Performance Characteristics of State of the Art Wind Plants

> Jovan Bebic, Ph.D. GE Energy Consulting

SEVENTH ANNUAL CARNEGIE MELLON CONFERENCE ON THE ELECTRICITY INDUSTRY 2011

Pittsburgh, March 9, 2011

Energy Consulting... Since Early 1900's

Generation Solutions

Power Systems

Strategic Planning Asset Valuation Investment Analysis

Optimization of Thermal Systems Concept & Design Engineering Generation Performance

** **Equipment Applications **** Testing & Grid Compliance Systems Engineering & Performance Smart Grid

> Power Market Models Power Systems Models Asset Valuation Tools Standardized Training Customized Courses Global Reference

Power Systems Engineering Course (PSEC)

Market Models & Tools

Enabling >20% Renewables... GE Studies

- Studies commissioned by utilities, energy commissions, ISOs, ...
- Examine feasibility of 100+ GW of new renewables
- Consider operability, costs, emissions, transmission

Need for operational flexibility, new operating strategies and markets, transmission reinforcement, grid friendly renewables. 2004 New York 3 GW Wind 10% Peak Load 4% Energy 2005 Ontario 15 GW Wind 50% Peak Load **30% Energy** 2006 California 13 GW Wind **3 GW Solar** 26% Peak Load 15% Energy **2007 Texas** 15 GW Wind 25% Peak Load 17% Energy 2009 Western U.S. 72 GW Wind 15 GW Solar 50% Peak Load 27% Energy **O** 2010 New England

12 GW Wind 39% Peak Load 24% Energy 3/ GF/

March 8, 2011

Grid Friendly Wind Power Plant

Tools to operate, maintain, and manage the wind plant

Ride-Through Capabilities

- Wind plant remains on-line and feeds reactive power through system disturbances
- New ride through capabilities are engineered to meet global needs
- Designed for faults on any combination of phases
- Zero voltage ride through offering new standard

Wind Control - Voltage

- Coordinated turbine and plant supervisory control structure
- Voltage, VAR, & PF control
- PF requirements primarily met by WTG reactive capability, but augmented by mechanically switched shunt devices if necessary
- Combined plant response eliminates need for SVC, STATCOM, or other expensive equipment
- Integrated with substation SCADA

Wind Control – Voltage (continued)

- Regulates Grid Voltage at Point of Interconnection
- Minimizes Grid Voltage Fluctuations Even Under Varying Wind Conditions
- Regulates Total Wind Plant Active and Reactive Power through Control of Individual Turbines

Actual measurements from a 162MW wind plant

7 / GE / March 8, 2011

Wind Control – Power Curtailment and Ramp Rate Limits

Wind Control – Power Under-Frequency Droop Response

- **Initial Conditions:**
- Power curtailed to 90% of available wind
- 2.5% power increase for 1% frequency drop

Test:

- 4% frequency rampdown @0.125 Hz/sec
- 10% increase in plant power with 4% underfrequency

Function has High Opportunity Cost: To Be Used Sparingly

Wind Control – Power Over-Frequency Droop Response

Initial Conditions:

 25% power reduction for 1% frequency increase

Test:

- 2% frequency rampup @0.125 Hz/sec
- 50% reduction in plant power with 2% over-frequency

Function has Little Opportunity Cost: A Reasonable Request

System Needs:

maginatic

- Modern wind turbine-generators do not contribute to system inertia
- System inertia declines as wind generation displaces conventional generators (de-committed)

Control Concept:

- Use controls to extract stored inertial energy
- Provide incremental energy contribution during the first 10 seconds of grid events

WindINERTIA uses controls to increase electric power during the initial stages of a significant downward frequency event

/ 11 / GE / March 8, 2011

WindINERTIA – Example

14GW, mostly hydro system, for trip of a large generator

Wind Power On Series-Compensated Lines

Why use series compensation?

aginatio

- Long lines have significant impedance to current flow
 - Limits power transmission capacity
- Series capacitors "cancel" part of line impedance
 - Permits desired power transmission

But, impedance-cancellation has an important side-effect...

Electrical resonance introduced to grid

- Very small damping, due to low-loss grid
- Interacts with electrical equipment on grid
- Some interaction mechanisms create instability

Subsynchronous Interactions (SSI) is a generic term for various interaction mechanisms with series capacitors

13 / GE / March 8, 2011

Wind Power On Series-Compensated Lines

Example: Insertion of series capacitor, wind plant based on doubly-fed asynchronous generator

At turbine and at series capacitor...

magination at

14 / GE / March 8, 2011

Wind Power On Series-Compensated Lines

Suggested Best Practice

Grid entity responsibility

- Determine exposure of wind plants for both extreme and planned grid conditions
- Provide grid-level protection for SSI events
- Provide some modest grid-level damping of series resonance
- Inform wind plant owners of exposure

Wind plant owner responsibility

- Engage turbine vendor and share grid information
- If needed, engage independent consultant with SSI expertise
- Define actions needed within wind plant, if any
- Arrange to implement any needed actions

Wind turbine vendor responsibility

- Evaluate application information, and propose solutions if needed
- Support independent consultant if needed

Protection prevents damage – always prudent Mitigation prevents protective action – not always necessary

Thank you.

Jovan Bebic bebic@ge.com

