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Competitive Equilibria for Stochastic Dynamic 

Markets: the Integration of Wind Power*

Model 
• Continuous time real-time markets, possibly 

coupled with day-ahead or forward markets 

• Uncertainties in supply/demand and 
operational constraints of the physical system 
are explicitly considered

• Price manipulation is excluded

• Externalities are disregarded

• All available wind generation is dispatched

Background
• Aggressive renewable energy target and smart 

grid vision

• Increased volatility and uncertainty of the 
power system

• Market environment driven by private interests

• Tightly coupled market and physical system

• Exotic behavior of electricity markets 

Results
• Under some general conditions, equilibrium 

prices equal marginal costs, but only on 
average 

• Price spikes are natural outcomes of stochastic 
markets with dynamic constraints

• When volatility is low, the consumer sees 
increasing benefit with additional wind 
generation

• Consumer welfare may fall dramatically as 
more and more wind generation is dispatched. 
With high volatility the consumer may be better 
served by reducing the wind power injected 
into the system

Gui Wang
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

Conclusions
• The dynamical characteristics of the efficient 

equilibria can be highly undesirable for 
consumers, suppliers, or both

• Benefits of wind generation may be offset by 
the impacts associated with volatility

• “Take all the wind” integration policy should be 
reconsidered
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Goals
• Understand the impacts of volatile wind power 

on the economics and operation of power 
systems

• Investigate the interactions between system 
dynamics and market dynamics

• Provide insights on the integration of 
renewables and smart grid devices that can 
potentially inject volatile and uncertain patterns 
into the system

Fig.1: Prices in  ERCOT Feb, 2, 2011

Fig.2: Consumer welfare w.r.t. wind penetration and volatility for
a stylized market 

*  Joint work with Sean Meyn, Matias Negrete-Pincetic,
Anupama Kowli, and Ehsan Shafieepoorfard

G. Wang, A. Kowli, M. Negrete-Pincetic, E. Shafieepoorfard, and 
S. Meyn. A Control Theorist's Perspective on Dynamic 
Competitive Equilibria in Electricity Markets, 18th IFAC World 
Congress, 2011

S. Meyn, M. Negrete-Pincetic, G. Wang, A. Kowli, and E. 
Shafieepoorfard. The Value of Volatile Resources in Electricity 
Markets, Proc. of the 49th IEEE CDC, 2010
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Xu Andy Sun
Operations Research Center, MIT
Joint work with Dimitris Bertsimas (MIT), 

Eugene Litvinov,  Jinye Zhao, Tongxin Zheng (ISO-NE)

7th Carnegie Mellon Conference on Electricity Industry

Adaptive Robust Optimization for 
Security Constrained 

Unit Commitment Problems

• Day-Ahead Decision Making: Unit Commitment
– Generators must be committed before real-time 

operation (long startup time)

Electric Power System Operations

0-12

Info: Supply costs, load forecast
Decision: which units to commit
Goal: meet demand w. min cost
Constraints: physical, security

Hour

Day-ahead UC

Info: Unit commit, realized load 
Decision: generation level
Goal: min costs meet demand
Constraints: physical, security

Real-time Dispatch
1

New Challenges: Growing Uncertainty

• New challenges

Supply Variation: 
Wind Power Penetration

40% annual growth

Load Variation: Demand Response
Smart Grid Technology

[Ruiz, Philbrick 10]

Net Load Uncertainty 
Can be Huge!

2

• Reserve adjustment approach

Incorporating extra reserve according to forecast

• Stochastic optimization approach

Uncertainty modeled by distributions and scenarios

Current Practice and Stochastic Optim.

Drawbacks:
1. Uncertainty not explicitly modeled  
2. Both system and locational requirement are preset,      

heuristic, ad hoc
3. Transmission constraint is not explicitly considered in 

designing requirement

Weakness:
Hard to select “right” scenarios in large systems
1. Large number of scenarios results in heavy computation

3

• Two-stage robust optimization framework

Our Proposal: Adaptive Robust Optimization

0-12

Key Decision: 
unit commit x (binary)

Such that: 
under x, we have a dispatch 
policy p(d) satisfies all possible 
load d given in an uncertainty 
set with minimum cost.

Load/supply realization 
net load variation

hour

1. How to model uncertainty?

2. What policy p(d)?

Key Questions:

4

• Uncertainty model of net load variation

Model of Uncertainty

1. Total dev not too large

1. Correlation between 
different resources

5

Decision Policy: Fully Adaptability

Dispatch solution fully adaptive to the uncertainty:

Subject to:           
• Commitment constraints: min-up/down times
• Dispatch constraints: 

• Energy balance
• Production bounds
• Ramp up/down 
• Flow limits

6

Find worst
case d for
dispatch

Two-stage Adaptive Robust UC Problem

For a fixed x, d 
minimize

dispatch cost

• The fully adaptive policy:
– Objective: Fixed-Cost + Worst case Dispatch Cost

Constraints on commitment decision:
Startup/shutdown, Min-up/down…

Second-Stage Problem
7

• Initialization: Get feasible , solve          for dual var. 

• Iteration k:
– Step 1:

– Step 2:                           to generate cuts

If U-L small enough, stop and return

otherwise k=k+1 

Fully Adaptive Policy: Overall Algorithm

8

• Observation: optimal (d*,p*) are extreme points of D and W

• Algorithm sketch:

– Fix d, solve dispatch, dual var gives gradient direction s’d

– Maximize s’d over uncertainty set, find a new d, iterate. 

Solving 2nd -Stage Problem: Simple Gradient Algorithm

1. Provable convergence to 
local minimum

2. In practice, converges fast 
(2-3 iter), consistent (from 
different starting points)

9

• Linearization of the bilinear term s’d: 

• Algorithm sketch:

– Fix d, solve dispatch, dual var q

– Solve linearized problem:

Solving 2nd -Stage Problem: Outer Approximation

1. Provable 
convergence to 
local minimum

2. In practice 
converges fast, 
consistent

10

• 312 Generators

• 174 Loads

• 2816 Nodes

• 4 representative trans lines

• 24-hr data: gen/load/reserve

• Total gen cap: 31.4GW

• Total forecast load: 14.1GW

A Real-World Example: ISO-NE Power System

11

• Solve AdptRob and ResAdj UC solutions for      = 
0,0.1,…,1 for all t

• Fix UC solutions, simulate dispatch over load samples
– 1000 load samples from

• Compute average dispatch cost and std

• Avg dispatch cost: Economic efficiency

• Standard deviation: Price and Operation Stability 

• Robustness to distributions

Computation Procedure

12
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Computational Results (I): Average dispatch cost

Avg Dispatch Cost Relative Saving := (ResAdj – AdptRob)/ResAdj 0.65% - 2.7%

2.7% relative saving or 472.9k$

13

Computational Results (I): Average total cost

1.2% relative saving, 225.7k$

Avg Total Cost Relative Saving := (ResAdj – AdptRob)/ResAdj -0.84% - 1.2%
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Fixed cost is around $1.8Million or 10% of total cost 14

Computational Results (II): Volatility of Costs

Budget of
Uncertainty

AdptRob
Std disp cost  

($k)

ResAdj
Std disp cost 

($k)

ResAdj/AdptRob

0.1 47.5 687.5 14.48

0.2 46.4 687.5 8.62

0.3 45.4 377.8 8.32

0.4 44.2 366.7 8.29

0.5 44.1 377.2 8.55

0.6 44.0 370.9 8.43

0.7 44.0 377.1 8.58

0.8 43.9 370.7 8.44

0.9 43.9 357.9 8.15

1.0 43.9 361.0 8.22

Significant reduction in cost volatility!Coeff Var: 44k/17.2M=0.25%
370k/17.3M=2.1% 15

Computational Results (III): Robustness to Distribution
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Relative difference: 0.0368% - 0.0920%
Absolute difference: $6.3k – $15.8k 16

Computational Results (III): Robustness to Distribution
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Conclusion and Business Implications

• saves dispatch cost
(up to 2.7% $472.9k)

• robust against 
load distributions

• Significantly reduces 
cost volatility 

Economic Efficiency

Reduces Price & System 
Operation Volatility

Data Driven Approach
Demand Modeling

Reference: Adaptive Robust Optimization for Security Constrained Unit Commitment 
Problems, D. Bertsimas, E. Litvinov, A. Sun, J. Zhao, T. Zheng, submitted to
IEEE Transactions on Power Systems 18
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Residential electricity disaggregation –
Tailored consumption feedback in smart grids

M. Weiss, T. Staake, F. Mattern, E. Fleisch, and R. Larson

Increasing number of appliances drives residential energy conumpition

Managing energy use in existing buildings is crucial for over-
all improvements in energy intensity. About 40% of the total 
energy used in the US is consumed by the building sector1. 

