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The Smart Grid

The Smart Grid is a vision of the future electric energy system.

What’s in it?

demand response

smart metering

new materials

communication

cyber security

PHEVs

micro-grids

renewables

storage

new market systems
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Wind Power Variability

Wind is variable source of energy:

Non-dispatchable - cannot be controlled on demand

Intermittent - exhibit large fluctuations

Uncertain - difficult to forecast

This is the problem! Especially large ramp events

Hourly wind power data from Nordic grid, Feb. 2000 – P. Norgard et al.,2004
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Wind Energy: Status Quo

Current penetration is modest, but aggressive future targets

Wind energy is 25% of added capacity worldwide in 2009
(40% in US) – surpassing all other energy sources

Cumulative wind capacity has doubled in the last 3 years –
growth rate in China ≈ 100%

Almost all wind sold today uses extra-market mechanisms

Germany – Renewable Energy Source Act
TSO must buy all offered production at fixed prices

CA – PIRP program
end-of-month imbalance accounting + 30% constr subsidy
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Dealing with Variability

Today:

All produced wind energy is taken, treated as negative load

Variability absorbed by operating reserves

Integration costs are socialized

Tomorrow:

Deep penetration levels, diversity offers limited help

Too expensive to take all wind, must curtail

Too much reserve capacity =⇒ lose GHG reduction benefits

Today’s approach won’t work tomorrow
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Dealing with Variability Tomorrow

At high penetration (> 20%), wind power producer (WPP) will
have to assume integration costs

Consequences:

1 WPPs participating in conventional markets [ex: GB, Spain]

2 WPPs procuring own reserves [ex: BPA self-supply pilot]

3 Firming strategies to mitigate financial risk [ex: Iberdrola]

energy storage
co-located thermal generation
aggregation services

4 Novel market systems

Intra-day [recourse] markets
Novel instruments [ex: interruptible contracts]
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Our Broader Research Agenda

Systems and control problems relevant to renewable integration
and grid operations

Novel market instruments

Optimal operation of energy storage

Control and communication architectures

Statistical wind forecasting

These realize system flexibility for the Smart Grid
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Problem Formulation

1 Wind Power Model

2 Market Model

3 Pricing Model

4 Contract Model

5 Contract Sizing Metrics
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Wind Power Model

Wind power w(t) is a stochastic process

Marginal CDFs assumed known, F (w, t) = P{w(t) ≤ w}
Normalized by nameplate capacity so w(t) ∈ [0, 1]

Time-averaged distribution on interval [t0, tf ]

F (w) =
1
T

∫ tf

t0

F (w, t)dt
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Market Model

forward market
(t = -24 hrs)
price: p time

power

delivery interval
deviation penalty:q

w(t), wind
C(t), contract

(t = 0)

ex-ante: single forward market
ex-post: penalty for contract deviations

Remarks:

Offered contracts are piecewise constant on 1 hr blocks

No energy storage ⇒ no price arbitrage opportunities ⇒
contract sizing decouples between intervals

Eilyan Bitar UC Berkeley

Integrating Random Energy



Introduction Problem Formulation Analytical Results Empirical Studies Future Directions

Pricing Model

forward market
(t = -24 hrs)
price: p time

power

delivery interval
deviation penalty:q

w(t), wind
C(t), contract

(t = 0)

Prices ($ per MW-hour)
p = clearing price in forward market
q = imbalance penalty price

Assumptions:

Wind power producer (WPP) is a price taker

Prices p and q are fixed and known
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Metrics of Interest

For a contract C offered on the interval [t0, tf ], we have

profit acquired Π(C,w) =
∫ tf

t0

pC − q [C − w(t)]+ dt

energy shortfall Σ−(C,w) =
∫ tf

t0

[C − w(t)]+ dt

energy curtailed Σ+(C,w) =
∫ tf

t0

[w(t)− C]+ dt

These are random variables.
So we’re interested in their expected values.

