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Our research method will involve a combination of theoretical analysis, 
simulations and real-life experiments to evaluate alternative methods for 
harnessing the coordinated responses of smart devices for system-level 
purposes. These methods will range from centralized strategies, where signals 
are introduced through the distribution system that trigger and coordinate the 
responses of individual devices, to highly distributed strategies, where each 
device is making decisions based entirely on local information, but these 
decisions are implemented so that the emergent behavior is the desired 
system-level control action.  
Our initial focus will be on the design of software for plug-level devices for 
controlling thermal loads such as refrigerators. Then we will focus on 
understanding the aggregate effect of smart devices. Adjusting their power 
consumption based on the need for ancillary services will depend upon several 
factors, including the duration of the ON-OFF periods, the total power change 
that can be effected by each device, the number of devices taking action in the 
system, and the relative phases of the control actions. Finally we will focus on 
different control strategies that leverage on the responsiveness of smart loads 
at the grid level. It is necessary to incorporate models of the load influenced by 
smart devices into system-level simulation studies.  
 
 

 
 
 

  

Energy infrastructure is being rapidly populated with smart devices that can 
monitor and control individual end-use loads, opening the door for a wide 
variety of applications and a re-thinking of the traditional power distribution 
system.  The typical use cases for these smart devices relate to the 
reduction of energy consumption through a number of mechanisms ranging 
from load shedding during peak demand hours (demand response), to 
occupancy-controlled heating, ventilation and air conditioning (HVAC) and 
lighting systems, to simply providing real-time energy consumption 
information to end-users in order to encourage more energy-efficient 
behavior. However, more dynamic mechanisms are possible through 
distributed fine-grained control of small loads, which is the focus of this 
research. 
The main problem we seek to address in this project is how to leverage end-
use electrical loads to provide ancillary services (particularly balancing 
generation to load through frequency regulation) in the power grid. In 
particular we would like to shed light on the system-level properties that can 
be influenced through coordinated (centralized or otherwise) control of a 
large collection of smart loads, where we use the term smart to denote their 
ability to react to measurements or signals.  
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Year 1 Year 2 Year 3 

Control Algorithm Development of a local 
controller 

Development of a 
centralized controller 

Development of a distributed 
controller 

Type of Load Small TCLs* Passive Loads, Small and 
Large TCLs 

All Loads 

Type of Facility Laboratory, Residential Commercial, Residential Mixed 

Number of Loads Implementation: 101 

Simulation: 103 
 

Implementation: 102 

Simulation: 104 
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Vision:  
Smart devices in the power grid to provide 
load-balancing functions currently assigned 
to a relatively small number of bulk power 
sources and devices. 
 
Characteristics: 
• Non-Intrusive 
• Ability to detect the type of the device 
connected 
• Appliance condition awareness 
• Actuation 
 
Research Timeline: 

 
 
 

  Unlike traditional methods, appliances can be used as 
providers of short-term (seconds) ancillary services, such as 
frequency control and load balancing. 
Research Questions 
! What is the optimum control strategy for different types of 
appliances/ building types? 
! What are desirable communication protocols for distinct 
combinations of control strategy and the appliance type?  
! Can contextual information on buildings help develop better 
demand side management techniques? 
! Can sensor fusion and machine learning techniques be used 
to develop solutions that leverage the existing infrastructure? 

! Test bed for sensor 
fusion opportunities and 

HVAC control. 
! Test bed for 

communication 
framework between the 

appliances and other 
members. 
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The paper proceeds as follows. In Section 2, we de-

scribe our modeling approach and derive an LTI system

that captures the temperature dynamics of the TCL pop-

ulation. In Section 3, we present different options for in-

formation exchange between the central controller and the

TCL population. Section 4 presents the MPC approach,

which is tested in a case study in Section 5. In Section 6,

we present ideas for further research and conclude.

2 Modeling Approach

2.1 Individual TCL Model

The individual TCL model is the same as that used in

[6]. The parameter, a, which governs the thermal charac-

teristics of each TCL, i, is defined as:

ai = e−h/CiRi , (1)

where Ci and Ri are the thermal capacitance and resis-

tance of TCL i, and h is the time step.