Heating and cooling are the major end uses of energy in build-
ings. However, appliances increasingly contribute to the growth
in energy consumption in residential buildings.

Data analytics of metering data allows us to auto-
identify the consumption of an individual appliance:

� tailored energy feedback at no extra cost
� improved energy efficiency in combination with actuation
� new business opportunities in the smart grid

Infrastructure3 & Appliance Signatures4

• Loosely coupled three component architecture. 
• 91% recognition rate in lab study.
• Real-world deployment for over 6 months 

(9 million measurements for analysis).

• Algorithm refinements based on real-world data.
• Combine with smart power outlets.
• Input for automated heating control. 
• Use data on a higher aggregation level 

(e.g., streets, regions, etc.). 

Results & Future Work

Markus Weiss
Engineering Systems Division, MIT Energy Initiative, MIT
Bits to Energy Lab, ETH Zurich / University of St. Gallen
Email: weissm@mit.edu
Web: http://web.mit.edu/weissm/www

Leveraging Smart Meter Information
Through Automated Appliance Sensing
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Various Power System Impacts of the Large Scale Adoption of Electric Vehicles
R.A.Verzijlbergh, Z.Lukszo, M.D.Ilić

Driving patterns: distribution of daily 
driving distance and home arrival time. 

Aggregated household load 
for households with one EV.

Increased system load in the Netherlands 
for 75% of all passenger cars electric.

Charge Profiles
Aggregated profiles of electric vehicle charging are 
derived with the use of car driving patterns. From a 
dataset derived from interviews with roughly 18000 
car drivers, we have used daily driving distances, 
home departure times and home arrival times to 
construct various charge scenarios. 
In the uncontrolled charging scenario, a car driver 
comes home, plugs in the EV and starts charging 
with a constant power (either 3kW or 10kW) until   

the battery is full. The controlled charging 
scenarios takes into account at what time the car 
has to be full for the next home departure. It will 
charge the battery when the 'normal' household  
load is minimum, normally during the night. 
The effect of applying charge control is 
immediately clear when adding the EV load to the 
household or system load. In the uncontrolled 
charging scenario the peak increases, but less 
pronounced than often suggested.

Grid assets
To study the impact of EV charging on distribution grid 
assets, a large number of distribution networks in the 
Netherlands have been analyzed. The EV load profile has 
been added to measured load profiles on LV cables, MV/LV 
transformers and MV-cables, which have been adjusted to 
account for 30 years of 1% electricity consumption growth. 
The resulting loading factors (1 denoting a grid asset loaded 
at nominal capacity) can hence be interpreted as the loading 
factor that would result from 30 years of electricity growth 
plus the extra load caused by EVs. An aggressive 
penetration scenario of EVs is assumed: 75% of all 
passenger cars after 30 years; these numbers are in line 
with government targets.
It was found that uncontrolled charging of EVs will lead to 
roughly 25% extra overloaded MV/LV-transformers 
compared to the situation without EVs, see figure on the left. 
For LV and MV cables, these numbers are much smaller: 
approximately 10% extra overloading due to EVs. 
In the controlled charging scenario there will practically no 
extra overloaded grid assets. These results give an 
indication of the possible value of smart charging for 
distribution system operators.
 

Histograms of MV/LV-transformer loading 
factors in three different EV charging 
scenarios and 30 years of 1% consumption 
growth. The background histogram denotes 
the situation with growth only (no EVs).

Increase in average electricity price as a function of the 
fraction of EVs (of a total of 8 million passenger cars) in the 
Netherlands. Instantaneous prices are calculated on the 
basis of marginal cost of the marginal plant according to the 
Dutch merit order; figure denotes yearly average.

Merit order and emissions ranked according to merit 
order of a portfolio based on the German technology 
mix (left to right: wind, nuclear,lignite, coal, gas) 

Emissions ranked according to merit order and extra 
load hours with a given system load due to EV charging. 
The emissions caused by EV charging are the overlap 
of the emission curve and the extra load hours.

Emissions of EV charging
The emissions caused by EV charging will generally 
depend on the units that are dispatched to meet the 
extra system load due to EV charging. This, in turn, 
strongly depends on various factors such as the total 
portfolio of the power system, the amount of 
intermittent generation, CO2 prices, the time of 
charging and the amount of EVs present.
Using a simple merit order dispatch model, we have 
shown that the emissions are very sensitive to most of 
these factors. The figures on the left illustrate this 
point. It was also demonstrated that using the average 
CO2 intensity to calculate the expected emissions by 
EV charging leads to inaccurate outcomes. 
These results imply that it is very hard to control the 
emissions caused by EV charging in a liberalized 
market environment. For effective greenhouse gas 
reductions in the transport sector, additional policy will 
thus be required.

Electricity costs
The merit order dispatch model has also been used to 
estimate generation costs involved with EV charging. 
Generally, the costs of charging will be higher than 
average electricity costs when charging at the system 
peak, and lower when charging at night. It is 
interesting to see how average generation costs

(based on the marginal costs of the marginal 
plant) are influenced by the amount of EVs in the 
system. The figure on the right shows that, as 
expected, costs are most influenced in the case 
of uncontrolled charging. This figure also shows 
that one has to be cautious when modeling EVs 
as price takers in electricity markets. 
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Control of a Liquid Fluoride Thorium Reactor 
With Biogeography-Based Optimization 

 
Rick Rarick, Mehmet Ergezer, Looja Tuladhar, Dr. Dan Simon, Dr. Charles Alexander and Dr. F. Eugenio Villaseca 

 Cleveland State University 
Carnegie Mellon Conference On The Electricity Industry, March 8-9, 2011 

 

A Liquid Fluoride Thorium Reactor (LFTR) power plant is 
 
1.   Safe: Reactor is inherently stable and cannot melt down. 

2.   Clean: Generates much less waste than a Light Water Reactor (LWR), 
thorium is totally consumed. 

3.   Proliferation Resistant: Very difficult to make weapons, easily detectable. 
 

4.   Efficient: Runs at higher temperatures than coal and LWRs, so attains higher 
efficiency. 
 

5.   Lower Capital Cost: Much smaller than comparable LWRs and do not require 
a containment dome. 

Thorium is far more common and cheaper than uranium. 

1.   Lemhi Pass on the Montana-Idaho border has enough thorium to power the 
US for millennia. 

2.   500 tons of thorium can supply all US electricity needs for one year. 

