

## Efficient Multi-Energy Generation Portfolios for the Future

Florian Kienzle

Fourth Annual Carnegie Mellon Conference on the Electricity Industry Pittsburgh, March 11, 2008



## **Motivation**

- Increasing worldwide demand for energy: How to satisfy this?
- Uncertainty and risk factors affecting energy system planning:
  - How will prices of primary energy carriers evolve?
  - Future control on carbon emissions? Future CO<sub>2</sub> price?
  - Risks introduced by the restructuring of energy markets
  - Growing number of emerging technology options:
     Which mix to choose?
- Physical links between different energy systems are becoming stronger
- Potential synergies between different energy carriers
- ⇒ Application of portfolio theory to multi-energy generation portfolios

→ Method for long-term investment planning of future multi-energy systems

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

## **Portfolio Theory Fundamentals**

- A portfolio is composed of securities
- Security: decision affecting the future
- Portfolio: the totality of such decisions
- Estimates of the future performance of securities are "fuzzy"

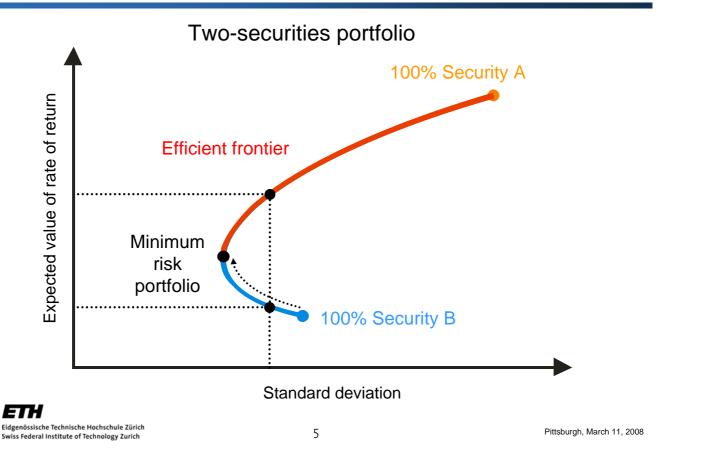


3

EIGH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

# **Portfolio Theory Fundamentals**

- Portfolio theory uses two quantities to characterize the probability distribution of a portfolio's rate of return
  - Expected return: Weighted average of all possible outcomes, with each outcome weighted by its likelihood


$$E = \sum_{i=1}^{m} p_i \cdot r_i$$

Standard deviation

$$\sigma = \sqrt{\sum_{i=1}^{m} p_i (r_i - E)^2}$$

Pittsburgh, March 11, 2008

## **Portfolio Theory Fundamentals**



## The Multi-Energy Portfolio Model

- Mean returns and covariance matrix are not computed with historical data
- Instead: Consideration of scenarios to take into account uncertainties about external drivers that can alter the future economic performance of a technology
- Examples for external drivers
  - Environmental concern with respect to climate change and resulting CO<sub>2</sub> price
  - Geopolitical tensions with effect on prices of fossil fuels
- Different states of external drivers (e.g. 'high' or 'low')
   differences between scenarios
- All possible combinations of external drivers result in a set of scenarios

## **The Multi-Energy Portfolio Model**

- Costs of technologies will differ according to the scenario
  - Overall cost matrix C<sub>tot</sub>

Scen. 1 ... Scen. s  

$$\mathbf{C_{tot}} = \begin{bmatrix} C_{11} & \cdots & C_{1s} \\ \vdots & \ddots & \vdots \\ C_{t1} & \cdots & C_{ts} \end{bmatrix} \begin{bmatrix} \text{Tech. 1} \\ \vdots \\ \text{Tech. t} \end{bmatrix} \begin{bmatrix} C_{ts} \end{bmatrix} = \frac{USD}{MWh}$$

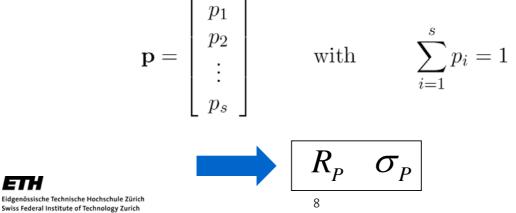
• When having a number of  $\alpha$  energy outputs:

$$\mathbf{C_{tot}} = \sum_{i=1}^{\alpha} \mathbf{C_i}$$

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

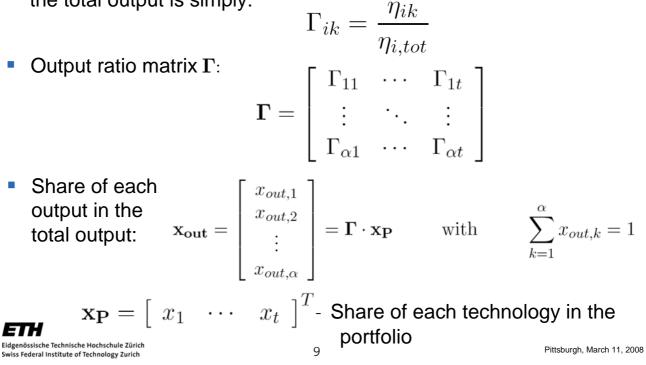
- T H

Pittsburgh, March 11, 2008


## **The Multi-Energy Portfolio Model**

Inverting the values in C<sub>tot</sub> gives the overall return matrix R<sub>tot</sub>

