedure. First, the coordinator recovers the 
record by scanning the parity bucket for the key, and 
then by collecting sufficient records in the record 
group to use the erasure correcting code to recalculate 
the non-key field of the record.  The coordinator then 
recovers the missing bucket and places it on a spare 
server.  

Since recovery moves data to a new server, any 
client accessing this data suffers a time-out, before it 
goes to the coordinator and updates its mapping of 
servers to net addresses. 

 
7.3 LH*RS Operations 
 

LH*RS allows key-based access to records and also 
supports a distributed scan operation.  If a client wants 
to access a record through its key, it first uses the LH 
address calculation algorithm to find the bucket 
number of the key.  

If the update is a write operation, then the bucket 
with the record calculates the delta value, that is, the 
bytewise XOR of the old and the new record data, and 
forwards this to all its parity buckets.  The buckets 
send the delta values and the record identifier to all 
parity buckets.  The parity buckets update the 
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respective parity record and acknowledge to the 
bucket.  The bucket then acknowledges to the client. 

 
Figure 8: Structure of data record (top) and parity 
record (bottom) 

  If a client or another server runs into an 
unavailable server during an address based operation, 
it informs the coordinator who triggers a 
reconstruction.  The coordinator is a distributed failure 
tolerant entity.  When the coordinator receives such an 
alarm, and the client wanted to read a record, it first 
reconstructs the record from data and parity records in 
the same record group and sends the result to the 
client.  In any case, the coordinator also causes the 
bucket to be reconstructed and located on a spare 
server. 

LH*RS allows a scan operation that finds matches 
for given string in all the non-key fields.  This scan is 
performed at all data buckets in parallel. 
 
7.4 LH*RS Performance 

 
LH*RS has been implemented by Rim Moussa at 

CERIA, University of Paris 9 on a 1 Gb/sec network 
with 1.8 GHz Pentium 4 machines. The complete 
performance numbers are described in [LMS04], and 
we only give a few highlights here. A record lookup 
takes 0.2419 ms individually and on average 0.0563 
ms with bulk requests.  To recover a record takes 
around 1.3 msec.  Bucket recovery takes less than half 
a second for three out of four data buckets of 31,250 
records with 104B each.  With other words, LH*RS 
accesses are about 30 times faster than disk for 
individual records and can reach a throughput of 
almost 15 Mb/sec.  These numbers support our thesis 
that distributed, highly available memory systems are 
quite feasible for PCC applications. 

 
8 Research Problems 

 
We have presented two different mechanisms to 

implement highly available distributed memory.  
LH*RS is implemented in a prototype version, whereas 
HADRAM is currently in implementation.  A central 
data-store obviously allows a completely different 
PCC architecture that promises to be more scalable, to 

be much more modular, and therefore much easier to 
modify.   

Distributed memory has been around for a long 
time, but implemented as part of the operating system. 
To our knowledge, only Scalable Distributed Data 
Structures (SDDS) [LNS93] propose to use distributed 
memory at the application level.   

 
8.1 HADRAM Scalability 

 
The proposed HADRAM design maintains explicit 

tables linking the Hclients to the Hservers and vice 
versa.  In a sense, the tables at an Hclient are like the 
page tables and reverse page tables for virtual memory.  
While this simple design promises to be very efficient 
for small systems with a few thousands Hblocks at 
most, maintaining the tables will become hard for 
systems with hundreds of nodes offering main 
memory.  Similarly, the number of client applications 
running in a control center is small.  However, 
HADRAM in this proposed form will not scale to very 
large systems. While the lack of scalability of 
HADRAM is not an issue for systems the size of a 
PCC, it limits its usability.  To use the HADRAM 
mechanism of reliability, a scalable design needs to 
find a way to access data quickly, to resolve group 
membership locally, and to distribute load through a 
dispersed algorithm involving only few nodes of the 
computer.  Continued research in P2P systems and 
SDDS will contribute to finding solutions here. 

 
8.2 Concurrency of Updates 

 
A distributed memory system like HADRAM or 

LH*RS can receive updates from many competing 
applications.  We deal with this problem at the data 
bucket through locking.  Frequently however, any type 
of ordering will do at the data bucket.  But even in this 
case, it appears that we might have a problem with 
competing updates to the different parity records.  
More in detail, application 1 might be updating Hblock 
1 and application 2 might be updating Hblock 2.  
Hblocks 1 and 2 happen to be placed in the same 
reliability group.  Any parity Hblock in that reliability 
group will receive a forwarded update from Hblock 1 
and from Hblock 2.  Most of the time, the updates will 
be to different regions of the parity Hblock.  However, 
what happens if the two updates go to the same 
region?  It would seem that the two updates at the 
parity buckets need to be made in the same order at all 
parity buckets.  Luckily for us, the semantics of the 
parity update operation and the fact that we are using a 
linear erasure correcting code imply that the parity 

key   non-key field 

rank key0 key1 key2 key3  parity of n.-k. fields

rank: 



updates commute.  Thus, the order of the updates at the 
parity Hblock updates does not matter. 