3 
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Waste generation for LWR and LFTR for comparable electrical output. 
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Mining 800,000 MT of ore 
containing 0.2% uranium (260 

MT U) 

Uranium fuel cycle calculations done using WISE nuclear fuel material calculator: http://www.wise-uranium.org/nfcm.html 

Generates ~600,000 MT of waste rock 

Conversion to natural UF6 (247 
MT U) 

Generates 170 MT of solid waste and 
1600 m3 of liquid waste 

Milling and processing to 
yellowcake—natural U3O8 (248 MT 

U) 

Generates 130,000 MT of mill tailings  

Mining 200 MT of ore 
containing 0.5% thorium (1 

MT Th) 

Generates ~199 MT of waste rock 

Milling and processing to thorium nitrate ThNO3 (1 MT Th) 

Generates 0.1 MT of mill tailings and 50 kg of aqueous wastes 

1 GW*yr of electricity from a uranium-fueled light-water reactor 

1 GW*yr of electricity from a thorium-fueled liquid-fluoride reactor 

Control Design 
 
1.    Develop mathematical model of reactor, turbine, and generator 

 
2.    Controlled states   

a.   Reactivity 
b.  Heat flow 
c.   Fluid flow 

3.    Control techniques: 
a.   PI controllers 
b.  Artificial neural networks  

4.    Optimize control design with BBO 
a.   MIMO, nonlinear system 
b.  Constrained optimization 
c.   Multi-objective optimization 

BBO models the migration of species in search of better habitats to solve  
global optimization problems.  

BBO excels in optimizing non-differentiable problems with high-number of 
variables.  

Thorium nuclear fuel cycle 

1 

 Neuro-fuzzy classification network 

 Neuro-fuzzy training results 

N f l ifi ti t k

BBO has been applied to control robot swarms and detect cardiomyopathy. 

Intelligent robotics control 5 
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6 kg of thorium metal has the 
equivalent energy of 

= 
600 train cars of brown coal 

300 kg of enriched (3%) uranium 

Thorium has a high energy density. 

4 

2 

 Why should we choose Thorium instead of Uranium for nuclear power? 
 
1.   Thorium is about four times more abundant than uranium. LFTRs are 

cheaper, simpler, more stable and sustainable than uranium LWRs. 

2.   Uranium reactors yield weapon-grade plutonium and, hence, are better for 
bomb production. This was a factor in choosing U over Th as a nuclear fuel 
during the early nuclear development in the post-war arms race. 

3.   For 1GW of electricity production in a year, Th produces less than one 
percent of the waste of U. 

4.   Current waste reprocessing systems for U are complicated and expensive. 
They convert solid material to liquid and then back to solid, whereas LFTR 
reprocessing is much simpler.  

3 
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A Review of the Focus Areas for the Integration of Distributed Energy Resources (DER) to the Grid

Storage

Distributed Generation

Dispatchable Loads
‘Smart’ Metering

Problems Addressed
• Peak Shifting
• Expensive Regulation
• Slow Response Time
• High losses – Transmission  Efficiency

Demand Response 

Storage

Problems Addressed
• Intermittency of Renewables
• Peak Demand Regulation
• Optimal Transmission  Capacity

Automation and Software Services

Problems Addressed
• Multiple Protocols
• Need for Real time  Pricing
• Dynamic changes in Network Topology
• Latency issues  in communication

Commercial 
Services

Energy 
Services

Customer 
Domain EMS

Markets

Service 
Provider

Akhilesh Magal
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1. Introduction
Wholesale and retail electricity prices are decoupled for most 
residential customers.  Wholesale prices change in real time to 
reflect the marginal cost of power.  They can range from 
negative values on a cold night when there is an excess of 
power to the price cap of $1000/MWh on a hot summer 
afternoon. Residential retail customers, however, typically pay 
a flat rate that reflects a load weighted average of power 
prices. 

Flat rates lead to electricity pricing that is both inefficient 
and inequitable.  It is inefficient from an economic perspective 
since marginal price is not equal to marginal cost and 
consumers may be over- or under- consuming  power at any 
point in time. It is inequitable since customers with low peak 
demand are essentially subsidizing  customers with high 
coincident peak demand.

In this work we calculate which residential customers are 
subsidizing other customers.  We break it down by customer 
class, income level and consumption levels.

2. Data Set
Our data set consists of hourly electricity usage from  1260 
Commonwealth Edison (ComEd) residential customers in the 
greater Chicago area during 2007 and 2008.  All of the 
customers were paying flat rates for power.  They  fall into 4 
customers classes: (1) single family  homes (65% of residential 
customers), (2) multi-family homes (i.e. apartment buildings –
30%), (3) single family homes with electric space-heating (1%) 
and  (4) multi-family homes with electric space-heating (5%). 

We use data on whether customers received any subsidies 
as a proxy for income.  We divide customers into only two 
classes – high and low income.

3. Analysis
We  calculate what  flat rate customers would have paid for 
electricity had they been on the ComEd residential real time 
pricing rate and compare this to what they paid under a flat 
rate.  

Had all residential customers been on  real time pricing  
(RTP)in 2007 and 2008 without any behavior change, net  

annual bill savings would have been $120 million.  55% of al 
residential customers end up savings money under RTP.  This 
however means that  45% of  customers lose money.  Low 
income customers fare better under the status quo.   Only 45% 
of low income customers  save money under RTP, while 55% 
actually lose money.

Some customer classes do much better under RTP, while 
others benefit under flat rates.  Single family customers – the 
biggest group – do best under RTP, with  more than 70% saving 
money.  Fewer than 30% of  multi-family customers save 
money under RTP. All electric space heating customers lose 
money under RTP, however they consist of less than 6% of 

ComEd’s residential customers.
Non-space-heating customers with higher consumption 

and higher peak demand tended to save more under RTP.  

Electric space-heating customers who consumed more tended 
to lose more .

5. Policy Implications
There is  significant net savings  if residential customers paid 
marginal instead of average prices because of  a risk premium 
that customers pay for the certainty of a flat rate.  Even if 
customers are not willing or able to change their behavior, 
there  are overall savings  if a switch is made to  RTP.  If 
customers  can respond to high electricity prices by lowering 
their demand, than savings for customers will be greater and 
include more  people.

There are groups however, that end up losing  money 
under RTP.  Low income customers,  electric space heating 
customers  and multi-family customers lose money overall 
under RTP. These groups have  the  least ability to respond to 
fluctuating prices .  If a switch is made to RTP, it is important to 
provide these customers with additional subsidies or 
technology  to respond to changing price.

While there is  room for significant savings and economic 
efficiency improvements under RTP, there are significant 
equity issues to consider.  Under flat rate pricing, 55% of 
residential customers are essentially subsidizing  the use of 
the remaining 45% of customers, however,  larger customers 
are subsidizing smaller customers and higher income 
customers are subsidizing lower income customers.  If a switch 
to RTP is made, it is important to ensure that  these customers 
do not end up  losing out in the process.

Acknowledgments
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provided the data used in the analysis. The authors would like 
to thank Fallaw Sowell (CMU) for his comments and Anne 
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Add Value of Distributed Generation to Electric Energy Systems 
Masoud H. Nazari and Marija Ilić

Need for Analysis
Analysis needed to

 Determine impacts of DGs on power delivery losses.

 Develop optimization algorithms for optimal placement and utilization of DG units in 
order to minimize power delivery losses and maximize efficiency.

 Develop quantitative approaches in order to monetize loss reduction. 

Acknowledgment
The authors greatly appreciate the financial support under the Portugal-Carnegie Mellon joint program.

 T&D losses in U.S. are more than 6.5%. It means 270 Billion KWh per year is 
dissipating in Transmission and Distribution lines. 

 Distributed Generators (DG) have this potential to reduce T&D losses.

 This paper identifies optimal approaches in order to enhance efficiency of 
distribution systems with large penetration of DGs.

 It also indicates approaches to evaluate dollar value of loss minimization.

Motivation

 In general, loss reduction depends on the location and method of utilization of 
DGs (power factor and voltage sets) .
 Optimization methods such as AC OPF, are essential for planning and 

operation of modern distribution energy systems.
 Optimizing DGs in order to minimize power delivery losses could have large 

added value. This paper is a step to introduce systematic approaches to 
quantify the dollar value of loss minimization.

