
Cost-Effective Certification of High-
Assurance Cyber Physical Systems

Kurt Rohloff
krohloff@bbn.com
BBN Technologies

Most Important Challenges and Needs
• Need dynamic behavior in high-confidence

systems, especially with dynamic resource
management.
– Distributed System Interactions:

• Multi-level Quality of Service (QoS).
• Peer-to-Peer (P2P) interactions.
• Interleaved Reconfiguration.

– System timing issues:
• Multi-time scale behavior with time-critical

operations.
• Mixed synchronous and asynchronous behaviors.

– Lifecycle issues.
• How can systems be quickly recertified?
• Don’t want to restart full process.

• Scalable techniques needed to certify composed network centric
systems.
– Conflicts in shared resource usage cause loss of composed certifiability.

• Elements of architecture, design, algorithms, analysis, simulation, testing and
instrumentation/logging will all play a role.

– Intelligently link augmentations of these elements together.

Deficiencies and Motivation

• Exhaustive testing, documentation, code
review, formal methods for high-confidence
software.
– No longer economically feasible for highly

complex, dynamic, distributed systems.
– Inherent problems due to state explosion.

• A particular stumbling block is absence of
methodology for dealing with dynamic
resource management.
– Current methods assume static allocations.

Restrict Operation to Certifiable
Configurations

• Through the use of common middleware infrastructure
and utility metric, we want to permit “certifiable” behavior
to occur and prevent the system from entering into an
“unacceptable” configurations.

• Important considerations:
– Difficult to predict the effects of control operations in real-time.
– May need to maintain a list of “fail-safe” default configurations.

Controller

Maintain system in
acceptable
configurations

Prohibit system from
unacceptable
configurations

Possible configurations

B
en

ef
it

Talk Overview

• A Generalizable Cyber-Physical Case-Study:
The ARMSARMS Program

– Distributed resource management for a Distributed
Real-time Embedded (DRE) system.

– Issues in certificationcertification of such a system.
• We use a utility function as a quality measure.

– Utility function used as a feedback control signal.
• Want to use utility measurements as artifact for

evidence-based certification.
– Measures properties relevant to certification.

Context
ARMS (Adaptive and Reflective Middleware

System) program.
• Focus on developing a distributed

computing environment that can rapidly
respond to changing operating conditions.

Sensors

Data Centers

Context
• Node Failure Detection – an “application manager” should

place an application on a different node when failure
detected.
– Computing nodes may “disappear” without warning
– NEED to maintain a base level of service for mission-critical

behaviors.
– If a computation node fails, need to move applications on that node to

another node ASAP!!!!
• COTS hardware and software

– No real-time scheduling.

Ap1 Ap2 Ap3 Ap4 Ap5 Ap6 Ap7
b6b2 b5b4b3b1

Node 1 Node 3Node 2

MLRM Approach to ARMS

Multi-Layered Resource Management: MLRM
• Simultaneously manage multiple QoS concerns.
• Dynamism on multiple levels of abstraction.

– Infeasible to test all possible dynamic behaviors.
• Adapt to changing resource levels.

– We want to be able to certifycertify the dynamic, multi-layered
control system.

System

Mission Mission Mission

String String String

Certification for Dynamic Dynamic Systems

• Need to be able to evaluate dynamic system behavior in
order to perform certification.
– When system’s behavior is insufficient, adjust system behavior.
–– Feedback controlFeedback control based on utility.
– We construct utility functions to measure properties relevant to

certification.
• We believe utility driving control is part of evidence for

certification.
– Control driven by utility towards desirable behavior.
– Certify control as path to certify aspects of system behavior?

• Evidence based.
– Measure desirable behavior.
– Control to drive to desirable behavior.

ARMS Program
• We use a utility-driven approach to measure quality of

system’s performance.
– Define utility functions to measure QoS at multiple levels of

system hierarchy.
– Local utility measurements are used as feedback to determine

local resource control actions.
• Utility is a symptom of system quality.

• Want to allow dynamism, but not hinder certifiability.
– Utility is also a proxy measurement of system health.
– Want to use utility measurements also as artifact for certification.

High-Level
Controller

Mid-Level
Controller

Low-Level
Controller

String Utility

• String Utility is the average utility of its processed jobs.

