

Problems from Power System

- Uncertainties in electric power distribution system:
- Wind power, DG, PHEV, responsive load, etc.
- Lack of real time measurements:
- Probabilistic Model for Uncertainties:
- Wind forecast model, EV pattern, Load profile.
- A Probabilistic Solution of Distribution System

Advances in High Performance Computing

- Potential Benefit: Moore's law!

- An Affordable Supercomputing Center for Distribution Substation

A Multi-core High Performance Computing Framework for **Probabilistic Solutions of Distribution Systems**

Tao Cui and Franz Franchetti

Email: tcui@ece.cmu.edu

Squeezing Computation Power out of the Computer Architecture. Push Performance to the Hardware Peak.

Switch Buffer A,B								
RNG & Load Flow in Buf A_N				RNG & Load Flow in Buf B_N				
					,			
RNG & Load Flow in Buf A ₂				RNG & Load Flow in Buf B ₂				
RNG & Load Flow in Buf A ₁				RNG & Load Flow in Buf B ₁				
					,			
KDE in all Buf Bs	Result Out	Sync Signal Out		KDE in all Buf As Result Out				
or (SCADA Interval)				Sync Signal				

Problem SizeApprox.Approx.(IEEE Test Feeders)flopsCore2 E		Approx. Time / Core2 Extreme	Approx. Time / Core i5	Baseline. C++ ICC –o3 (~300x faster then Matlab)	Comments				
IEEE37: one iteration	12 K	~ 0.3 us	~ 0.3 us						
IEEE37: one load flow (5 Iter)	60 K	~ 1.5 us	~ 1.5 us		0.01 kVA error				
IEEE37: 1 million load flow	60 G	~ < 2 s	~ < 1 s	~ 60 s (>5 hrs Matlab)	SCADA Interval:				
IEEE123: 1 million load flow	200 G	~ < 10 s	~ < 3.5 s	~ 200 s (>15 hrs Matlab)	4 seconds				

Monte Carlo Results and Web User Interface

Conclusions & Future Work

Program optimization / parallelization:

Applications of fast distribution power flow solver:

- Probabilistic monitor of distribution system

Acknowledgement & Publications

- Related Publications:
- The 43rd North American Power Symposium (NAPS), Boston, USA, Aug 2011.
- IEEE PES General Meeting 2012, San Diego, CA, USA.

Latest Results

Performance on Different Machines for IEEE37 Testfeeder

• Enable fast computation of large amount of power flow.

Performance can be further increased on new platform:

• Tracking new development in CPU micro-architecture.

• GPU: small, less powerful but many more cores.

• Fast time series solution; statistical analysis...

This work is supported by NSF through awards 0931978 and 0702386.

1. T. Cui, F. Franchetti, "A Multi-Core High Performance Computing Framework for Distribution Power Flow,"

2. T. Cui, F. Franchetti, "A Multi-Core High Performance Computing Framework for Probabilistic Solutions of Distribution Systems,"

