Integrating Wind Power: A potential Role for Controllable Demand

Alberto J. Lamadrid and Tim Mount

Seventh Annual Carnegie Mellon Conference on the Electricity Industry, 2011

1/23

March 2011

Alberto J. Lamadrid (Cornell University) Controllable Demand and Renewable Energy

- Motivation and Outline
- 2 Structure of the SuperOPF
- Sequential Run Setup

Parameters

- Test Network
- Wind Characterization
- Cases Simulated
- 6 Results of the Case Study

Conclusions

Cornell University

2 / 23

Motivation and Outline

- 2 Structure of the SuperOPF
- 3 Sequential Run Setup

4 Parameters

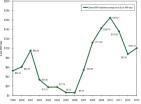
- Test Network
- Wind Characterization
- Cases Simulated
- 5 Results of the Case Study
- 6 Conclusions

3 / 23

★ Ξ >

Motivation

Adoption of renewables = change in marketplace for generators


• Wholesale customer Rate Payments

$$Bill Cost + \lambda_i \times d_i + cp_i \times q_i \tag{1}$$

 More Stochastic generation: Lower income from energy (lower λ_i) + Higher capacity Prices
 More Missing Money

How to compensate services that help maintain reliability?

- 2 Structure of the SuperOPF
 - 3) Sequential Run Setup

4) Parameters

- Test Network
- Wind Characterization
- Cases Simulated
- 5 Results of the Case Study
- 6 Conclusions

5 / 23

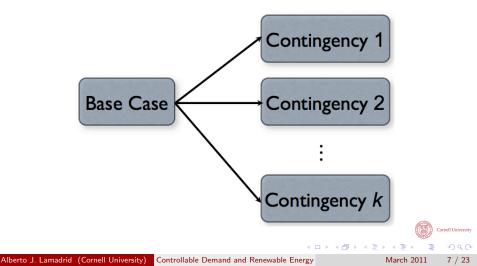
★ Ξ >

Simplified Objective Function

$$\min_{G_{ik}, R_{ik}, \text{LNS}_{jk}} \sum_{k=0}^{n_{c}} p_{k} \left\{ \sum_{i=1}^{l} \left[C_{G_{i}}(G_{ik}) + R_{i}^{+}(G_{ik} - G_{t-1,i0})^{+} + R_{i}^{-}(G_{t-1,i0} - G_{ik})^{+} \right] + \sum_{j=1}^{J} \text{VOLL}_{j} \text{LNS}(G_{k}, R_{k})_{jk} \right\} + \sum_{i=1}^{l} \left[C_{R_{i}}(R_{i}^{+}) + C_{R_{i}}(R_{i}^{-}) \right]$$

$$(2)$$

Subject to meeting Load and all of the nonlinear AC constraints of the network.


$k = 0, 1, \ldots, n_c$ $i = 0, 1, \ldots, I$	Contingencies in the system Generators
$j=0,1,\ldots,J$	Loads
<i>p</i> _k	Probability of contingency k occurring
Gi	Quantity of apparent power generated (MVA)
$C_G(G_i)$	Cost of generating G_i MVA of apparent power
$R_{i}^{+}(G_{ik} - G_{t-1,i0})^{+}$	Cost of increasing generation from previous hour
$R_i^-(G_{i0} - G_{t-1,ik})^+$	Cost of decreasing generation from previous hour
VOLL	Value of Lost Load, (\$)
$LNS(G, R)_{ik}$	Load Not Served (MWh)
$R_i^+ < \operatorname{Ramp}_i$	$(max(G_{ik}) - G_{i0}))^+$, up reserves quantity (MW)
$C_R(R_i^+)$	Cost of providing R_i^+ MW of upward reserves
$R_i^- < \operatorname{Ramp}_i$	$(G_{i0} - min(G_{ik})^+, \text{ down reserves quantity (MW)})$
$C_R(R_i^-)$	Cost of providing R_i^- MW of downward reserves

March 2011 6 / 23

<ロ> <四> <日> <日> <日> <日 > < 日 > <

Cooptmization

 $\mbox{Co-optimization} \rightarrow \mbox{Minimize the Expected Cost of Dispatch over Different States of the System}$

2 Structure of the SuperOPF

Sequential Run Setup

Parameters

- Test Network
- Wind Characterization
- Cases Simulated
- 5 Results of the Case Study
- Conclusions

8 / 23

★ Ξ >

Ramping and reserve costs

Fuel nam	e (t)	Generation Cap. MW (bus cap. MW)	Fuel Cost (\$/MW)	Res. Cost (\$/MW)	Ramp Cost (\$·t/MW)
Oil	(p)	65: b1(35), b2(30)	95	10	0
GCT	(p)	45: b1(20), b2(25)	80	10	0
CC Gas	(s)	40: b22(20), b27(20)	55	20	30
NHR	(s)	65: b20(30), b27 (35)	5	20	30
Coal	(b)	70: b13(35), b23(35)	25	30	60
NHR	(b)	50: b13(20), b23(30)	5	30	60

Setup ramping costs

For every hour, a two-stage optimization problem was solved.

