Modeling Future Cyber-Physical Energy Systems

Marija D. Ilić, Le Xie, Usman A. Khan, and José M. F. Moura {milic, lx, ukhan, moura}@ece.cmu.edu

ABSTRACT

- Modeling future cyber-physical energy systems
- Systems are represented as modules connected by an electric transmission network
- Modules that cannot be modeled from first principles are represented using a cyber model
- Cyber models are formulated using statistical system identification techniques
- Resulting cyber-physical infrastructure of interconnected system preserves the original structure of the energy system
- Provides an enhanced description of system stability

Motivation

US Electric Power Network

- Structure preserving models for the electric power systems
- · Detailed description of the load dynamics
- Dynamic load aggregation over broad ranges of system conditions
- Explicit Interactions between the load modules and the network
- · Enhanced framework to analyze system instabilities

Generator Module

Future Work

- Application of the cyber-physical model to distributed control
- Application of the cyber-physical model to distributed estimation, [10]
- Analytical stability analysis for distributed energy integration
- Designing information structure for guaranteed performance
- under broad range of operating condition

References

[1] M. D. Ilić, Jason W. Black, Marija Prica. "Distributed Electric Power Systems of the Future: Institutional and Technological Drivers for Near-Optimal Performance" Electric Power Systems Research, Elsevier. Available online Nov 2006 at www.sciencedirect.com.

[2] M. D. Ilić, "Providing Energy Services of the Future by Means of Dynamic Energy Control Protocols (DECPs)", Proceedings of the IEEE SMC, 2007, Montreal, CA.

[3] Elizondo, Marcelo, M. D. Ilić, and Pedro Marcado. "Determining the Cost of Dynamic Control Capacity for Improving System Efficiency." Proceedings of the IEEE General Power Meeting, Montreal CA, June 2006, paper # PESGM2006-000839.

[4] M. D. Ilić, "Model-based Protocols for the Changing Electric Power Industry", Proceedings of the Power Systems Computation Conference, June 24-28, 2002, Seville, Spain

[5] M. D. Ilić (Ed), "Engineering Electricity Services of the Future", Springer, 2008 (to appear).

[6] M.D. Ilić and J. Zaborszky, Dynamics and Control of Large Electric Power Systems, New York: Wiley Interscience, 2000.

[7] Available online at http://www.nyiso.com/public/market data/load data.jsp

[8] J. Cardell, M. D. Illć and R. Tabors, "Integrating Small Scale Distributed Generation into a Deregulated Market: Control Strategies and Price Feedback," MIT Energy Laboratory Technical Report MIT-EL-98-001, 1998.

[9] L. Ljung, System Identification: Theory for the User, Prentice Hall, Upper Saddle River, NJ, 1999.

[10] U. A. Khan and J. M. F. Moura, "Distributing the Kalman Filters for Large-Scale Systems", submitted to IEEE Transactions on Signal Processing, 30 pages, Initial submission: Aug. 1, 2007, Revised: Feb. 22, 2007, http://arxiv.org/PS_cache/arxiv/pdf/0708/0708.0242v2.pdf

[11] J. W. Taylor, "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of Operation Research Society,vol. 54, pp. 799–805, 2003.

ACKNOWLEDGEMEN'

This work was supported in part by the U.S. National Science Foundation TTR Project Number CNS-0428404, and, in part, by the U.S. Department of Energy, National Energy Technology Laboratory, under Research and Development Solutions, LLC contract number DE-AM26-04NT41817.305.01.21.002. The authors greatly appreciate this financial help.