

Convex Hull Stochastic Dynamic Programming Applied to Electric Vehicle Charging and Frequency Regulation Bids

State of charge takes a random walk

- Battery might not be charged by desired time:
 - Inconvenience cost can be given by EV owner (\$/hr late)
- Battery might reach capacity before regulation contract expires, breaking contract:
 - pro-rated penalty is a function of time, not energy Ο
 - Binary indicator variables (I_t) indicate if contract was violated in each Ο sub-hourly timestep
- Must solve for optimal average charge rate and regulation bids

Jonathan Donadee and Marija Ilić

jdonadee@andrew.cmu.edu, milic@ece.cmu.edu Electric Energy Systems Group, Electrical and Computer Engineering

Solution Algorithm

- Def: Expected cost of making optimal decisions from stage **h** through Ο the end of stage *H* given that the state of charge is *E_h* at the start of hour **h**

<u>Optimal Value Function</u> – $V_h(E_h)$

Convex Hull Stochastic Dynamic Programming

- **1.** Discretize the feasible state space at the final decision time, E_{batt}(H), into N points
- **2.** For i= 1, ..., N solve

Ο

- $V_H\left(E_{batt_{i,H}}\right) = \min_{P_{i,H}, B_{i,H}} \mathbb{E}_{\omega}\left[C_H\left(E_{batt_{i,H}}, P_{i,H}, B_{i,H}, R_H^{\omega}\right) + V_{H+1}\left(E_{batt_{i,H+1}}\right)\right]$
- Approximate $V_H(\cdot)$ with $\hat{V}_H(\cdot)$, a piecewise-linear function on the convex hull 3. of the points $V_H(E_{batt_{i,H}})$

For h= H-1, H-2, ..., 1

For i = 1, ..., N solve

 $V_h\left(E_{batt_{i,h}}\right) = \min_{P_{i,h}, B_{i,h}} \mathbb{E}_{\omega}\left[C_h\left(E_{batt_{i,h}}, P_{i,h}, B_{i,h}, R_h^{\omega}\right) + V_{h+1}\left(E_{batt_{i,h+1}}\right)\right]$

- V_h is a two stage deterministic equivalent stochastic MILP with 30 sample regulation signals, R_H^{ω}
 - C_h -Stage h costs include
 - Energy purchase costs and regulation revenues
 - Adjustments to energy purchase cost caused by following the 11. regulation signal or reaching E_{max}
 - iii. Pro-rated penalty for violating regulation contract for each sample

Penalty_j = Q
$$c_r \Delta t B * \sum_t I_t^{\omega_j}$$

- T_{H+1} cost function of the battery state of charge at scheduled vehicle Β. unplug time
 - Includes an Inconvenience penalty for the remaining time to reach E_{max} by charging at P_{max}

Simulation

Use a piecewise-linear, function to approximate the optimal value function

avoids using more integer variables in backwards recursion

Setup

- Data:1 vehicle , P_{max}=8kW, E₀=12 kWh, Emax=24kWh, PJM DA prices (12/1/2011), Plug in at midnight, Unplug at 7am 21 point state space discretization
- Problem Size: 1593 variables, 390 binaries, 3,784 equations Solved 133 times in algorithm
- Solver: GAMS w/ XPRESS on Intel 6 core 3.2Ghz cpu

Results

total simulation time ~3min

Conclusions and Future Work

Conclusions •

- Driver inconvenience is almost always avoided with penalty of \$20/hr • P_{ave} is biased to finish early in last hour
- Regulation contract is almost always broken in the last hour, sometimes earlier
- Convex Hull is a good approximation of optimal value function
- If P_{avg}>4 kWh, then P_{avg}+B=8, else B=P_{avg}

Future Work

- Understand convexity properties of the value function
- Uncertain energy and regulation prices, adds more states
- Compare with other methodologies
- Multiple vehicle bid aggregation
- Apply method to other storage devices (Stationary Batteries, Flywheels)

Carnegie Mellon Electrical & Computer ENGINEERING