- First stage (hour-ahead), the dispatches for the next time period (t + 1) were determined
- Second stage (real-time), wind realization is known → dispatches for the present time period (t + 1) were determined with reserves from results of first stage.
- Outputs of each hour were interlinked ⇒ set second-stage dispatches for hour t as initial conditions for the dispatch in hour t + 1.
- Any deviations above or below previous hour dispatch priced according to the ability of generators to move from their current operating point.

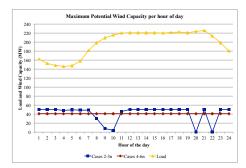
- Motivation and Outline
- 2 Structure of the SuperOPF
- 3 Sequential Run Setup

Parameters

- Test Network
- Wind Characterization
- Cases Simulated

5 Results of the Case Study

6 Conclusions



30 Bus test network

March 2011 11 / 23

Specifications for a Windy Day

- Representative demand shown
- Wind covers around 35% of demand
- O Three wind cuts occur.

Cornell University

12 / 23

March 2011

Research Questions

- How Much potential wind is dispatched?
- How much capacity is needed for reliability?

Cases studied

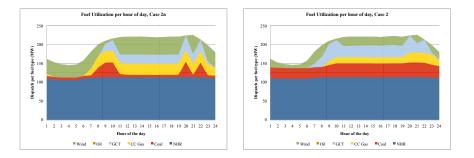
- Case 1: NO Wind.
- Case 1n: NO Wind + No Ramping Cost
- Case 2: Wind.
- Gase 2n: Wind + No Ramping Cost.
- Solution Case 3: Wind + No Congestion.
- Case 3n: Wind + No Congestion + No Ramping Cost.
- O Case 4: Constant Potential Wind.
- Oase 5: Wind geographically distributed, Negatively Correlated.
- Oase 6: Wind geographically distributed, Constant Potential.
- Oase 7: Baseline Distributed wind.
- Oase 8: Distributed Wind, Load Response in daily profile.
- ② Case 9: Distributed Wind, load response as flat load.

- Motivation and Outline
- 2 Structure of the SuperOPF
- 3 Sequential Run Setup

Parameters

- Test Network
- Wind Characterization
- Cases Simulated

5 Results of the Case Study


Conclusions

Cornell University

14 / 23

< 3 >

Effects of Adding Ramping Costs

No ramping costs Wind Variability mitigated by Coal, MORE wind dispatched

• Ramping costs Wind Variability mitigated by GCT, LESS wind dispatched

15 / 23

Effects of Adding Ramping Costs

Typical day with 0MW/50MW of Wind Capacity

50MW Wind Capacity	Case 1 No Ramping Costs	Case 1 With Ramping Costs	Percentage Change
Operating Costs: \$1000/day	109	118	8.26
Conventional Capacity Committed: MW	224	224	0

Adding Wind:

50MW Wind Capacity	Case 2n No Ramping Costs	Case 2 With Ramping Costs	Percentage Change
Operating Costs:			
\$1000/day	80	92	15
Conventional Capacity			
Committed: MW	273	255	-6.59
Potential Daily Wind			
Dispatched: %	88	43	-51.14

< □ > < 同 >

→ Ξ →

Effects of constant wind and geographic distribution

Typical Day with Ramping costs.