Conclusions

Optimal placement and utilization of DGs (case study)

Dollar Value of Loss Minimization

AC Optimum Power Flow Algorithm

 Using AC OPF for optimum placement and 
utilization

 Using IEEE 30-bus distribution network 
test system

 Two Combustion-Turbines (C-T) with 
capacity of 750 kW providing 10% of total 
demand (15 MW) could reduce 50% (700 kW) 
of delivery losses

 This implies that 1MW of DG could cancel 
out 1.47MW of central generation.

 CDG is added value of DG due to loss minimization in time interval of T

 ΔPloss is average loss reduction due to DG in time interval of T

 T is time interval

 LMP is the locational marginal price of electricity in time interval of T (note  
if LMP changes by time, the average value of LMP is used)

 Objective of the optimization algorithm is 
to minimize power delivery losses 

 Two degrees of freedom

• Optimizing the location of DGs

• Optimizing the voltage set of DGs

 Limitations are power flow constrains and 
physical limits of lines and generators  

 

CDG = ∆PLoss × T × LMP
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Wind farms generally do not participate in day-ahead electricity 
markets because of the difficulty in scheduling dispatch from 
wind turbines a day in advance.  We investigated the economic 
feasibility of a wind farm to participate in the day-ahead market 
if energy storage is collocated with the wind farm.   Coupling a 
wind farm with a storage facility reduces the risk of relying on 
uncertain wind forecasts to dispatch electricity and allows some 
control over the dispatch.  We used wind and price data to 
model a wind farm operating jointly with a compressed air 
energy storage (CAES) facility.

Introduction

Wind and CAES Model
We modeled a wind farm with a CAES facility operating in the 
day-ahead market. Our model assumes the wind farm is a price 
taker, transmission is not constrained and all electricity offered 
to the market is accepted.  The wind farm uses a forecast to 
determine the next day’s dispatch schedule that will maximize 
revenue from hourly energy sales.  Wind forecasts are received 
each day at noon and used to calculate dispatch quantities for 
the following day.  While the wind generation for the following 
day is uncertain, we assume the price is known.  

Optimal hourly dispatch values were computed each day from 
the wind power forecast values and the market prices.  These 
dispatch values were then used with actual wind generation data 
to determine the hourly revenue the wind farm would have 
received.  

Can a Wind Farm with Storage Compete in the Day-Ahead Market? 
Brandon Mauch1,2, Pedro M.S. Carvalho2, Jay Apt1
1Carnegie Mellon Electricity Industry Center, Carnegie Mellon University, 2DEEC, Instituto Superior Tecnico, Technical University of Lisbon

Input Data
Hourly wind forecast and generation data spanning the years 
2008 and 2009 from a wind farm in the central region of the U.S. 
was used in the model.  Values from 2008 were used to 
characterize the uncertainty of the wind forecasts.  Data from 
2009 was used for the model under the assumption that the 
forecast accuracy was not significantly different.

Market price data was taken from the Electricity Reliability 
Council of Texas (ERCOT) and the Midwest Independent System 
Operator (MISO).  In the case of ERCOT, no day-ahead electricity 
market existed until very recently so real-time prices were used. 

Forecasted Wind 
Generation

Energy Market 
Prices

Optimal Dispatch Algorithm

Hourly Dispatch 
Quantities

Actual Wind 
Generation

Revenue and Storage 
Calculations

Daily Revenue and 
Residual Storage

Initial Energy 
Storage Level

Model Inputs

Model Outputs

Advance One Day

Model Algorithm

Wind and CAES Costs
Cost estimates for wind and CAES were taken from a literature 
review and the Energy Information Agency

Model Parameters
Wind Farm Capacity Factor 0.28

Wind Generation per Installed MW of Capacity 2445 MWh

CAES Expander Power to Wind Farm Capacity Ratio 0.9

CAES Expander to Compressor Power Ratio 1

CAES Storage Capacity at Full Power 15 hrs

CAES Heat Rate 3500 – 4500 Btu/MWh

Variable Cost of Storage $2.5 – $3.5/MWh 

Natural Gas Cost $4 - $7/ 1000 cu ft

Capital Cost ($/MW) Fixed Annual Cost ($/MW)

Wind 1.5 – 2.6 million 25 – 35 thousand

CAES 0.65 – 0.89 million 9 – 12 thousand

Model Results
Annual revenue for the hypothetical wind farm was calculated 
using market price data from ERCOT and MISO for the years 2006 
to 2009 .  Annual revenue falls short of costs for all years.
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Even with perfect wind forecasts, the annual revenue for all but 
one price scenario fell short of the estimated cost range.
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Annual income was calculated using prices from ERCOT 2008 
adjusted to estimate a carbon price.  Results are still much lower 
than the estimated annual cost range of a wind-CAES system.

Carbon Scenario
Annual Revenue per Installed 

MW of Wind Capacity

$0 per Tonne of CO2 $170,000

$20 per Tonne of CO2 $190,000

$50 per Tonne CO2 $220,000

$135,000 $155,000 $175,000 $195,000

Power Output

Compressor Power

Storage Capacity

Annual Revenue per Installed MW of Wind Capacity

Base Case

Sensitivity Analysis
The sensitivity of each CAES parameter on  annual income 
indicate that increasing the power output by 50% provides a 
modest increase in annual revenue while the other parameters 
have little affect. 

Results from the model indicate that collocating energy 
storage with wind farms is not profitable at current market 
prices.  The gap between annual costs and revenue for this 
approach can be thought of as the price of reducing carbon 
emissions. The implied cost per tonne of avoided CO2 for a 
profitable wind – CAES system is roughly $100, with large 
variability due to electric power prices.  Unless energy prices 
increase substantially, other approaches may prove more cost 
effective.

Conclusion
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Motivation

Signal Decomposition

Wind Speed Decomposition Modeling using 
Fourier Transform and Markov Process

Noha Abdel-�������	�
������	��������������������������������	�������������
Electric Energy Systems Group, Engineering & Public Policy

� Short term, medium and long term wind speed trends require 
different data analysis that deals with changing frequencies of each 
pattern.

� Apply Fourier analysis to decompose wind speed signal into few 
components of different frequencies for different applications.
1. Low Frequency range: for economic development such as long 
term policies adaptation and generation investment, time horizon-
many years 
2. Mid. Frequency range: for seasonal weather variations and annual 
generation maintenance, time horizon: weeks but not beyond a year.
3. High frequency range: for Intra-day and Intra-week variations for 
regular generation dispatches and generation forced outage, time 
horizon: hours but within a week

A Discrete Fourier Transform (DFT) of a natural logarithm of 
wind speed signal , X[k], decomposes the signal into low, medium 
and high frequency components, each of different K frequency 
index range as follows: Decomposed Discrete Markov 

Process of Wind Data 
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IDFT of natural logar ithms decomposed 
wind speed signals for  years 1994  - 2009

in hour ly resolution

IDFT of natural logar ithms decomposed 
wind speed signals for  year 2009 in 

hour ly resolution

Markov process is defined as the likelihood of next wind speed value in state k
conditioned on the most recent value of wind speed in state m.

Using a uniform quantization method and defining the initial and final states of 
the natural logarithms of wind speed signals, the distribution of the exponent of 
wind speed follows log normal with mean zero and standard deviation close to 1 
for all decomposed frequency components in discrete time domain.
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 Comparison of three different methods
: cost probability distribution functions

Background and Motivations for ALM

The Main Ideas of ALM

Adaptive Load Management (ALM) 
Including Risk Management of Load Serving Entities¶

Jhi-Young Joo and Marija Ilić
jjoo@ece.cmu.edu, milic@ece.cmu.edu

Electric Energy Systems Group, Electrical and Computer Engineering

Load management so far
• Top-down control, one-way flow of information
• Little information from end-users to the system level
 due to complexity, unordinary commodity, etc.