We still have to guarantee though that we perform 
exactly the same parity updates at all parity Hblocks 
and that if we update a data Hblock, we also update all 
parity Hblocks.  If we fail to do so, then it will be 
impossible to reconstruct data.  In [LMS04], we 
propose a method yielding a guarantee based on 
acknowledgements for LH*RS.  We could use the same 
technique for HADRAM, but it would be less wieldy 
because in HADRAM, we can update any portion of 
the Hblock.   

Instead, we are currently implementing and 
measuring a simple log based mechanism that allows 
all us to bring all data and parity Hblocks to the same 
view before recovery begins.  This implementation 
uses cumulative acknowledgments and should prove to 
be more efficient.  

   
8.3 LH*RS Coordinator Design and 

Implementation 
 
SDDS coordinators like the LH*RS coordinator 

have a small, but essential role to play.  While they 
probably do not pose a performance problem even for 
large SDDS, the system cannot function without them. 
Their basic design is simple using known algorithms 
such as Paxos.  Unfortunately, no one has yet 
implemented and measured a failure tolerant SDDS 
coordinator. 

 
8.4 LH*RS Load Balancing 
 

The LH* address algorithm extends a LH* file adds 
more and more buckets, as the file grows.  The basic 
scheme places a single bucket on a new server. In an 
applications like the central store of a PCC, the number 
of servers changes very little.  We therefore store LH* 
buckets on virtual servers.  Each actual server contains 
a number of these virtual servers.  When a server fails, 
all the virtual servers located on it are lost and 
reconstructed on “spare virtual servers” located on 
other actual servers.  We can control the allocation 
through a distributed address resolution protocol that 
maps the address of a virtual server to a physical 
server.  Thus, to calculate the address of a record, we 
first calculate the bucket address, i.e. the virtual server 
address, with the LH* algorithm and from that the 
actual solution.  For a small to medium system, we can 
implement the bucket to actual server addressing with 
tables and table look-up, i.e. an explicit mapping.  This 
mapping should not map buckets belonging to the 
same LH*RS reliability group to the same server, for 

the failure of that server destroys the availability of 
more than a single bucket and thus causes data loss for 
sure or with higher probability than designed.  The 
mapping needs to be updated every time when a server 
leaves the system gracefully or enters the system.  The 
location of the spare buckets is part of the mapping 
algorithm so that the mapping does not need to be 
updated when a server fails. 

As we have seen, the bucket to server mapping 
needs to avoid placing buckets in the same reliability 
group on the same physical server.  In addition, it 
should balance the load of all servers, which amounts 
to allocating about the same number of buckets to each 
server even as the number of buckets varies.  A result 
by Choy, Fagin, and Stockmeyer shows that this is 
difficult to solve exactly [CFM96], but hopefully, an 
approximate solution is not so difficult. 

If the number of physical servers is large, then 
good approximately load-balancing, and efficient 
assignments of buckets to servers exists [HM03], 
[HM04], but even these algorithms could be improved. 

 
8.5 Geographically Dispersed PCCs 

 
Distributed memory decouples many PCC 

applications from each other.  We could take 
advantage of this modularization to geographically 
disperse the PCCs so that it would remain functioning 
despite total loss of one or more of the dispersion sites.   
The PCC as a whole could then continue to function 
despite a local catastrophe such as a fire or a limited 
terrorist attack.   

Existing technology such as Virtual Private 
Networks (VPN) allow using existing internet 
connections while protecting the contents of 
communication cryptographically.  Unfortunately, the 
availability of such a VPN network can be hard to 
estimate, since several VPN links might pass through 
the same physical cable or through the same router 
location.   In other words, seemingly high availability 
at a higher level can hide single points of failure in the 
underlying infrastructure. 

Network delay is another problem for geographical 
dispersed VPNs and depends on the ability of 
applications to cache records locally in order to avoid 
multiple repetitive fetch operations.   Experimental 
confirmation of the viability of this structure is needed 
before we can implement PCC in this manner. 

 
8.6 PCC Architecture 

 
A central, highly available, but slower repository 

for all data records in a PCC opens up more possibility 



for PCC design than merely allowing outside status 
assessment.  A discussion of these possibilities is 
beyond the scope of this paper. 

 
9 Conclusions  

 
In this paper, we proposed the use of highly 

available distributed memory as the central component 
of a new architecture for power control centers.  This 
architecture allows cheaper, more robust, and more 
modular designs for power control centers.  We have 
identified a number of important research questions.  
We are currently implementing and measuring central 
components of this design. 
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