7


$$\mathbf{R_{tot}} = \begin{bmatrix} \frac{1}{C_{11}} & \cdots & \frac{1}{C_{1s}} \\ \vdots & \ddots & \vdots \\ \frac{1}{C_{t1}} & \cdots & \frac{1}{C_{ts}} \end{bmatrix} = \begin{bmatrix} R_{11} & \cdots & R_{1s} \\ \vdots & \ddots & \vdots \\ R_{t1} & \cdots & R_{ts} \end{bmatrix} {}_{[R_{ts}]} = \frac{MWh}{USD}$$

Individual probabilities can be assigned to the scenarios 



## The Multi-Energy Portfolio Model

For a technology *i* with a conversion efficiency η<sub>ik</sub> with respect to the k*th* output and a total efficiency of η<sub>i,tot</sub>, the share of output *k* in the total output is simply:



## **Application: An Electricity and Heat Portfolio**

- Technologies with electricity as output
  - T1: Wind
  - T2: Photovoltaics (PV)
- Technologies with electricity and heat as output
  - T3: Biogas engine
  - T4: Natural gas fired engine
- Technologies with heat as output
  - T5: Solar (thermal)
  - T6: Gas boiler
- Three major external drivers:
  - D1: Environmental concern regarding climate change
  - D2: Energy-related research efforts
  - D3: Geopolitical tensions

| Scenarios | S1   | S2   | $\mathbf{S3}$ | S4   | S5   | $\mathbf{S6}$ | S7  | $\mathbf{S8}$ |
|-----------|------|------|---------------|------|------|---------------|-----|---------------|
| D1        | high | high | high          | high | low  | low           | low | low           |
| D2        | high | high | low           | low  | high | high          | low | low           |
| D3        | high | low  | low           | high | high | low           | low | high          |

Equal probabilities for all scenarios:

 $p_i = 0.125$   $\forall i = 1, ..., 8$ 

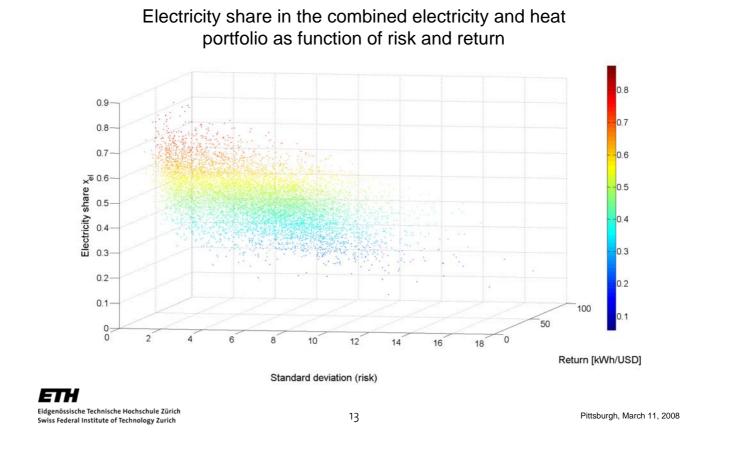
Output ratio matrix:

| г   | 1 | 1 | 0.39                                        | 0.49 | 0 | 0 ] |
|-----|---|---|---------------------------------------------|------|---|-----|
| T = | 0 | 0 | $\begin{array}{c} 0.39 \\ 0.61 \end{array}$ | 0.51 | 1 | 1   |

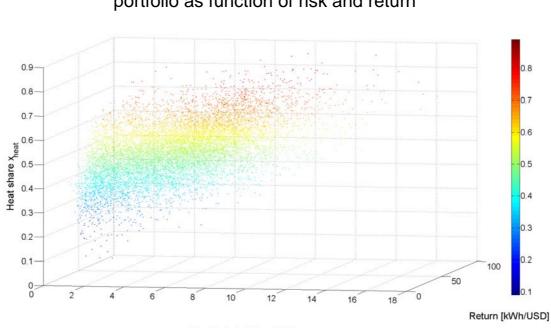


11

Pittsburgh, March 11, 2008


#### **Application: An Electricity and Heat Portfolio**

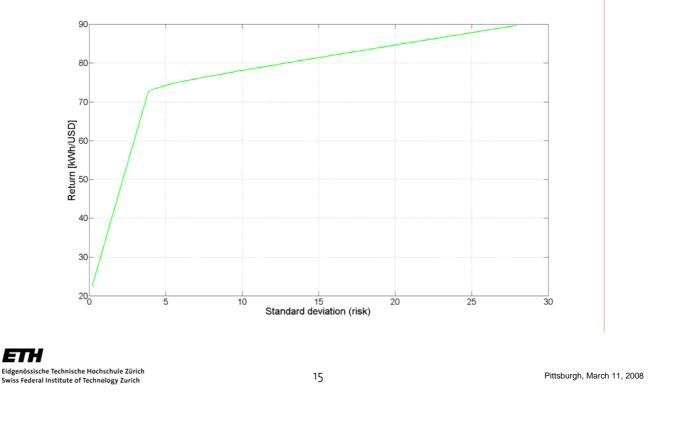
Cost matrices for the electricity and heat output:


