Demand Response as a Substitute for Electric Power System Infrastructure Investments

Jason W Black (jwblack@mit.edu) Massachusetts Institute of Technology

- Overview
- Potential for Residential Demand Response
- Thermal Storage Example
- Substitution for Capacity Investments
 - Generation Capacity Example
 - Simple 3-node Transmission Example
- Future Research

Potential for DR

- Electricity Demand is Indirect
- Current System designed for Exogenous Demand
- Three Types of Demand -
 - Power: immediate/no delay (lights, TVs, etc)
 - Deferrable Power: Can be delayed for short time periods
 - Energy/Thermal: Indifferent to time of consumption

Potential for Residential DR

- Thermal Demand (>50% of household demand)
 AC (>20%)
 - >30% of total peak demand (including commercial AC)
 - Hot Water (~20%)
 - Refrigeration (~10%)
- Deferrable Demand (> 5%)
 - Washer
 - Dryer
 - Dishwasher

Thermal Storage

- Use Temperature to "store" electricity
 - Controlled cycling of thermal loads
 - Pre-heat or pre-cool
 - Maintain consumer comfort
 - Reduce peak loads
 - Minimize costs

Thermal Storage Example

- AC control
- Assumes RTP
- Uses PJM Data (Price, Load, Supply, Temp)
- Assumes 2 °F temperature deviations from set point with no loss of comfort (ASHRAE)

Thermal Storage Example

$$Min_e C_{ac} = \sum_i P_i * q_i$$

s.t.
$$0 \le q_i \le q^{\max}$$

$$T^{\min} \leq T_i \leq T^{\max}$$

Where:

 $T^{min} = T^{ideal} - d, T^{max} = T^{ideal} + d$ d = Acceptable temperature deviation q_i - energy (kWh) consumed in hour i. P_i - price of electricity (\$/kWh) in hour i.

$$T_{i+1} = \varepsilon T_i + (1 - \varepsilon)(T^o - \eta^* q_i / A)$$

Thermal Storage Example

Date	8-Jul-03		Normal Cycling			Load Control		
Hr	Price (\$/MWh)	Temp (outside)	Temp (inside)	Output (KWh)	Cost (mils)	Temp (inside)	Output (KWh)	Cost (mils)
1	\$ 32.43	76	75.0	0.09	2.92	75.1	0.00	0.00
2	\$ 24.23	78	75.0	0.31	7.51	75.3	0.00	0.00
3	\$ 22.34	77	75.0	0.20	4.47	75.4	0.00	0.00
4	\$ 21.43	75	75.0	0.00	0.00	75.4	0.00	0.00
5	\$ 21.41	75	75.0	0.00	0.00	73.0	3.35	71.65
6	\$ 23.45	74	74.9	0.00	0.00	73.0	0.09	2.11
7	\$ 30.55	75	74.9	0.00	0.00	73.0	0.20	6.11
8	\$ 39.65	77	75.0	0.10	4.16	73.0	0.40	15.86
9	\$ 49.66	79	75.0	0.40	19.86	73.0	0.60	29.80
10	\$ 58.45	82	75.0	0.70	40.92	73.0	0.90	52.61
11	\$ 68.55	85	75.0	0.99	67.86	73.0	1.19	81.57
12	\$ 82.31	84	75.0	0.90	74.08	73.0	1.10	90.55
13	\$ 92.16	85	75.0	0.99	91.24	73.5	0.53	48.98
14	\$ 105.32	87	75.0	1.21	127.44	74.4	0.00	0.00
15	\$ 113.13	89	75.0	1.41	159.51	75.4	0.00	0.00
16	\$ 118.23	88	75.0	1.30	153.70	76.3	0.00	0.00
17	\$ 126.77	86	75.0	1.10	139.44	77.0	0.00	0.00
18	\$ 118.94	86	75.0	1.10	130.84	77.0	0.90	107.05
19	\$ 93.85	86	75.0	1.10	103.23	77.0	0.90	84.46
20	\$ 83.79	85	75.0	0.99	82.95	77.0	0.79	66.19
21	\$ 79.89	83	75.0	0.79	63.11	77.0	0.59	47.13
22	\$ 69.03	83	75.0	0.79	54.53	77.0	0.59	40.73
23	\$ 48.95	81	75.0	0.60	29.37	77.0	0.40	19.58
24	\$ 43.72	81	75.0	0.60	26.23	75.0	3.26	142.39

88% reduction in Peak Demand, 33% reduction in Costs

Substitution for Capacity Investments

- Evaluation of DR potential should include Reductions in:
 - Generation Capacity
 - Reserves/Ancillary Services
 - -LMP
 - Transmission and Distribution Investments

Generation Capacity Example

•Preliminary Results:

-Adoption by 25% of households yields:

-8% reduction in peak demand

-12% reduction in System Gen Capacity

Generation Capacity Example

3 Node Transmission Example

No DR: Peak Price \$75/MWh N-1 Violated: 1MW capacity needed

With DR (10%): Price \$50/MWh N-1 satisfied

Future Research (Engineering)

- Transient Stability
- Effects on Efficiency from Controlled Cycling
- Development of Control Schemes
 - Cost Effect, Acceptable, Ease of Use
- Integration of DR into Ancillary Services
- Integration of DR into Protection Schemes
- Effects on Losses

Future Research (Economics)

- Market Stability
- Potential for Needle Peaks
- Real Options value of DR
- Effects on Market Power
- Potential for Stranded Assets
- Determination of Rebound Effect
- Market Design and Incentives (Coordinated vs. Decentralized)

Future Research (Policy)

- Status Quo Bias
- Effects of Subsidies and Information Programs
- Effects on Stakeholders
- Regulatory Capture
- Potential for Coalitions

Conclusion

- Large Potential for DR
- Analysis should include dynamic effects on T&D, ancillary services, reliability, etc
- Further Research Necessary

Questions??

• Email: jwblack@mit.edu

Additional Slides

ASHRAE Comfort Graph

Generation Capacity Example

- Dynamic Model of aggregate affects on MCP and Generation Mix
- Preliminary Results:
 - Adoption by 25% of households yields:
 - 8% reduction in peak demand
 - 12% reduction in System Gen Capacity