50MW Wind Capacity	Case 2 Normal Wind	Case 4 Constant Wind	Percentage Change
Operating Costs: \$1000/day	92	83	-9.78
Conventional Capacity Committed: MW Potential Daily Wind	255	225	-11.76
Potential Daily Wind Dispatched: %	43	74	72.09

Lower Operating costs \rightarrow More wind dispatched Less Capacity Needed \rightarrow Cutouts eliminated

50MW Nind Capacity	Case 2 Normal Wind	Case 7 Two Wind Sites	Percentage Change
perating Costs:			
\$1000/day	92	81	-11.96
Conventional Capacity			
Committed: MW	255	265	3.92
Potential Daily Wind			
Dispatched: %	43	60	39.53

Alberto J. Lamadrid (Cornell University) Controllable Demand and Renewable Energy

March 2011 17 / 23

No Congestion and geographic offsets

50MW Wind Capacity	Case 7 Two Wind Sites	Case 5 Offset Wind Sites	Percentage Change
Operating Costs: \$1000/day	81	79	-2.47
Conventional Capacity Committed: MW Potential Daily Wind	265	230	-13.21
Dispatched: %	60	79	31.67

Lower Operating costs \rightarrow Slightly lower than constant wind. Less Capacity Needed \rightarrow Cutouts are present.

50MW Wind Capacity	Case 7 Case 3 Two Wind Sites No Congesti		Percentage Chang n	
Operating Costs: \$1000/day	81	58	-28.4	
Conventional Capacity Committed: MW	265	271	2.26	
Potential Daily Wind Dispatched: %	60	62	3.33	

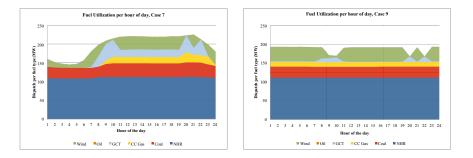
Alberto J. Lamadrid (Cornell University) Controllable Demand and Renewable Energy

March 2011 18 / 23

Demand Response and Flat Demand

50MW Wind Capacity	Case 7 Two Wind Sites	Case 8 Two Sites + DR	Percentage Change
Operating Costs: \$1000/day	81	77	-4.94
Conventional Capacity Committed: MW Potential Daily Wind	265	242	-8.7
Dispatched: %	60	65	8.33

$\begin{array}{l} \mbox{Lower Operating costs} \rightarrow \mbox{Substantial gains} \\ \mbox{Less Capacity Needed} \rightarrow \mbox{Cutouts mitigated and peak load reduced} \end{array}$


50MW Wind Capacity	Case 7 Two Wind Sites	Case 9 Two + Flat +DR	Percentage Change
Operating Costs:			
\$1000/day	81	55	-32.1
Conventional Capacity			
Committed: MW	265	206	-22.26
Potential Daily Wind			
Dispatched: %	60	77	28.33

March 2011

19 / 23

Alberto J. Lamadrid (Cornell University) Controllable Demand and Renewable Energy

Effects of flat demand + Demand Response

• Lower Operating Costs/ More Wind Dispatched \rightarrow Substantial gains

• Much lower capacity Needed \rightarrow Cutouts Mitigated and peak load reduced.

Cornell University

20 / 23

No Congestion vs. Flat Demand

	Case 1 No Wind	Case 2 Normal W.	Case 3 Transm. W.	Case 4 ESS + Wind	Case 9 Load Resp. W.
Conv. Capacity Committed MW	224	255	271	225	206
Wind Dispatched % of Available Wind	0	43	62	74	77
Operating Costs \$/MWh	23	19	12	17	12
Capital Cost \$/MWh	38	46	52	53	45
Total Operating+Capital Cost \$/MWh	61	65	64	70	57

Similar Operating costs \rightarrow Merit order dispatch, mitigated variability Much less Capacity Needed \rightarrow Cutouts mitigated and peak load reduced

50MW Wind Capacity	Case 3 No Congestion	Case 9 Two + Flat +DR	Percentage Change	
Operating Costs: \$1000/day	58	55	-5.17	
Conventional Capacity Committed: MW	271	206	-23.99	-
Potential Daily Wind Dispatched: %	62	77	24.19	Cornell Universi

Alberto J. Lamadrid (Cornell University) Controllable Demand and Renewable Energy

March 2011 21 / 23

- Motivation and Outline
- 2 Structure of the SuperOPF
- 3 Sequential Run Setup

4 Parameters

- Test Network
- Wind Characterization
- Cases Simulated
- 5 Results of the Case Study

Conclusions

Cornell University

22 / 23

Image: A Image: A

Conclusions

- Ramping costs and the high probability of cutouts results in less wind dispatched.
- Eliminating network congestion does not eliminate the adverse effects of wind variability (more wind dispatched but the same capacity needed).
- The main benefit of using controllable demand to mitigate wind variability is to reduce the capacity needed.
- Using controllable demand (electric vehicles and thermal storage) to flatten the daily pattern of demand and mitigate wind variability is the big winner. More wind is dispatched and less capacity is needed.

23 / 23