

Reliability @ Risk Concept

Sam Brattini, P.E. December 16, 2004

КЕМА⋞

The Problem

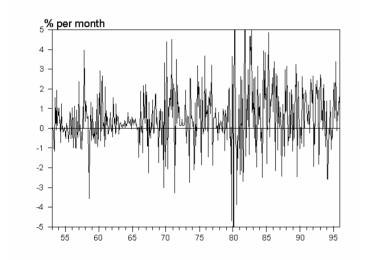
- Reliability analysis used today was developed in 1967
 - N-1 Contingency Analysis
 - Deterministic analysis of quantitative events
- Analysis needed to perform:
 - Probabilistic analysis including both quantitative and qualitative events
 - Move from "Safe/Not Safe" analysis to include "How Safe" analysis

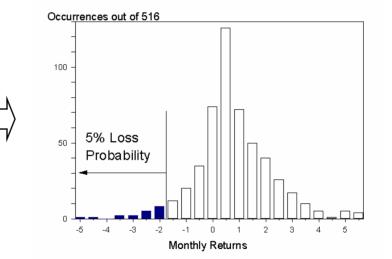
Events Affecting Reliable Operation

- Quantitative
 - Real time limit violations
 - N-1 contingency limit violations
- Qualitative
 - Weather
 - Scheduled outages
 - Disturbances
 - Control or protection system failures
 - Human issues

Value at Risk (V@R)

- Risk assessment method used in financial industry
- Uses statistical techniques to provide a summary measure of maximum risk over a time horizon





V@R Example

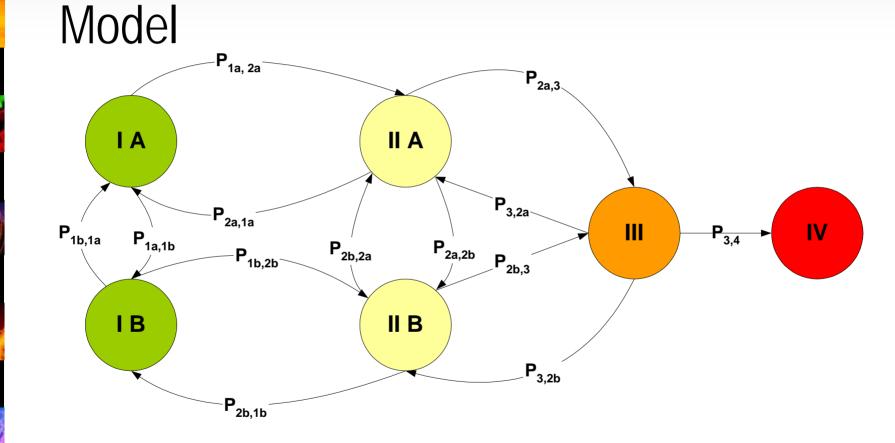
Potential Investment Loss Problem

Monthly returns over 516 months

5% probability of monthly return lower than -1.7%

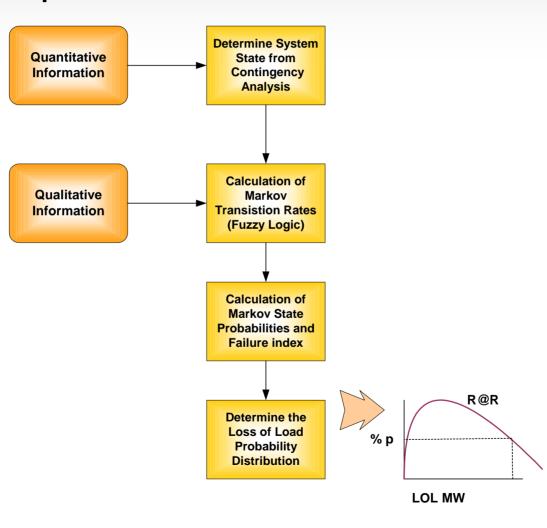
V@R Concept Applied to Power System Operations – R@R

Power System States


State	Condition	Real Time Limit Violations	Contingency Limit Violations	Comment
ΙΑ	Secure	No	No	
I B	Secure	No	Normal - Yes	Action required
ΠΑ	Insecure	Normal - Yes	Emergency – No	Action required
II B	Insecure	Normal - Yes	Emergency – Yes	Action required
III	Emergency	Emergency - Yes		Immediate response required
IV	Failed	Emergency - Yes		System failed (Load lost)

KEMA,INC.

R@R Power System State Markov



7

Conceptual R@R Process

Conceptual Results of R@R

- Real Time Operations
 - The probability of system failure can be used as an index to measure system risk

Planning

 Probability of loss of load over a time horizon can be used for risk assessment

Potential Research

- Calculation of Markov model transition rates
 - Fuzzy logic
- Calculation of Loss of Load Probability
 - Aggregation of results of probabilistic contingency chains and MW loss/State produces the R@R probability density function
- Probabilistic contingency analysis
- Ralph Masiello; ralph.masiello@kema.com