• Localized optimization on the end-users’ level

How to include end-users information
• Load aggregators on behalf of end-users
• Individual economic preference with respect to price signal : 

demand function
• From point-wise (price, quantity) information exchange  to 

functional information exchange

Modeling end-users’ different economic preferences
• At a certain point, some prefer NOT to use electricity at a particular price 

while others do.
• Demand function

: demand’s willingness-to-pay with respect to consumption quantity
• Load aggregators

• Energy and information broker
: Mediator between end-users and system/market both in financial 
and physical sense

• Risk manager

Multi-layered optimization problem
• Primary layer

:End-user’s utility maximization
• Secondary layer

: Load aggregator’s profit maximization
• Tertiary layer

: System operator’s social welfare maximization

Incorporate different end-users’ economic preferences 
into system optimization

Information flow of ALM
Three different optimization methods 

considered

Static optimization
 Optimum as you go
 Similar to on-off control

Look-ahead optimization
 Optimum over the whole 24-hour horizon
 Model predictive control (MPC)

: update/recalculate optimization as new info 
becomes available

Markowitz optimization
 Optimum including risk minimization
 Minimizing the variance of the probabilistic 

cost

LSE’s short-term risk management Simulation Results
 Assumptions and settings

• No aggregation of different energy profiles 
of end-users
: a single end-user 

• Price data taken from Zone DUQ in PJM
• Simulated for the whole 2009

 Cost probability distribution functions
 Calculated based on the variances of the 

hourly price and the purchase quantity at 
each hour

Markowitz optimization shows the highest 
expected cost, but the least risky profile
 Better performance expected with the 

actual real-time market purchase 
considered 

Conclusions and Future Work
What is the optimal portfolio?
 Depends on LSE’s risk 

aversion/proneness

Future work
 Expanding this model to more diverse 

markets and less risky bilateral 
contracts
Question: How to deal with the 

different time scales

 Including uncertainty of demand
 Including the forecast errors of price 

and demand
How would the cost/profit actually 

turn out?
 Designing tariffs/contracts with end-

users
: how much to charge end-users 

¶ Based on the working paper EESG WP-11
This work is partly supported by Robert Bosch LLC.  The authors greatly appreciate their financial support.  

Demand optimizer
 View of the whole system  Information exchange around LSE

Day-ahead and real-time market optimization
: Markowitz optimization
Minimizing the risk of return
With respect to the physical temperature constraints

Price processing in price predictor
 Covariance matrix
 Shows correlation between two (different) random variables
 48 random variables 
 48x48 matrix

 Variance of real-time market price much higher
 In our simulations
 Input: Hourly day-ahead and real-time prices of the last 7 days

ΣDA
ΣDA-RT

ΣRT
ΣDA-RT

ρDA[1]

ρDA[24]

…

ρRT[1]

ρRT[24]

…

ρDA[1]

ρDA[24]

…

ρRT[1]

ρRT[24]

…

Day -1Day -7

…

ρDA[1]

ρDA[24]

…

ρRT[1]

ρRT[24]

…

Average 
σDA1-DA1

…

σRT24-

DA1

σDA1-

RT24

σRT24-

RT24

…

…

…

Covariance matrix

…

…

σ
σ

σ
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Managing Bilateral Transactions in the Electricity Market

� Providing better insight in power system 
operation:

• Where the power goes
• Contributions to losses and congestion

�Managing electricity markets
• Accounting for parallel flows
• Accounting for bilateral transactions
• Fair transmission loss pricing and charging for 

congestion
�Better power grid coordination

• Enforcing contract paths
• Eliminating circulating power
• Enabling wheeling

[1] H. H.Happ, 1980, Piecewise Methods and Applications to Power Systems. Wiley
[2] Felix F. Wu Ping Wei, Yixin Ni. Load flow tracing in power systems with circulating power. Electrical 
Power and Energy Systems, 24:807–813, 2002
[3] Lake Erie loop flow mitigation a report from NYISO, 2008.
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sanja13@andrew.cmu.edu, milic@ece.cmu.edu

� Bilateral transactions arranged directly between generators and loads
� Contract paths cannot be obeyed due to KVL
� Parallel flows occupy the lines not included in the contract path

I1

A'

j2A’'

j1A’'

I1
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j2C’'

j1C’'

4 5

6 7

j1B’'

j2B’'
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Simplified interconnected network

Parallel 
flow

Actual 
flow

Bilateral 
Transactions

A B

C

100

300

C
166.67

33.33

133.33

A B

133.33

� Main ideas:
• Determine contributions of bilateral 

transactions to the line flows
• Determine contributions of bilateral 

transactions to parallel flows
• Design smart control that would 

maximize power flow through 
contract paths

A B

C

jEB

jEC

jsN
A B

C

jS1

jS2 jS3

A B

C

jEB’

jEC’

8 9

10

� Mechanism for accurate 
transmission pricing
�Enforcing contract paths using

• Rescheduling of bilateral 
transactions

• Line flow control devices
� Transformation of power networks 
into transportation network
� Adaptation of algorithms from graph 
theory to electrical networks
� Applicable to large interconnected 
networks – distributed algorithm based 
on model reduction

1

� Pricing mechanisms for congestion
�Integrating losses into the algorithm
�Adapting the algorithm for AC power flow

Main approach

Motivation

Algorithm

Contract paths Applications

References

Future Work

Parallel Flow Tracing

Z11 Z12

Z21 Z22

Vbilat_trans

0
Jbilat_trans

Jparallel_flow

V5               =        Z55              *       J5

Jparallel_flow = -Z22
-1 * Z21 * Jbilat_trans

Bilateral Transaction Tracing

J1     =  C.3
1 * C.4

3 *C.5
4 *C.6

5 * J6
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� min || jalternate_paths ||2
st

KCL: A1
T  * J1= J1

inj
KVL: A1

* V1
= V1_line

jmin_contr  ���contr ���max_contr

� min || jsN ||2
st
KCL: A6

T * J6= J6
inj

jmin_contr � jcontr � jmax_contr

� Bilateral transaction between generator 5 (area B) and load 10 (area C)
for 100MW across area A (tie-lines j12 and j13)
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Energy Based Nonlinear FACTS Control
Miloš Cvetković (mcvetkov@andrew.cmu.edu) and Marija Ilić (milic@ece.cmu.edu)

Acknowledgment
This work is supported by ABB and other SRC members through ERI program.

 Transient stabilization using FACTS has not been done in the past.

 Systematic approach to control design on the system level still does not exist.

 Existing FACTS control solutions are based on assumptions or simplifications of
the model (DAE, dominant dynamics, no network dynamics, network reduction…).

 Value that FACTS have to the system in terms of stability is undetermined.

 Dependence between critical clearing time, type of FACTS device and the size of
its inductive and capacitive elements has not been determined yet.

Motivation

Future Work

TCSC

TCSC
TCSC TCSC

TCSC
TCSC TCSC

dvi i C
dt

div L
dt

α

− =

=

Time varying phasor representation

Time domain representation

Component State Dynamic equation Time scale

Generator

Stator current Fast

Rotor currents Medium

Rotor angle Slow

Frequency Slow

Transmission 
line

Bus voltage Fast

Line current Fast

Load Load current Fast

TCSC
Voltage Fast

Current Fast

1 1 1 1( ) ( ) ( ) ( )G G G B FI A I B i C V D Vδ ω δ ω δ δ= , + , + +

2 2 2 2( ) ( ) ( )G G G B Fi A I B i C V D Vδ ω ω δ= , + + +

δ ω=

1( )m G Bm T I V Dω ω−= − −

1( )B e G TL L BV C I I I Vω−= ± − +

1( )TL TL B TCSC TL TL TLI L V V R I Iω−= − − +

1( )TCSC TCSC TL TCSC TCSCV C I I Vω−= − +

1( )L L B L L LI L V R I Iω−= − +

1
TCSC TCSC TCSC TCSCI L V Iω−= +

 ODE power system model which
captures fast dynamics of wires and
FACTS devices is introduced.

 Time varying phasors are used to
model network and FACTS dynamics.

 TCSC has been taken as a FACTS
representative.