Eilyan Bitar UC Berkeley

Integrating Random Energy



Introduction Problem Formulation Analytical Results Empirical Studies Future Directions

Optimal Contracts

Taking expectation with respect to w,

J(C) = E Π(C,w)
S−(C) = E Σ−(C,w)
S+(C) = E Σ+(C,w)

Optimal contract maximizes expected profit:

C∗ = arg max
C≥0

J(C)
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Objectives

Theoretical

Studying effect of wind uncertainty on profitability

Understanding the role of p and q

Utility of local generation and storage

Empirical

Calculating marginal values of storage, local-generation

Bigger picture

Using studies to design penalty mechanisms to incentivize
WPP to limit injected variability

Dealing with variability at the system level
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Related Work

Bathurtst et al (2002)

Pinson et al (2007)

Matevoysyan and Soder (2006)

Botterud et al (2010)

Morales et al (2010)

Incorporate risk of profit variability
Uncertainty in prices using ARIMA models
AR models and wind power curves for wind production
LP based solution using scenarios for uncertainties
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Main Results

1 Optimal contracts in a single forward market

2 Role of forecasts

3 Role of local generation

4 Role of energy storage

5 Optimal contracts with recourse
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Optimal Contracts: γ-quantile policy

Theorem

Define the time-averaged distribution

F (w) =
1
T

∫ tf

t0

F (w, t)dt

The optimal contract C∗ is given by

C∗ = F−1(γ) where γ = p/q
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Optimal Contracts: Profit, Shortfall, & Curtailment

Theorem

The expected profit, shortfall, and curtailment corresponding to a
contract C∗ are:

J (C∗) = J∗ = qT

∫ γ

0
F−1(w)dw

S− (C∗) = S∗− = T

∫ γ

0

[
C∗ − F−1(w)

]
dw

S+ (C∗) = S∗+ = T

∫ 1

γ

[
F−1(w)− C∗

]
dw
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Graphical Interpretation of Optimal Policy
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Graphical Interpretation of Optimal Policy
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Graphical Interpretation of Optimal Policy
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Some Intuition ...

Large penalty q, price/penalty ratio γ ≈ 0
optimal contract ≈ 0
optimal expected profit ≈ 0
sell no wind – too much financial risk for deviation

Small penalty q, price/penalty ratio γ ≈ 1
offered optimal contract ≈ 1 = nameplate

optimal expected profit = pTE[W ] [expected revenue]

sell all wind – no financial risk for deviation

Price/penalty ratio γ controls prob of meeting contract,
curtailment, variability taken

Result is simple application of Newsboy problem
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The Role of Information
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The Role of Information
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Good Forecasts are Valuable

Better information ⇒ larger profit [want to formalize this]

EX: W ∼ uniform

J∗ = pTE[W ]︸ ︷︷ ︸
expected revenue

− pTσ
√

3(1− γ)︸ ︷︷ ︸
loss due to forecast errors

loss due to forecast errors is linear in standard deviation σ

General case:
Can quantify value of information using deviation measures
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Result Generalizes...

Rockafellar et. al. (2002) provide an axiomatic formulation

Definition (General Deviation Measures)

A deviation measure is any functional D : L2 → [0,∞) satisfying

1 D(X + C) = D(X) for constant C

2 D(λX) = λD(X) for all λ > 0.

3 D(X + Y ) ≤ D(X) +D(Y )
4 D(X) ≥ 0

for all X,Y ∈ L2.

Examples: standard dev., mean absolute dev.
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Result Generalizes...

Optimal expected profit:

J∗ = pTE[W ]︸ ︷︷ ︸
expected revenue

− pTDγ(W )︸ ︷︷ ︸
loss due to forecast error

where

Dγ(W ) = E[W ]− 1
γ

∫ γ

0
F−1(w)dw

is the conditional value-at-risk (CVaR) deviation measure
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Properties

1 Dγ(W ) Monotone non-increasing in γ

2 limγ→0Dγ(W ) = E[W ], J∗ → 0
3 limγ→1Dγ(W ) = 0, J∗ → pT E[W ]

