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Motivation

Challenges with Renewable Generation
• Inter-temporal Variability
• Limited Predictability

Benefits of Explicit and Implicit Forms of Energy Storage
Services
• Improve utilization of renewables
• Reduce energy imbalances and associated penalties
• Ancillary services such as regulation

Need to Understand Impact of Energy Storage
• Define unique features of heterogenous storage devices
• Pose the problem of analyzing impact of storage
• Assess the value of storage to power system operations
Need to quantify benefits of storage across power system operations using
a unified framework.

System Theoretical Perspective

Three major categories of energy conversion components are genera-
tors, loads, and energy storage
Energy Storage Module Definition [1]
• it lacks a primary energy source,
• −P max

s ≤ Ps ≤ P max
s , i.e., it can either deliver or draw power

from the grid,
• dEs

dt = Ps is controllable, and
• Emin

s ≤ Es ≤ Emax
s , i.e., it has a finite storage reservoir whose

level is controllable.
Figure: Schematic of Energy Storage
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Multi-time-scale Modeling
Table: Temporal decomposition

Control stage Time scale Assumption
Primary Within

seconds
Dynamics are locally stabilizable

Secondary (AGC) 10 s to minutes Primary dynamics are already
stabilized

Tertiary (ED, UC) 5 minutes to
hours

Tie line flows and system fre-
quency are at pre-specified values

Primary Control Model
Differential equations governing the dynamics of variable generator and
storage combination are:

ẋv = fv(xv, xnetwork
v , uv, u

ref
v ) (1)

ẋnetwork = g(x) (2)
ẋs = fs(xs, xnetwork

s , us(xv), u
ref
s ) (3)

xv state variables of variable generator
xnetwork

v interaction of generator with network
uv generator control variables
u

ref
v generator controller set points

xs states of the storage unit
xnetwork

s interactions of storage with network
us storage control variables
u

ref
s storage control set points

With fast responding energy storage the combined response from both
modules could be improved [2].

Secondary Control Model
In Automatic Generation Control the governor reference is changed in
response to frequency deviation:

ωref [m] = βS(ω[m] − ω[m − 1]) (4)

Δω[m] = 1
βG + βS + βL

Pimb[m] (5)

where βi represents the droop characteristics of module i. Droop of energy
conversion module i is defined as

βi = Δωi[m]
ΔPi[m]

|Δω
ref
i =0 (6)

With the energy storage the overall system droop characteristic becomes
β = βG + βL + βS, where subscripts G, L, S represent aggregated
generation, load, and storage, respectively. Thus energy storage can
contribute to frequency regulation.
Tertiary Control Model
Energy storage can participate in load following and load leveling. Power
absorbed or delivered by the energy storage unit Ps[K], is the decision
variable. Ramping rate is Rs

P min
s ≤ Ps[K] ≤ P max

s (7)
Es[K] = Es[K − 1] − ηPs[K − 1] (8)

0 ≤ Es[K] ≤ Emax
s (9)

|Ps[K] − Ps[K − 1]| ≤ Rs (10)

Operational Value of Energy Storage
• Different types of storage devices can participate at different time scales

in the control action, depending upon their inherent characteristics such
as power rating, energy capacity, droop, ramping etc.

• Participation in multiple control actions has potential for higher profits
for storage service providers

• Contribution by storage can reduce system cost for balancing actions

Unified Operational Value Index

Proposed operational value index considers multiple revenue streams:
energy, regulation, spinning reserve and benefits from deferral of sys-
tem upgrades attributed to the energy storage device.

Vs =

N∑
k=1

(λe[k]Ps(k)+λruP ru
s (k)+λrdP rd

s (k)+λsrP sr
s (k))+PVd

T.P max
s

(11)
For this case study we consider only the operational value in ISO
market operations.