Conventional power system models Proposed full dynamic model

 Energy based control is using the accumulated energy in TCSC
to stabilize large disturbances in the network.

 Energy function is defined as a sum of increments in accumulated
energy of all devices.

1 ( )

1 ( )

TCSCD D TCSCD TCSCQ
TCSC

TCSCQ Q TCSCQ TCSCD
TCSC

TCSCD TCSCD TCSCQ
TCSC

TCSCQ TCSCQ TCSCD
TCSC

V I I V
C

V I I V
C

I V I
L

I V I
L

ω

ω

α ω

α ω

= − +

= − −

= +

= −









 Investigation of other possible formulations of the control law.

 Modeling and evaluation of other FACTS devices.

 Modeling of large scale systems.

Conclusions &
 A systematic approach to modeling of power systems which

allows an easy integration of new technologies has been
established.

 Energy based control has shown satisfying performance in
stabilization of large disturbances.

Modeling

Control

TCSC control
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Motivation 

Towards Distributed Calculation of Equilibria in Electric Power Systems 
Andrew Hsu and Marija Ilić 

 
• Future energy systems more complex and dynamic with 

nonlinear components 
 
• Dynamic analysis and control design frequently done with 

linearization around equilibrium points 
 

• Is it possible to get real time calculation of equilibria in 
large power systems with many different components 

 
 
 
 

 Example : 2 bus and 3 bus 

Future Power Systems 
 

•  Set up problem as optimization problem with objective function 
reflecting equations dictating component behavior 
 
 
 
 
• Separate local and network variables: solve network step and 
then local step per iteration 
 

• Based on equality-constrained Newton Method 
 

 

Proposed Method 

Real Power Decoupled Example : 2 bus and 3 bus 

Future work Real Power Decoupled: Discussion Acknowledgements 

3 bus example 2 bus example 

• Real-Reactive power decoupled model 
 
• System with conventional synchronous 

generators and constant power loads 
 

• Examples shown for two and three bus 
systems 

Sys ref freq 1 G ref freq2 1
P Load 1 Mech P 1 0.5

G ref freq1 1 Mech P 2 0.5
Solver Distr Solve

Pe1 0.5000 0.5000
Pe2 0.5000 0.5000

Freq1 1.0000 1.0000
Freq2 1.0000 1.0000
Steps 2.0000 2.0000

Sys ref freq 1 G ref freq3 1
P Load 1.5 Mech P 1 0.5

G ref freq1 1 Mech P 2 0.5
G ref freq2 1 Mech P 3 0.5

Solver Distr Solve

Pe1 0.5000 0.5000
Pe2 0.5000 0.5000
Pe3 0.5000 0.5000
w1 0.7006 0.7006
w2 0.7006 0.7006
w3 0.7006 0.7006
Steps 2.0000 2.0000

2 bus example 3 bus example 

• Requires some communication, but not 
inversion of a matrix which has length 
equal to the number of variables 
 

• Real electrical power as network variable, 
other variables (frequency, mechanical 
power, control variables) are local 
 

• Assumes voltage magnitude close to 1p.u. 
and voltage angle is small 

• Real and Reactive power coupled method; 
does not assume voltage is a given value 
 

• Method which takes advantage of 
measurements and communications 
 

• Incorporation of unconventional 
components, such as renewable 
generation  

This work has been sponsored by SRC 
SGRC. (Semiconductor Research 
Corporation’s Smart Grid Research Center). 
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Smart Loads & Demand Response

Automatic Generation and Demand Control : AGDC
Nipun ��������	
���
����

nipun@cmu.edu; milic@ece.cmu.edu

�Higher presence of wind energy in electric power systems,
requires more spinning reserves*

�Faster response needed to compensate for non-zero mean
deviations in wind power output (Time Scale varies)

�Enable demand participation to stabilize and regulate frequency
*Source: US Department of Energy,

http://www.ferc.gov/industries/electric/indus-act/reliability/frequencyresponsemetrics-report.pdf

� Inductive Loads form large component of utility demand (40-60%).
Self Stabilizing effect towards frequency offsets

�Power Regulation possible by embedding simple controllers and
actuators into variable speed drives of different energy users
(Refrigerators, AC, Washer/Dryer)

�Distributed Energy Resources (Wind Turbines, Photovoltaic)
along with Electric Vehicles and Battery Storage can provide
frequency response as well

Non-Dispatchable Wind 

[1] ���������	
��������
��������
��������Hou, "A Possible Engineering and Economic Framework for 
Implementing Demand Side Participation in Frequency Regulation at Value”, accepted for IEEE 
Power Engineering Society General Meeting 2011”

[2] ���������	
�N Popli “Self-Stabilizing response of Loads towards Frequency Excursions: A Multi-
Spatial approach”, EESG WP, CMU 

[3] M. ���	�and J. Zaborszky, Dynamics and Control of Large Electric Power Systems

�Transmission/Locational Constraints
�Generator Ramp Rates, Load 

Characteristics
�Sensing & Communication

� Improving Wind Prediction Model

� Restructuring of Ancillary Service  
Market or Regulation Pricing 
Mechanism

� Incentives to encourage the use of 
Variable Speed Drive’s Technology

Automatic Generation & Demand Control

Technical Specifications

Differential
Quality of Service (QoS)

Next Steps ?Conventional AGC Violation of CPS

Primary Reserves Activated

Effect of Location on Regulation ActionMotivation

5-Bus System

Distributed Approach Proof of Concept

Governor Action Demand Response

Contract Curve Structure

Bias Estimation

This work is supported by Energy Research Initiative (ERI),
Semiconductor Research Corporation (SRC) for Smart Grid Research
Centre (SGRC) at Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh under Task 2111.002
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Distributed Control for Electric Power Systems to Enable the Integration of Renewable Energy Sources
Kyri Baker, Gabriela Hug, Xin Li

Progress / Next Steps

Motivation

ApproachObjective
To enable the integration of intermittent energy sources into the electric 
power grid by:

- Coordinating across control areas
- Using distributed predictive control 
- Optimally utilizing available storage in overall system

System Decomposition and Optimization

IEEE14-bus System
Split into Subareas

Communication 
between areas

Model Predictive Control

- Uses a model of the system to optimize over a time horizon [2]
- Helps answer when to use storage, backup generation, load control, etc. based on load 
forecasts and wind generation predictions
- MPC is a computationally intensive and slow algorithm to use on a large power system;   
decomposition will alleviate issues with this

-Using Optimality Condition Decomposition[1] to split the overall optimization into subproblems
- Iteratively optimize each subproblem independently using Newton-Raphson steps
- After optimal solution is reached for each subproblem, the problems exchange variable data

System Objective and Constraints
-Objectives:

- Minimize cost of generation
- Maximize use of renewable sources
- Minimize use of backup generators
- Minimize ramp up/down of generators

-Subject to:
- Physical power flow constraints
- Storage limits, power generation limits 

Storage Devices
- Helps integrate sources which are intermittent 
- Excess generated energy will be stored instead of curtailed
- Allows optimal usage of available transfer capacity

- The increasing unavailability of fossil fuels and their detriment to the 
environment encourages a push towards renewable sources. To 
increase the amount of renewable generation utilized, a method must be 
developed to more efficiently integrate this type of generation 

- Different devices in the power system which are located in separate 
control areas are usually not willing to fully exchange system data.  The 
use of distributed control  will account for this reality

-Predictive control will help limit the use of environmentally-unfriendly 
generation and ramp/up down of generators, resulting in an overall more 
efficient system

So far, we have implemented:
- System decomposition and optimization using Optimality Condition 
Decomposition (OCD) [1] , a method based on Lagrangian theory
- Optimization using an economic dispatch cost function
- Integration of a generic storage device

- Next Step: Predictive control, move to larger scale systems

Pout
Pin

E(k+1) = E(k) + α*T*Pin – T*Pout/α
Pin*Pout = 0

α = conversion factor 
T = time scale 

References:
[1]: F. Nogales, F. Prieto, and A. Conejo, “A decomposition methodology applied to the multi-area optimal power 
flow problem,” Annals of Operations Research, vol. 120, pp. 99–116, 2003.
[2]: J.M. Maciejowski. Predictive Control. Prentice Hall, 2002.

