

Some thoughts on....

The Future of Electric Power Transmission

Improve Capacity thru

- 1. Better using intrinsic characteristics of transmission lines
- 2. Adding equipment to achieve greater flows

Series compensation Reactive power sources Phase angle shift

Increasingly dependent on power electronics "FACTS"

L^{MOD} Current-activated Tension Adjuster

i^{MOD} Distributed Reactive Drop Compensation

Series quadrature voltage adjuster:

Improve Capacity thru

ne

- 1. Better using inherent characteristics of transmission lines
- 2. Adding equipment to achieve greater flows

Series compensation **Reactive power sources** Phase angle shift

> *Increasingly dependent on power* electronics "FACTS"

How many MW/ft²?

Poynting Vector Analysis

Inc

How are we doing?

$\mathbf{I}_{\mathbf{m}}^{\mathbf{MOD}}$ It Works....but imagine the substation!

1. ACCR

3 Composite Conductor (ACCR)

A Materials Innovation

New Composite Material (replaces steel)

> High Temperature Aluminum

High Performance

- Lightweight High Strength
- Low Sag at High Temperature

1^{MOD} Potential for Current & Voltage Uprating

Reconductoring allows:

- 1. Current uprating by reducing sag
- 2. Voltage uprating by creating extra clearance and room for more insulators. (Light weight allows bundling)

1^{MOD} 2. High Surge Impedance Loading Construction

X reduced C increased

Voltage	SIL (MW)	
(kV)	Normal	HSIL
69	9-12	10-40
138	40-50	50-120
230	120-130	130-440
500	950-1,000	1,000 - 2,000

MOD 3. HVDC Conversion

Advantages:

- 1. Full time-utilization of insulation
- 2. DC Operating advantages

Obstacles:

- 1. High cost per *incremental* kW
- 2. Bi-pole system leaves 1/3 of a valuable line investment idle

An extra conductor..... Why not an extra bridge?

Conductor 3 is idle except in emergencies

One pole reversible, in current & voltage:

Pole 3 alternately relieves current from pole 2...then pole 1

One reversible pole:

Pole 3 alternately relieves current from pole 2...then pole 1

Transitional Ramps

Ramp holds constant DC Power

Modulating Pole regulated to hold neutral current to zero

4° of a 6 minute period = 4 seconds

Constant-polarity currents overlap. providing time to reverse modulating pole polarity

(Detailed control simulation demonstrated by Dennis Woodford)

Transitional Ramps

Simulation (By Dennis Woodford) of the transition with example control logic:

Economics - AC Conversion

Issues:

- 1. Tri-pole terminals are 10% to 20% more expensive per kW
- 2. This premium is offset by higher DC/AC power ratio...lower cost per incremental kW
- 3. Tri-pole makes 37% better use of prior transmission line investment
- 4. Tri-pole losses are lower
- 5. Tri-pole has 50% higher redundancy.

A 500 kV Conversion Example

Different ways to bring loading up to thermal capacity

1 MOD

St. Clair Curve for 500 kV and 230 kV:

MOD

1 MOD

Convert the 230 to tri-pole HVDC, feed terminals from the 500 kV Bus (If the 230 kV can be spared from its own network)

What about new HVDC circuits?

MOD nc

Bi-pole w Ground ReturnTri-pole without Ground ReturnMW = 1.00 R = .5MW = 1.37 R = .78

All towers have approximately equal wind & weight loading....approximately the same cost in \$/mile

HVDC options – all equal MW

1 MOD

- It's worthwhile reviewing the basics of conductor configuration and use...e.g. "bundled circuits"
- DC will play a bigger role in future systems. Tri-pole appears to have cost and reliability advantages both for conversion and for new lines where metallic ground return is used.
- Higher voltage bi-directional valves are needed both multi-terminal and tri-pole applications.
- Reliability criteria need to better accommodate internal circuit redundancy.