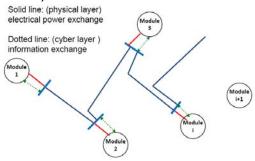
Module-based Modeling and Control of Systems with Wind Power Plants


Le Xie (Ix@andrew.cmu.edu) and Marija D. Ilić (milic@ece.cmu.edu)

Motivation

- To provide systematic means of analyzing the grid dynamics with high penetration of wind power.
- To design control and information protocols for guaranteed performance of power systems with high penetration of distributed energy sources.

Approach

 Structure-preserving model [4]: treat components as modules (both loads and generators) connected via transmission network.

• Specify module related state variables and network related state variables. The system is modeled in a set of ODEs rather than DAEs.

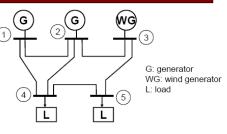
$$\dot{x}_{\text{mod}}^{i} = f(x_{\text{mod}}^{i}, x_{\text{net}}^{i}, u^{i}, p^{i})$$

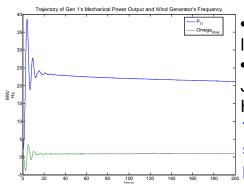
$$\dot{x}_{\text{net}} = 0x_{\text{net}} + Hx_{\text{mod}}$$

where
$$x_{net} = \begin{bmatrix} x_{net}^1 & x_{net}^2 & \dots \end{bmatrix}$$

$$x_{\text{mod}} = \begin{bmatrix} x_{\text{mod}}^1 & x_{\text{mod}}^2 & \dots \end{bmatrix};$$

H =power flow Jacobian;


 x_{mod}^{i} = module related state variabls;


 $x_{net}^i = \begin{bmatrix} P^i & Q^i \end{bmatrix}$ (injected power to the network at node i).

Theorem: the whole system is bounded-input-bounded-output (BIBO) if (i) all the modules are locally stabilizable and (ii) matrix H satisfy *Hicks* condition [1].

Example

- Linearized wind turbine model with random mechanical torque input [3];
- Linear dynamic load model [4].

- All the modules are locally stabilizable;
- Power flow Jacobian satisfy the Hicks condition.

This system is BIBS stable with wind power integration

Conclusions/ Future Work

- A module-based model of power systems with wind power integration is proposed.
- Analytically guaranteed stability performance could be specified from the proposed model.
- Examples show the potential of designing cyber-physical structure for guaranteed system performance with distributed energy penetration.
- Future work should include investigation of the dynamic aggregation of modules for pre-specified performance over a broad range of operating conditions.

Acknowledgement

 National Science Foundation ITR Project Number CNS-0428404

References

- [1] L. Xie and M. Ilic. "Module-based modeling of cyber-physical power systems," First International Workshop on Cyber-Physical Systems, June 2008
- [2] I. Martinez, A.R. Messina, and V. Vittal, "Normal form analysis of complex system models: a structure-preserving approach," *IEEE Trans. Power Systems*, Vol. 22, No. 4, Nov 2007
- [3] J. Cidras and A.E. Feijoo, "A linear dynamic model for asynchronous wind turbines with mechanical fluctuations," *IEEE Trans. Power Systems*, Vol. 17, No. 3, Aug 2002
- [4] M.D. Ilic, L. Xie, U. Kahn and J. Moura, "Modeling future cyber-physical energy systems," IEEE PES General Meeting, July 2008