Decision Making Framework
The decision of the extent of storage participation in markets can be for-
mulated as a co-optimization problem based on forecast of prices. The
following expected value problem is solved, with the objective of profit
maximization [3].

max
�Ps(k), �Ps

ru(k), �Ps
rd(k), �Ps

sr(k)
E[

N∑

k=1
{λ̂e(k)Ps(k)+λ̂ru(k)P ru

s (k)

+λ̂rd(k)P rd
s (k) + λ̂sr(k)P sr

s (k) − C(k)(Ps(k))2}] (12)
s.t.

Es(k) = Es(k − 1) − [Ps(k) − ηcP
rd
s (k)+

1
ηd

P ru
s (k)].Δt (13)

Ps(k) + P ru
s (k) + P sr

s (k) ≤ P max
s (k) (14)

P rd
s (k) ≤ Ps(k − 1) + P max

s (k) (15)
Emin

s ≤ Es(k) ≤ Emax
s (16)

−P max
s ≤ Ps(k) ≤ P max

s (17)
Ps(k) − Ps(k − 1) ≤ Rs (18)

P ru
s (k) ≥ 0 (19)

P rd
s (k) ≥ 0 (20)

P sr
s (k) ≥ 0 (21)

Nomenclature

P max
s Maximum charging/discharging power (MW)

Emax
s Maximum energy storage level (MWh)

Emin
s Minimum energy storage level (MWh)

Rs Ramp rate of storage
ηs Roundtrip efficiency of the storage device
N Number of time periods
Δt Duration of time periods
Es(k) Energy storage level of device
λ̂e(k) Forecast energy market price ($/MWh)
λ̂ru(k) Forecast regulation up capacity price ($/MW)
λ̂rd(k) Forecast regulation down capacity price ($/MW)
λ̂sr(k) Forecast spinning reserve capacity price ($/MW)
Cs(k) Charging/discharging cost of energy storage
Ps(k) Energy sold/purchased by storage (MWh)
P ru

s (k) Regulation up capacity sold (MW)
P rd

s (k) Regulation down capacity sold (MW)
P sr

s (k) Spinning reserve capacity sold (MW)

Case Study

Figure: Modified IEEE RTS 24 bus system
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Table: Storage Technologies and Applications

Technology Energy Regulation Spinning Reserve
Flywheel No Yes No

PEV Yes Yes No
Thermal Load Yes No Yes

Thermal Load Model
Using smart controls that act in response to price signals, thermal loads
such as air-conditioning can act as analogues to energy storage. The model
for power consumption is:

T in(k + 1) = εT in(k) + (1 − ε)(T out(k) − ηcop
P (k)

A
) (22)

T in(k) = inside temperature in period k,
T out(k) = outside temperature in period k,
P (k) = power consumption in period k,
ηcop = coefficient of performance of cooling system = 2.5,
τ = duration of control periods = 1 hour,
TC = time constant of system = 2.5 hours,
ε = exp[−τ/TC] = factor of inertia,
A = overall thermal conductivity = 0.14 kW/◦F
T min ≤ T in(k) ≤ T max, ∀k.
Smart controls reduce power consumption while maintaining inside tem-
perature within preset limits.

Day Ahead Market Simulation
Figure: Forecast and Actual Day-Ahead Market Prices

(a) Energy and Reserve Prices
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(b) Flywheel and Thermal Load
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Results
Figure: Storage participation in Day-Ahead Market

(a) PEV
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(b) Flywheel and Thermal Load
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Storage decisions based on forecast prices, revenue on actual prices. Aver-
age results for 1000 Monte Carlo runs are:

Table: Day-Ahead Market Revenue ($/MW)

Technology Energy Regulation Spinning Reserve
Flywheel - 120.30 -

PEV 495.97 226.95 -
Thermal Load 63.61 - 3.21

Hourly market constrains participation of flywheels. Short duration mar-
ket would realize full potential of such fast responding storage devices.

Conclusions

• Unified operational value index - first step for assessment of
benefits of energy storage across different technologies and market
designs

• Cross-market co-optimization model - decision making tool
for energy storage service providers

• Distributed energy storage can improve system flexibility by
providing ancillary services

Future Work

• Empirical study of proposed framework using real world data
• Regulatory and pricing mechanism design for distributed storage
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