• Utility of a job is composed of its timeliness and quality
factors.

• Job utility assignment is application specific.

• When controlling a string, not vitally important to have
in-depth information about other strings.

∑
=

=
j

j

P

l

job
l

j

S
i u

P
U

1

1

),(
1

job
l

job
l

P

i

job
l qTFu

j

=∑
=

Utility Measurement

System utility:

Mission utility:

String utility:

∑ =
= i jjS

j

S
i

S
i

m
i UwU

0

• Utility is computed at each level of abstraction.

∑=
=

M

i
m
i

m
i UwU

0

System
Utility

Mission
Utility

Mission
Utility

Mission
Utility

String Utility String Utility String Utility

∑
=

=
j

j

P

i

job
l

j

S
i u

P
U

1

1

HBFD Case Study:Traditional Approach

• Heart-Beat Failure Detection (HBFD) is a
traditional solution to node failure detection.
– Nodes periodically send “heartbeat” messages

to a controller, “Node Status Reciever”
• Drawbacks:

– Scalability.
– Due to reliance on real-time processing,

inability to handle scheduling errors.
– Even if have real-time computation, real-time

communication is very rare – no way to handle
congestion

• A better way is needed that can adapt to
system operating conditions and provide
“certifiable” real-time, low false-alarm
behavior.
– AI doesn’t cut it for our customer – need

guarantees on performance.

Node Status
Recievers

Nodes

Threshold Passing Experiment

A hierarchical architecture
• Each node has a Sender

process that periodically
sends HeartBeat(HB)
messages to 2 local
Monitors.

• Monitors perform failure
detection operation.
– This is a non-trivial process

for large-scale systems.
– Control failure-detection

threshold to reduce false-
alarm rate.

• Failure declarations are
sent to two Node Status
Receivers (NSR)

• COTS hardware, software, so there are no guarantees on
the scheduling of HB transmissions, timely Monitor
detection.

NFD String Utility

Want:
SM +MN + Th + SI + 3SL < MaxDelay

SM is the communication latency of the last heartbeat sent
to the Monitor from the failed node. (Can’t control.)

MN is the worst-case communication latency of the failure
notification sent from the Monitor to each of the NSR
instances. (Can’t control.)

Th is the timeout threshold used by the Monitor to detect the
node failure. (Can control.)

SI is the period between executions of the sweeper thread in
the Monitor. (Can’t control.)

SL is the amount of time the sweeper thread takes to run.
(Can’t control.)

Adaptive NFD Experimentation

Evidence-Based Certification

• Utility measures can capture a large set of
attributes of system performance and quality.
– Utility also measures user-perceived value derived

from control system.
– Utility ultimately provides a quantitative measure for

certification.
• Want to use utility measurements as artifact for

evidence-based certification.
• Feedback control uses utility measurements to

maintain high utility.
– Allows system to dynamically respond to unforeseen

situations.

Ongoing Certification Thoughts

• We should be aware of lifecycle issues!!!!!
– Certification is only valid until we modify a system.

• Of course, always need to certify new
components.
– Still need to be wary of how new components

might interact with established infrastructure.
• Can we exploit encapsulation effects due to

feedback to aid in rapid recertification as
system components are used in new
contexts?

Research Roadmap - 5 to 10 years
• Develop techniques to enable composition of

certifiable components for a certifiable system:
– Identify clear interfaces for the interactions of

components, not just functional, but also QoS (through
system resources, time, etc.).

– Clearly identify good dynamic behavior from bad
dynamic behavior in the composed system.

– Produce controls that ensure good dynamic behavior
and prevent bad dynamic behavior.

• A path toward this vision:
– (Short term) Use clear partitioning mechanisms, such

as resource reservations.
– (Medium term) Use priority based controls, to provide

needed bounding. Requires research in analysis,
interfaces, design, and runtime feedback and
enforcement.

– (Longer term) Removing constraint mechanism
interfaces in favor of policy-driven application control.

• Want to automatically regulate component interaction.
• Requires research in sequential process languages,

specification of certification behaviors, composition of
specifications, and policy driven control.

Thank You!

Kurt Rohloff
BBN Technologies
krohloff@bbn.com

