Semidefinite Programming for Power System State Estimation

Yang Weng, Qiao Li, Rohit Negi and Marija Ilić Carnegie Mellon University

Motivation

- Based on real-time measurements, Static State Estimation serves as the foundation for monitoring and controlling the power grid.
 - Classical method: For AC power system, state estimation is usually formalized mathematically as a Weighted Least Square or Weighted Least Absolute Value problem, and solved by Newton's method.
 - * Problem: Highly sensitive to the initial point, as it is essentially a local search algorithm.
 - * New approach: Employ Semidefinite Programming (SDP) to effectively obtain a good initial state.

Preliminaries of State Estimation

- Goal:
- To determine the most likely state of the system based on the quantities that are measured. [1]
- Model: z = h(x) + u
 - h: Nonlinear functions, relating state and measurements
 - State(x): Voltage magnitudes and phase angles
 - Measurements (z) and noise (u)

Optimization:

minimize $J_p(\mathbf{x})$ subject to $P' = P(\mathbf{x}) + \mathbf{u}_p$ $Q' = Q(\mathbf{x}) + \mathbf{u}_q$ $P'_f = P_f(\mathbf{x}) + \mathbf{u}_{pf}$ $Q'_f = Q_f(\mathbf{x}) + \mathbf{u}_{qf}$ $P'_t = P_t(\mathbf{x}) + \mathbf{u}_{pt}$ $Q'_t = Q_t(\mathbf{x}) + \mathbf{u}_{qt}$ $|V_k|' = |V_k| + \mathbf{u}_v$

$$\min_{\mathbf{x}} J_p(\mathbf{x}) = \left(\sum_{i=1}^m \left| \frac{z_i - h_i(\mathbf{x})}{\sigma_i} \right|^p \right)^{\frac{1}{p}}$$

Numerical Result

- Simulation for IEEE 14 bus (SDP initial guess v.s. Flat start)
- The state: 14 voltage magnitudes and 14 phase angles
- The measurements:
- Voltage magnitudes
- Active and reactive power flow on the lines
- Active and reactive power injection at buses
- 100 random sample sets
- Objective Comparison

WRSS =
$$\sum_{i=1}^{m} \left(\frac{z_i - tr(A_i W)}{\sigma_i} \right)^2$$

- Figure. Performance comparison for the 14 bus case.
- (A lower bound is also computed from relaxed problem's objective)

- State Comparison

$$P_k = Re\{V_k^H\}$$

$$W = UU^T$$

Generalized Approach., 1999.

PWRD-1, no. 3, pp. 355–360, Aug. 2010.

$$P_k = Re\{V_k^H I_k\}$$

 $= tr(Y_k W)$

$$= \frac{1}{2} \begin{pmatrix} Re(Y_k + Y_k^T) & Im(Y_k^T - Y_k) \\ Im(Y_k - Y_k^T) & Re(Y_k^T + Y_k) \end{pmatrix} = U^T \widetilde{Y}_k U$$

$$= tr(\widetilde{Y}_k U U^T)$$

New Approach

- Reformulate the state in another form. [3]
- Relax the non-convex constraint to convexify the problem.
- Use the "relaxed" estimate as a new initial guess for Newton's method

$$\min_{W} J_p(W) = \left(\sum_{i=1}^{m} \left| \frac{z_i - tr(A_i W)}{\sigma_i} \right|^p \right)^{\frac{1}{p}}$$
subject to $W \succeq 0 \quad \operatorname{rank}(W) = 1$

• Constraint relaxation:

$$\min_{W} J_p(W) = \left(\sum_{i=1}^{m} \left| \frac{z_i - tr(A_i W)}{\sigma_i} \right|^p \right)^{\frac{1}{p}}$$

subject to $W \succeq 0$.

$$\hat{W} = \sum_{i=1}^{p} \lambda_i g_i g_i^T$$

State Recovery:

$$\hat{\mathbf{x}} = \hat{U}_{1:n} + j\hat{U}_{n+1:2n}$$

 Use it as initial guess for Newton's method

Acknowledgment

Reference

 This work was supported in part by US NSF awards 0931978, 0831973 and 0347455.

• [1] A. Abur and A. G. Exposito, "Power System State Estimation:

• [2] A. Monticelli, State Estimation in Electric Power Systems, A

• [3] J. Lavaei and S. H. Low, "Zero duality gap in optimal power flow

problem," Technical Report, California Institute of Technology, vol.

Theory and Implementation." Marcel Dekker Inc, 2004.