G1 G3

Area 1        Area 2

Total Load

Convergence of Centralized System
Convergence of Decentralized System

Time = 100

Optimal Generation Levels

3-bus system
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Optimization Problem Formulation
• Control variable

• Setting of the FACTS device
• Objective function

• Maximizing the minimum value of the capacity margin

• Constraints
• Power flow equations
• Model of the loads
• Capacity limits of the transmission line
• Limits of the settings

Determining Key Measurements
• Active power flow through the transmission lines
• Current magnitude of the transmission lines
• Voltage magnitude and angle at buses 

Regression Analysis
• Polynomial fitting

Motivation

Main Idea

Optimal Usage of Transmission Capacity with FACTS Devices to Enable Wind Power Integration
Rui Yang and Gabriela Hug

ruiy@andrew.cmu.edu, ghug@ece.cmu.edu

Electric Energy Systems Group, Dept. of Electrical and Computer Engineering

 Accelerated Integration of Wind Energy Resources 
 Challenges

• Areas with high availability of wind (mostly central US) and demand 
centers (East and West coast) are distinct

• Limited transfer capacity of the transmission network in central US
 Possible Solutions

• Upgrading the current transmission system
• High cost

• Using FACTS devices to influence voltages and power flows
• Allowing better usage of the existing transmission system
• Allowing quick adjusting to the power flows in the system

 Problems
• How to manage congestion in the network under various generation and 

load profiles
• How to deal with the high variability of the wind power resulting in 

varying power flows in transmission network
Objective

• Developing a scheme which will determine the optimal settings of the 
FACTS devices with respect to loading of transmission system

 Approaches
• Centralized approach

• A central controller
• Based on the Optimal Power Flow calculations
• Information of the entire system needed

• Decentralized approach
• Local controller for each FACTS device
• Based on a limited amount of local measurements
• Communication between the measuring devices and controller 

needed

Offline Simulation

Conclusions and Future Work 

Class Potential Density
(W/m2)

Wind Speed
(m/s)

1 Poor 0-200 0.0-5.6

2 Marginal 200-300 5.6-6.4

3 Fair 300-400 6.4-7.0

4 Good 400-500 7.0-7.5

5 Excellent 500-600 7.5-8.0

6 Outstanding 600-800 8.0-8.8

7 Superb >800 >8.8

Decentralized Approach
Structure

• Offline simulation for training purpose
• Online decision making

Offline Simulation
• Under various generation and load scenarios
• Solving optimization problem to get the optimal settings
• Finding a function: optimal setting = f(local measurements)

Online Decision Making
• Function stored in the controller of the FACTS device
• Measurements of the active power flows, currents and voltages
• Setting of the FACTS device at current state

Preliminary Results

  or  TCSC
TCSC TCSC
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System Setup
• IEEE 14-bus system
• Wind generator at Bus 2
• TCSC in Line 1-2
• Load center on north side

Simulation Results
Optimal Setting of the TCSC
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 Conclusion
• Promising preliminary results for the decentralized approach to determine 

the optimal settings of the FACTS devices
 Future Work

• Different locations for the FACTS devices
• Including the setting of the FACTS devices at current state also as a 

measurement
• Further testing with different cases for training and online simulation
• Larger system
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C f S SReal Time Control of Energy Storage Devices in Future Electric Power SystemsReal-Time Control of Energy Storage Devices in Future Electric Power SystemsReal-Time Control of Energy Storage Devices in Future Electric Power SystemsReal Time Control of Energy Storage Devices in Future Electric Power Systemsgy g y
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Motivation Model of Uncertainties Example for G/T DeferralMotivation Model of Uncertainties Example for G/T DeferralMotivation Model of Uncertainties Example for G/T Deferralp
M h ll i b l i h i d t th hi h U t i ti i bl d l d di ti• More challenging power balancing mechanism due to the high • Uncertainties in renewable energy and load predictionMore challenging power balancing mechanism due to the high Uncertainties in renewable energy and load prediction
intermittency and variability of renewable resources M Ab l t P t E (MAPE) i tintermittency and variability of renewable resources • Mean Absolute Percentage Error (MAPE) in power systems Objecti esMean Absolute Percentage Error (MAPE) in power systems

1 Objectives:
• Continuous development of energy storage technologies

1  j
• Continuous development of energy storage technologies actual data ( ) ESS operational cost;p gy g g

0.95 upper bound ˆ
(-) ESS operational cost;

Possible energy storage applications: lower bound (1 ( )) ( ) ( ) (1 ( )) ( )e k P k P k e k P k− ⋅ ≤ ≤ + ⋅ ( ) ESS i lPossible energy storage applications: 0.9 predicted data (1 ( )) ( ) ( ) (1 ( )) ( )e k P k P k e k P k⋅ ≤ ≤ + ⋅ (-) ESS conversion losses.gy g pp ( ) ESS conversion losses.

Integration of renewable generators frequency regulation 0.85 0 ( ) 1e k≤ ≤Integration of renewable generators, frequency regulation, 0.85 0 ( ) 1e k≤ ≤g g , q y g ,
ti /t i i d f l ti li fl t l d 0 8u.generation/transmission deferral, tie-line flow control and 0.8p.

u

ˆ( )kgeneration/transmission deferral, tie line flow control and
P(k) e(k):actual predicted( )P kramping rate control for microgrids 0.75 P(k), , e(k):actual, predicted( )P kramping rate control for microgrids
and MAPE values for a certain0.7 and MAPE values for a certain
f t i bl

1
ˆ ˆ

N−
0.65 forecast variable 2ˆ ˆmin [( ( ) ( )) ( ( ) ( )) ( )]P k P k f P k P k P kα+∑0.65 forecast variable.
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Control Principle Time steps ( 1) ( ) ( ) ( )E k E k P k T E kη ρ+ = ⋅ ⋅ ⋅ Simulation system setup:Control Principle • Uncertainty also arises in the duration of a discrete time step ( 1) ( ) ( ) ( )S S S SE k E k P k T E kη ρ+ = − ⋅ ⋅ − ⋅ Simulation system setup:Control Principle • Uncertainty also arises in the duration of a discrete time step. min max( )
S S S S

k
p y p
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M lti St O ti i ti Original time step size T is evenly divided into n subintervals ( 1)S S SE E k E≤ + ≤ N 24 hours;
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Problems from Power System
• Uncertainties in electric power distribution system:

• Wind power, DG, PHEV, responsive load, etc.
• AMI, Smart metering provide fine grain measurement profile.
• Probabilistic power flow: report “worst case” , “confident 

interval” and result with probability features.

Advances in High Performance Computing
• ‘2010, a desktop workstation’s peak performance comparable to:

• No. 1 fastest supercomputer in 1999;
• No. 500 fastest supercomputer in 2004.

• Trend in Parallelism
• NO free speedup anymore, parallel program model required 
• Programmability & performance trade off
• Specified application + Architecture optimized programming

High Performance Computing Enabled Solution for Power System 
• Monte Carlo simulation as an initial case:

• “Golden standard” for probabilistic power flow
• Embarrassingly Parallelizable on modern computing platform
• Extensible to contingency analysis, steady state time-series…

An Affordable Supercomputing Center for Distribution Substation

Software
• Core program + Intel MKL + MATLAB Interactive Interface:

Voltage Mean Value on each node (p.u)                             Distribution/Histogram

Performance Result

• Blue line (optimized single thread) : 300x faster than MATLAB, 3x faster than C++.