| $\mathbf{C_{el}} =$   | $\begin{bmatrix} 43.3 \\ 253.3 \\ 59.9 \\ 81.4 \\ 0 \end{bmatrix}$ | $\begin{array}{c} 43.3 \\ 253.3 \\ 59.9 \\ 64.7 \\ 0 \end{array}$ | $\begin{array}{c} 44.2 \\ 287.8 \\ 63.0 \\ 66.0 \\ 0 \end{array}$ | $\begin{array}{r} 44.2 \\ 287.8 \\ 63.0 \\ 83.0 \\ 0 \end{array}$ | $\begin{array}{r} 43.3 \\ 253.3 \\ 59.9 \\ 77.8 \\ 0 \end{array}$ | $\begin{array}{r} 43.3 \\ 253.3 \\ 59.9 \\ 61.2 \\ 0 \end{array}$ | $ \begin{array}{r} 44.2 \\ 287.8 \\ 63.0 \\ 62.4 \\ 0 \end{array} $ | 63.0                                                 |
|-----------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|
| $\mathrm{C_{heat}}$ : | 0<br>  0                                                           | $\begin{array}{ccc} 0 \\ 0 \\ 0 \\ .4 \\ 11.4 \end{array}$        | 0<br>) 0<br>) 0<br>4 12.0                                         | 0<br>0<br>0<br>12.0                                               | 0<br>0<br>0<br>11.4                                               | 0<br>0<br>11.4                                                    | 0<br>0<br>12.0                                                      | $\begin{bmatrix} 0 \\ 0 \\ 12.0 \end{bmatrix}$       |
|                       | = 31<br>13<br>16                                                   | .2 13.2                                                           | 2 14.7                                                            | 14.7                                                              | 13.2                                                              | $22.2 \\ 13.2 \\ 7.5$                                             | 14.7                                                                | $\begin{bmatrix} 28.4 \\ 14.7 \\ 10.6 \end{bmatrix}$ |

All cost values in USD/MWh and mainly taken from the NEA/IEA publication "Projected costs of generating electricity", 2005.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



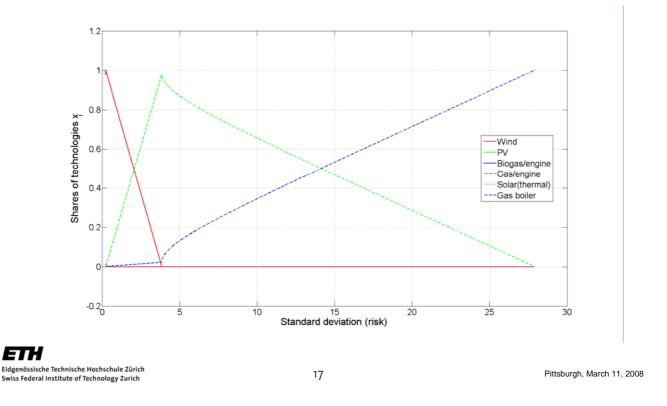

## **Application: An Electricity and Heat Portfolio**



Heat share in the combined electricity and heat portfolio as function of risk and return

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Standard deviation (risk)

#### Efficient frontier of the combined electricity and heat portfolio




## **Application: An Electricity and Heat Portfolio**

#### 1.2 Shares of electricity and heat $\underline{x}_{\text{el}}$ and $\underline{x}_{\text{heat}}$ 0.8 \_\_\_\_×el ---X<sub>heat</sub> 0.6 0.4 0.2 Ω -0.2 15 Standard deviation (risk) 25 5 10 20 30

Shares of electricity and heat along the efficient frontier

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



#### Shares of all technologies along the efficient frontier

#### Summary

- General extension of portfolio theory to multi-energy portfolios with an arbitrary number of output energy carriers
- Uncertainty factors are taken into account using a set of several possible scenarios with individual probabilities of occurrence
- System planners can determine a portfolio being the best answer to this set of scenarios instead of having to choose a portfolio being only efficient for one single scenario

## Outlook

- Apply the model to a "real" case, e.g. to the generation portfolio of a municipal or regional utility
- Analyze interdependences between investments in transmission infrastructure and investments in generation facilities

kienzle@eeh.ee.ethz.ch

www.future-energy.ethz.ch



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

19

Pittsburgh, March 11, 2008