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Introduction

• Using noisy measurements and topology to 

estimate the states of the power system.

• State: voltage and angle of every

bus in the power system

• SCADA: supervisory control and data acquisition

• PMU: synchronized phasor measurement unit
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Why State Estimation?

• Distributed integration of renewable sources and PHEVs as 

new loads will make the power grid’s operation more stressed, 

increasing the possibility of blackouts and brownouts; 

• The system operators will therefore need more reliable, timely 

and even predicable knowledge of the system (maintain 

situational awareness). More accurate and timely SE will be an 

important tool to help achieving that goal;

• SE is the foundation for many numbers of “smart grid” 

applications on the distribution system, e.g., voltage control, 

reactive power management, demand response, etc;

• SE = a mitigator + an economic monitor + an arbitrator;
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PMU vs SCADA measurements

• SCADA (usually) measures

– Power flow; power injection; voltage magnitude

– Update slowly, 

• PMU can directly measure

– All measurements are synchronized by GPS signal

– Voltage (current) magnitude and phase angle

– Update very quick

– Higher precision than SCADA, 
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Two sides of PMU measurements

• PMU measurements can be added to the 
traditional SCADA measurements to improve DSE 
performance

• The inclusion of PMU measurements leads to
– increased computational burden;

– combined linear and nonlinear measurements;

– ill-conditioned measurement noise covariance matrix.

We propose a reduced-order DSE.
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• The number of PMUs is growing fast!
* Source: David Costello, “Synchrophasors and the Smart Grid”, GCPA Fall Conference, 2009. 

available: http://www.gulfcoastpower.org/default/f09wkshpcostello.pdf
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Dynamic vs. Static

• Static state estimation
– Consumes a great deal of computing resource, ignores 

the dynamics of the system (one shot estimation, no 
forecasting);

• Dynamic state estimation
– Enhances computation speed;

– Integrates the system dynamics information (power 
grid mostly runs in quasi-static status, and its 
dynamics can be well captured by historical data);

– Has prediction capability and more accurate;
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Why Reduced-order DSE

• If the PHEV penetration reaches a significant level 
(maybe coming soon), the states of the system 
will change more quickly, making it important to 
shorten consecutive SE interval and have faster 
SE algorithm;

• With more PMUs, the dimension of SE will 
significantly increase, so does the complexity for 
traditional DSE. The problem of ill-conditioned 
matrix will increase the possibility of non-
convergence of traditional DSE.
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System Model

• The dynamic model is given by

x(k + 1) = F(k)x(k) + g(k) + w(k),

state trans-
ition matrix

Trend 
behavior

Additive 
noise

k: time instant

x(k) = [θ2(k) · · · θ N(k) V1(k) · · · VN(k)]

θ : voltage 
phase angle

V : voltage 
magnitude
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Measurement equation

Z: Measurement vector
h: nonlinear measurement equation, 
determined by the topology
V: noise (error) vector

• The equation observes the system:

• Note: h1 for SCADA measurements is always 
nonlinear, while h2  can be linear

=                + Z1(k)
Z2(k)

h1[x(k)]
h2[x(k)]

V1(k)
V2(k)
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Dynamic State Estimation

• DSE usually can be divided into two steps:

– Prediction step: calculate the state of one time 
instant ahead based on the state evolution 
function; (many prediction techniques have been 
proposed, e.g., Artificial Neural Networks and 
Fuzzy Logic techniques, etc.)

– Filtering step: synthesize the predicted states and 
the measurements of the current instant to 
achieve better (in statistics) estimates
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Reduced Order DSE

• The reduced order DSE first decouples those 
states that are directly observable by PMU 
measurements from the rest of the states;

• Use those PMU-observable states to help 
estimate the rest of the states;

• The proposed algorithm then performs those 
two categories of state estimation separately:
– Linearly estimates the PMU states

– Optimally estimates the rest states
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Reduced Order DSE

• The N dimension state vector is decoupled 
into N1, and (N-N1) dimension state vectors;

• The estimated PMU states are treated as 
deterministic input for estimating the 
remaining states;

• The estimation of the remaining states is 
optimal with the performance metric being 
the trace of the error covariance matrix (the 
same as Kalman filtering scheme).

14



Decoupling the states

• Q(k) is a permutation matrix, grouping the 
PMU states to be x2(k), and remaining states 
to be x1(k)
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Constrained optimization

• The optimal estimation of x1(k) can now  be  
cast  as a constrained optimization problem; 

• Solving the constrained optimization problem 
is done in two steps:

– Find the optimal predictor;

– Find the optimal filter.
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Simulation Configuration

• To compare the performance of the reduced-
order scheme with the traditional extended 
Kalman filter scheme.

Traditional measurements: 1 
bus voltage magnitude, P and Q 
injections at 8 buses, and P and 
Q measured at 12 lines
PMU: directly measure voltage 
magnitudes and phase angles
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Selected Numerical Results

Metrics PMU Prediction Filtering

Фθi 
2 0.48%/0.52% 0.23%/0.25%

3 0.46%/0.49% 0.21%/0.23%

Ф Vi
2 1.06%/1.05% 0.62%/0.64%

3 0.99%/0.93% 0.52%/0.53%

Фθi (k) = |[θ’i(k) − θi(k)]/ θ i(k)| * 100%

Ф Vi (k) = |[ V’i(k) − Vi(k)]/0.1| * 100%
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Comments on complexity

• The proposed reduced-order DSE essentially 
decouples the PMU measurements from 
traditional measurements. They are treated as 
inputs to the KF whose dimension is reduced 
by the same number as the number of PMU 
measurements;

• The computational complexity for the reduced 
order DSE is in the same order as the 
traditional KF without PMU measurements.
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Future work

• Extend the current work to large scale power 
system which may involve multiphase state 
estimation;

• Find and design a suitable dynamic state 
estimation algorithm for microgrids, which 
may function as an island or as part of the 
entire grid.
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Challenges in μ-Grids SE

• SE algorithms in transmission line not applicable: 
– Very few real-time measurements are available in μ-Grids;

– Topologies of μ-Grids change fast;

– X/R ratio is relatively low in μ-Grids;.

• Kalman state space model not available for μ-Grids. 

• Complexity (both model and computational) issue is more 
sensitive in μ-Grids, so does the robustness of the SE algorithm.

• Integration of many DGs causes many variations in μ-Grids;

• Load forecasting is important in SE for μ-Grids: more accurate 
load modeling is required.
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Thank you!
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