• Speed translates to runtime:

Distribution Power Flow Model
• Three phase unbalanced model example

Two terminal link model:

One terminal node model:

• Forward backward sweep: small size complex Matrix-Vector Mult
Massive Parallel Framework on Multi-Core + SIMD

• Available multi-core / many-core platform:
• Intel  Kentsfield / Nehalem / SandyBridge, SSE and AVX.
• Intel Single Chip Cloud Computing, 48 cores on chip.

Optimizing / tuning techniques for computation core
• Simple array storage instead of complex data structure.
• Optimized for architecture: “cache”, “superscalar,” “out of order”.
• Keep computation running at register level.
Squeezing Computation Power out of the Computer Architecture. 
Push Performance to the Hardware Peak.

Motivation and Background

A Monte Carlo Framework for Probabilistic Distribution Power Flow
Toward building a supercomputing center for distribution substation

Tao Cui and Franz Franchetti
Email: tcui@ece.cmu.edu

EESG Cyber Phycial System Project, Department of Electrical and Computer Engineering

Methods Software & Preliminary Results

Conclusions & Future Work 

Workstation 
+ GPU accelerator
Core i7 + Tesla C1060
1Tflop/s peak performance
$5,000 class

Image: Nvidia

Image: Dell

+

Year 2010:

Theoretical Peak Performance in Intel Specs: 85 GFLOPs

Problem Size Approx. flops Approx. Time
IEEE37: one iteration 12 Kilo ~ 0.3 us
IEEE37: one power flow (~5 Iterations) 60 Kilo ~ 1.5 us
IEEE37: 1 million power flow 60 Giga ~ < 2 seconds
IEEE123: 1 million power flow 200 Giga ~ < 10 seconds

Optimized Performance on Core 2 Extreme @ 2.66GHz

 Program optimization / parallelization:
• 12,000x faster than MATLAB, 120x faster than C++.
• Enable fast computation of large amount of power flow.

 Performance can be further increased on new platform:
• Intel SCC (48 cores on chip),  AVX (8 float data per op)
• GPU: small, less powerful but many more cores.

 Applications of fast distribution power flow solver:
• Fast time series solution;  smart relay co-ordination,  statistic analysis…

Active Role of Distribution System in Smart Grid

Input with 
Randomness 

Physically 
Deterministic 
Method: Load 
Flow

Output result 
with probability 
features

Algorithm

y

x

*Original figure by Andrew Hsu (EESG)

IEEE 37 Node Test Feeder

IEEE PES Distribution System Analysis Subcommittee
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…
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•Step.1.Random Sampling of measurements

•Repeatedly select sample sets of m/2 measurements, for which 
the state remains observable.

•For each selected sample set, estimate the sate by WLS.

•Step.2.Least Trimmed Squares (LTS)

•Find the state candidate having the least sum of trimmed 
squares, among all candidates in step 1.

•Step.3.Bad Data Removal by agreement [3]

•Based on the residual generated in step 2, eliminate the data 
beyond a certain threshold.

•Step.4.Re-estimation

•Estimate the state by WLS, using the remaining (good) data.

• LTS estimator as a pre-processor to detect bad data.

• A subsequent post-processor is employed to eliminate bad data and 
re-estimate the state.

Motivation

Robust State-Estimation Procedure using a Least Trimmed Squares Pre-processor

Yang Weng, Rohit Negi, Zhijian Liu and Marija Ilić
Carnegie Mellon University

 Based on real-time measurements, Static State Estimation
serves as the foundation for monitoring and controlling the
power grid.

 Classical method: The popular weighted least squares(WLS) 
with largest normalized residual removed, gives satisfactory 
performance when dealing with single or multiple uncorrelated 
bad data.

 Problem: When the bad data are correlated or bounded, this 
estimator has poor performance in detecting bad data.

 New approach: Using Robust Estimator to detect/remove 
bad data.

Example

• State(x): Voltage magnitudes and phase angles

• Reference
• [1] A. Abur and A. G. Exposito, “Power System State Estimation:

Theory and Implementation.” Marcel Dekker Inc, 2004.
• [2] A. Monticelli, State Estimation in Electric Power Systems, A

Generalized Approach., 1999.
• [3] S. Gastoni, G. P. Granelli, and M. Montagna., “Robust state

estimation procedure based on the maximum agreement
between measurements.” IEEE Trans. Power Syst., vol. 19, no.
4, pp. 2038–2043, nov 2004.

• IEEE 3 bus

New Approach Numerical Result
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Preliminaries of State Estimation

1. Detection: Chi-square test to detect Bad data

with v = m-n, and r is the residual.

zRHHRHx TT 111 )(ˆ −−−=

2

2
)ˆ( rxL = follows a              distribution)(2 vχ

• Model:

2. Bad date remover: Largest normalized residual
3. State Estimation:

• Simulation for IEEE 39 bus
• The state: 39 voltage magnitudes and 39 phase angles
• The measurement:

• Voltage magnitudes
• Directed phase angle measurements
• Active and reactive power measurements on the lines
• Power injection at each bus

• 1000 random sample sets of m/2 measurements

• Classic Method for state estimation

To determine the most likely state of the system based 
on the quantities that are measured.[1]
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1 2 3 mm-1

Random Sampling

1 m/2

Weighted Least Square
State Estimation

State candidates

True State

Noise Bad dataModel

Least Trimmed Square

New state

Bad data removed
by agreement

Weighted Least Square
State Estimation

Estimated state

Compare

A  lower bound is also computed by 
assuming that an oracle provides WLS 
with the locations of the bad data.

Figure. Performance comparison for the 39 bus case.

• H: Measurement Jacobian
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Traditional measurement model PMU measurement model

Greedy PMU Placement Algorithms for Power System State Estimation
Qiao Li, Rohit Negi and Marija Ilić

Greedy PMU Placement

PMU Augmented State Estimation   

(matrix objective function, can only solve for maximal solutions)
Any good criterion for choosing a maximal solution?

Problem Formulation

The PMUs currently deployed can not achieve full system observability
 Currently, PMU data are utilized to improve traditional state estimation results [1]
 Problem: How to place a small number of PMUs to minimize state estimation error?

Motivation

 Measurement model

 PMU augmented estimator
(set PMU bus voltage angles as measurements)

(use traditional state estimator on non-PMU buses)

Simulation Results

Submodularity Guarantee

Related optimality “A-optimality” “D-optimality”

Objective function
Interpretation reduction in total error variance reduction in entropy 

(approximately) 

Performance guarantee?

Main Results

 Definition of submodularity

Well-known performance guarantee [3]

greedy solution optimal solution
In words, for submodular functions, greedy 
algorithm achieves at least 63% optimality!

 “A-optimality” (total variance reduction)

Assumption holds when the columns of H are nearly orthogonal, 
which is true for typical (branch) real power flow measurements.

Essentially, the greedy algorithm achieves at least 63% 
optimal total error variance reduction!

 “D-optimality” (entropy reduction)

In the literature, the greedy algorithm often serves as a good heuristic.

(but performance hard to guarantee since the function may be decreasing)

(4 PMUs)

(4 PMUs) (50 PMUs) (50 PMUs)

References
1. M. Zhou, V. A. Centeno, J. S. Thorp and A. G. Phadke, “An Alternative for Including Phasor Measurements in State Estimators,” IEEE Trans. on Power Systems, vol. 21, pp. 1930-1937. 
2. F. Pukelsheim, Optimal Design of Experiments, Wiley-Interscience,1993.
3. G. Nemhauser, L. Wolsey, and M. Fisher, “An Analysis of the Approximations for Maximizing Submodular Set Functions,”  Mathematical Programming, 14:265 C294, 1978.
4. Q. Li, R. Negi and M. Ilić, “Phasor Measurement Units Placement for Power System State Estimation: A Greedy Approach,” IEEE PES General Meeting 2011.

Example:

Most errors are small for the greedy algorithm.Almost the same as optimal!

The same as optimal!

large errors for random placement

error by traditional 
state estimator
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