γ discounts the impact of uncertainty on profit J∗
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Intra-day Markets

p1 time

power

delivery interval
deviation penalty:q

w(t), wind
C(t), contract

p2 p3 ¢ ¢ ¢ pN

Y1 Y2 Y3 YN¢ ¢ ¢
C1 C2 C3 CN¢ ¢ ¢

¸ ¸ ¸ ¸

1 ex-ante: In market n, offer contract Cn at price pn

2 ex-post: Imbalance deviation penalty from cumulative
contract C =

∑N
k=1Ck

Trade-off: decreasing prices , increasing information
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Recourse Profit Criterion

Expected Profit Criterion:

J (C1:N ) = E
∫ tf

t0

N∑
n=1

pnCn (Yn)︸ ︷︷ ︸
stage-n revenue

− q [C (YN )− w(t)]+︸ ︷︷ ︸
penalty on cumulative contract

dt

Define a portfolio of profit maximizing contracts {C∗n} as

{C∗n} = arg max
{Cn}≥0

J (C1:N )

Solution given by stochastic dynamic programming
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Markets with Recourse

Theorem

The optimal contracts {C∗n} are characterized by thresholds {ϕn}

C∗n =

[
ϕn −

n−1∑
k=1

C∗k

]+

Threshold ϕn is a pn

q -quantile, function of information Yn
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Energy Storage

WPP has co-located energy storage facility

Questions:

ex ante Optimal contract with local storage?

ex post Optimal storage operation policy?

Impact of storage capacity [capital cost] on profit?

Can be treated as:
finite-horizon constrained stochastic optimal control problem

Eilyan Bitar UC Berkeley
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Energy Storage Model

Model: ė(t) = αe(t) + ηinPin(t)− 1
ηext

Pext(t)

Constraints:
0 ≤ e(t) ≤ e
0 ≤ Pin(t) ≤ P in

0 ≤ Pext(t) ≤ P ext

Dynamics and constraints are linear

Eilyan Bitar UC Berkeley
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Marginal Value of Energy Storage (Intuition)

Consider storage system [small capacity ε, not lossy]

C

w(t)

t

»: # of events where w(t) crosses C from above

ξ equivalent to number of energy arbitrage opportunities

Each arbitrage opportunity gives savings = qε

Marginal value of storage = q
ηin

ηext
E[ξ]

Eilyan Bitar UC Berkeley
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Wind Power Data

Bonneville Power Authority [BPA]

Measured aggregate wind power over BPA control area

Wind sampled every 5 minutes for 639 days
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Empirical Wind Power Model

Simplifying assumptions to estimate distributions.

A1 The wind process w(t) is assumed to be first-order
cyclostationary in the strict sense with period T0 = 24 hours,

F (w, t) = F (w, t+ T0) for all t

A2 For a fixed time τ , the discrete time stochastic process
{w(τ + nT0) | n ∈ N} is independent in time (n).

Eilyan Bitar UC Berkeley
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Empirical Wind Power Model

Autocorrelation ρww(τ) = E w(t)w(t+ τ)
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Empirical Wind Power Model

Fix a time τ ∈ [0, T0]
Consider a finite length sample realization of the discrete time
process zτ (n) := w(τ + nT0) for n = 1, · · · , N .

Compute the empirical distribution F̂N (w, τ)

F̂N (w, τ) =
1
N

N∑
i=n

1 {zτ (n) ≤ w}

F̂N (w, τ) is consistent with respect to F (w, τ) [A1, A2,
LLN].
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Empirical Distributions

Empirical CDFs for nine different hours
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Optimal Forward Contracts
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Optimal Expected Profit - Empirical

Optimal expected profit J∗ as a function of γ
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Units: $/(q · nameplate capacity)

Typical numbers

p=50 $/MW-hour

q=60 $/MW-hour

Capacity = 160 MW

ex: γ = 5/6
J∗ ≈ $ 28K per day
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Marginal Value of Storage - Empirical

Useful in sizing storage
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Recap

1 Optimal contracts in a single forward market

2 Optimal contracts with recourse

3 Role of forecasting

4 Role of local generation

5 Role of energy storage
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Future Directions

Alternative penalty mechanisms that support system flexibility

Network aspects of wind integration

Aggregation and profit sharing

New markets systems: interruptible power contracts
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Thank you. Questions?

ebitar@berkeley.edu
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