The difference equation describing the temperature dy-

namics of TCL i is:

θi,t+1 = aiθi,t + (1− ai)(θa,i −mi,tθg,i) + ωi,t, (2)

where θ is the internal temperature of the TCL, θa is the

ambient temperature, m is a dimensionless discrete vari-

able equal to 1 when the TCL is ON and 0 when it is OFF,

and ω is a noise process. The ON temperature gain is:

θg,i =

�
RiPrate,i for cooling devices

−RiPrate,i for heating devices
, (3)

where Prate,i is the TCL’s rated power. θg,i is positive

for cooling TCLs and negative for heating TCLs.

2.2 TCL Population Model

To simulate the behavior of a population of TCLs, we

could aggregate thousands of single TCL models using

(2); however, this would be computationally intensive and

the aggregate system would not be in a form amenable to

many control techniques. Instead, in this paper we will

work with a discrete LTI system in state space form:

xk+1 = Axk + Buk (4)

yk = Cxk, (5)

which allows us to use a wide range of system analysis

tools and advanced controls techniques.

Assume all TCLs in a population have the same tem-

perature setpoint, θset, and temperature dead-band width,

δ, (or normalize diverse dead-bands). Divide the dead-

band into Nbin/2 temperature intervals. A TCL in a cer-

tain temperature interval can be either ON or OFF. Divide

each temperature interval into two state bins, one for TCLs

that are ON and one for TCLs that are OFF. This results

in Nbin state bins. The state vector x contains the number

of TCLs in each state bin, or, if normalized by the total

number of TCLs, the fraction of TCLs in each state bin,

which is equivalent to probability mass in the infinite sys-

tem limit. In the remainder of the paper, we will refer
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Figure 1: State bin transition model.

to x as a vector of probability mass. The A-matrix can

be thought of as a Markov transition matrix describing the

probability of TCLs moving from one state bin to the next.

Figure 1 shows how the state bins map to the temperature

dead-band.

We next present an analytical derivation of the A-

matrix, which we compare to an identified A-matrix. We

will discuss the structure of the B and C matrices and u
and y vectors in subsequent sections.

2.2.1 Analytical Derivation of the A-matrix

In this section, we will analytically derive the elements

of the A-matrix. The purpose of this exercise is to demon-

strate that the modeling framework is rooted in basic prob-

abilistic logic. In subsequent sections, we will estimate the

A-matrix with data generated by simulating (2).

We assume that all TCLs have the same resistance

(Ri = R) and rated power (Prate,i = Prate). This implies

that all TCLs have the same temperature gain (θg,i = θg).

We also assume that all TCLs experience the same ambi-

ent temperature (θa,i = θa), which is constant over time.

Lastly, we ignore the noise process ω. Therefore, (2) be-

comes:

θi,t+1 = aiθi,t + (1− ai)(θa −mi,tθg). (6)

Take a TCL going from θstart to θend in one time step:

θend = aiθstart + (1− ai)(θa −mi,tθg). (7)

Now consider a group of TCLs that are either all ON or all

OFF (mi,t = mt). The probability of TCLs going from

θstart to θend is:

P(θend|θstart) = P(ai), (8)

where we have assumed that P(ai) is independent of tem-

perature. This probability can be computed by solving for

ai:

ai = 1− θend − θstart

θa − θstart −mtθg

=
θa − θend −mtθg

θa − θstart −mtθg

. (9)

Consider the same group of TCLs. The probability of

TCLs going from θstart to some θend, which is within a state

bin (θn < θend < θn+1), is:

P(θn < θend <θn+1|θstart) (10)

= P(a1 < a < a2) =
� a2

a1

p(a) da,

!'-#*'++)*%
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Research Questions 
Ø What is the optimum control strategy for different types of 
appliances/ building types? 
Ø What are desirable communication protocols for distinct 
combinations of control strategy and the appliance type?  
Ø Can contextual information on buildings help develop better 
demand side management techniques? 
Ø Can sensor fusion and machine learning techniques be used to 
develop solutions that leverage the existing infrastructure? 
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Future Research 
Currently we are working on formulating a Markov Decision Processes 
(MDP) based model to provide a more generic foundation to support 
various Reinforcement Learning techniques. 
 
Advantages 
•  A case with partially observable states can easily be formulated as 

POMDPs (Partially Observable Markov Decision Processes) 
•  Model-free approaches can yield to implementations with more 

realistic assumptions 
 
Challenges 
•  Relatively large state and decision spaces 
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