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Conclusions and Future Work 

  
T  

 Smart Charging of Electric Vehicles allows demand side participation 
in Energy and Ancillary Services Markets 
 Intermittent renewable generation requires more ancillary services  
 EV owners want to minimize charging costs 
 EVs can provide Secondary Frequency Regulation by adjusting EV charge 

rate to follow control signal  

 Existing Deterministic Optimization Methods Ignore Regulation Signal 
Effect on State of Charge 
 Assume integrated signal energy  is zero over one hour, or use expected 

value  
o Bad Assumption 

 A Stochastic Method is Needed to  
Consider the Distribution of the  
Regulation Signal 

 Contributions: 
 First  tractable stochastic model of  

EVs providing regulation 
 First to model pro-rated  

contract penalties  
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 Pavg- average charge rate 
 B – Regulation Bid (identical up and down) 
 B ≤ Pavg and B ≤ Pmax - Pavg  

 State of charge takes a random walk 
 Battery might not be charged by desired time:  

o Inconvenience cost can be given by EV owner ($/hr late) 
 Battery might reach capacity before regulation contract expires, breaking 

contract:  
o pro-rated penalty is a function of time, not energy 
o Binary indicator variables (𝑰𝒕) indicate if contract was violated in each 

sub-hourly timestep 

 Must solve for optimal average charge rate and regulation bids 

Solution Algorithm 
 Convex Hull Stochastic Dynamic Programming 
 Use a piecewise-linear, function to approximate the optimal value function 

o avoids using more integer variables in backwards recursion 
 Optimal Value Function – Vh(Eh) 

o Def:  Expected cost of making optimal decisions from stage h through 
the end of stage H given that the state of charge is Eh at the start of 
hour h  

1. Discretize the feasible state space at the final decision time, Ebatt(H), into N 
points  

2. For i= 1, …, N solve 

  𝑉𝐻 𝐸𝑏𝑏𝑏𝑏𝑖,𝐻  = min𝑃𝑖,𝐻 ,𝐵𝑖,𝐻 𝔼𝜔 𝐶𝐻 𝐸𝑏𝑏𝑏𝑏𝑖,𝐻 ,𝑃𝑖,𝐻 ,𝐵𝑖,𝐻 ,𝑅𝐻𝜔 + 𝑉𝐻+1 𝐸𝑏𝑏𝑏𝑏𝑖,𝐻+1  

3. Approximate 𝑉𝐻 ∙  with 𝑉�𝐻 ∙  , a piecewise-linear function on the convex hull 
of the points 𝑉𝐻 𝐸𝑏𝑏𝑏𝑏𝑖,𝐻   

 

 

 

 

 

 

 

 

3. For h= H-1, H-2, …, 1 

          For i = 1, …, N solve 
𝑉ℎ 𝐸𝑏𝑏𝑏𝑏𝑖,ℎ  = min𝑃𝑖,ℎ ,𝐵𝑖,ℎ 𝔼𝜔 𝐶ℎ 𝐸𝑏𝑏𝑏𝑏𝑖,ℎ ,𝑃𝑖,ℎ ,𝐵𝑖,ℎ,𝑅ℎ𝜔 + 𝑉ℎ+1 𝐸𝑏𝑏𝑏𝑏𝑖,ℎ+1  

 𝑽𝒉 is a two stage deterministic equivalent stochastic MILP with 30 sample 
regulation signals, 𝑅𝐻𝜔 
A.  𝑪𝒉 -Stage h costs include 

i. Energy purchase costs and regulation revenues 
ii. Adjustments to energy purchase cost caused by following the 

regulation signal or reaching Emax 
iii. Pro-rated penalty for violating regulation contract for each sample 

Penalty𝑗 = Q 𝑐𝑟∆t B ∗�𝐼𝑏
𝜔𝑗

t

 

B.  𝑽𝑯+𝟏- cost function of the battery state of charge at scheduled vehicle 
unplug time 

A. Includes an Inconvenience penalty for the remaining time to reach 
Emax by charging at Pmax 

 Conclusions 
 Driver inconvenience is almost always avoided with penalty of $20/hr 

o Pavg is biased to finish early in last hour 
 Regulation contract is almost always  broken in the last hour, sometimes earlier 
 Convex Hull is a good approximation of optimal value function 
 If Pavg>4 kWh, then Pavg+B=8, else B=Pavg 

 Future Work 
 Understand convexity properties of the value function 
 Uncertain energy and regulation prices, adds more states 
 Compare  with other methodologies 
 Multiple vehicle bid aggregation 
 Apply method to other storage devices (Stationary Batteries, Flywheels)  

 

 Setup 
 Data:1 vehicle , Pmax=8kW, E0=12 kWh, Emax=24kWh,  

PJM DA prices (12/1/2011), Plug in at midnight, Unplug at 7am 
 21 point state space discretization 

 Problem Size: 1593 variables, 390 binaries, 3,784 equations 
 Solved 133 times in algorithm 

 Solver: GAMS w/ XPRESS on Intel 6 core 3.2Ghz cpu 
 Results 
 total simulation time  ~3min 
 ~75% of pts on the convex hull 

Simulation 
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