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Conclusions and Future Work 

  
T  

 Smart Charging of Electric Vehicles allows demand side participation 
in Energy and Ancillary Services Markets 
 Intermittent renewable generation requires more ancillary services  
 EV owners want to minimize charging costs 
 EVs can provide Secondary Frequency Regulation by adjusting EV charge 

rate to follow control signal  

 Existing Deterministic Optimization Methods Ignore Regulation Signal 
Effect on State of Charge 
 Assume integrated signal energy  is zero over one hour, or use expected 

value  
o Bad Assumption 

 A Stochastic Method is Needed to  
Consider the Distribution of the  
Regulation Signal 

 Contributions: 
 First  tractable stochastic model of  

EVs providing regulation 
 First to model pro-rated  

contract penalties  
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 Pavg- average charge rate 
 B – Regulation Bid (identical up and down) 
 B ≤ Pavg and B ≤ Pmax - Pavg  

 State of charge takes a random walk 
 Battery might not be charged by desired time:  

o Inconvenience cost can be given by EV owner ($/hr late) 
 Battery might reach capacity before regulation contract expires, breaking 

contract:  
o pro-rated penalty is a function of time, not energy 
o Binary indicator variables (𝑰𝒕) indicate if contract was violated in each 

sub-hourly timestep 

 Must solve for optimal average charge rate and regulation bids 

Solution Algorithm 
 Convex Hull Stochastic Dynamic Programming 
 Use a piecewise-linear, function to approximate the optimal value function 

o avoids using more integer variables in backwards recursion 
 Optimal Value Function – Vh(Eh) 

o Def:  Expected cost of making optimal decisions from stage h through 
the end of stage H given that the state of charge is Eh at the start of 
hour h  

1. Discretize the feasible state space at the final decision time, Ebatt(H), into N 
points  

2. For i= 1, …, N solve 

  𝑉𝐻 𝐸𝑏𝑏𝑏𝑏𝑖,𝐻  = min𝑃𝑖,𝐻 ,𝐵𝑖,𝐻 𝔼𝜔 𝐶𝐻 𝐸𝑏𝑏𝑏𝑏𝑖,𝐻 , 𝑃𝑖,𝐻 , 𝐵𝑖,𝐻, 𝑅𝐻𝜔 + 𝑉𝐻+1 𝐸𝑏𝑏𝑏𝑏𝑖,𝐻+1  

3. Approximate 𝑉𝐻 ∙  with 𝑉�𝐻 ∙  , a piecewise-linear function on the convex hull 
of the points 𝑉𝐻 𝐸𝑏𝑏𝑏𝑏𝑖,𝐻   

 

 

 

 

 

 

 

 

3. For h= H-1, H-2, …, 1 

          For i = 1, …, N solve 
𝑉ℎ 𝐸𝑏𝑏𝑏𝑏𝑖,ℎ  = min𝑃𝑖,ℎ ,𝐵𝑖,ℎ 𝔼𝜔 𝐶ℎ 𝐸𝑏𝑏𝑏𝑏𝑖,ℎ , 𝑃𝑖,ℎ , 𝐵𝑖,ℎ, 𝑅ℎ𝜔 + 𝑉ℎ+1 𝐸𝑏𝑏𝑏𝑏𝑖,ℎ+1  

 𝑽𝒉 is a two stage deterministic equivalent stochastic MILP with 30 sample 
regulation signals, 𝑅𝐻𝜔 
A.  𝑪𝒉 -Stage h costs include 

i. Energy purchase costs and regulation revenues 
ii. Adjustments to energy purchase cost caused by following the 

regulation signal or reaching Emax 
iii. Pro-rated penalty for violating regulation contract for each sample 

Penalty𝑗 = Q 𝑐𝑟∆t B ∗�𝐼𝑡
𝜔𝑗

t

 

B.  𝑽𝑯+𝟏- cost function of the battery state of charge at scheduled vehicle 
unplug time 

A. Includes an Inconvenience penalty for the remaining time to reach 
Emax by charging at Pmax 

 Conclusions 
 Driver inconvenience is almost always avoided with penalty of $20/hr 

o Pavg is biased to finish early in last hour 
 Regulation contract is almost always  broken in the last hour, sometimes earlier 
 Convex Hull is a good approximation of optimal value function 
 If Pavg>4 kWh, then Pavg+B=8, else B=Pavg 

 Future Work 
 Understand convexity properties of the value function 
 Uncertain energy and regulation prices, adds more states 
 Compare  with other methodologies 
 Multiple vehicle bid aggregation 
 Apply method to other storage devices (Stationary Batteries, Flywheels)  

 

 Setup 
 Data:1 vehicle , Pmax=8kW, E0=12 kWh, Emax=24kWh,  

PJM DA prices (12/1/2011), Plug in at midnight, Unplug at 7am 
 21 point state space discretization 

 Problem Size: 1593 variables, 390 binaries, 3,784 equations 
 Solved 133 times in algorithm 

 Solver: GAMS w/ XPRESS on Intel 6 core 3.2Ghz cpu 
 Results 
 total simulation time  ~3min 
 ~75% of pts on the convex hull 

Simulation 
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