Moral Hazard in Electricity Capacity Markets

Manho Joung Electrical and Computer Engineering The University of Texas at Austin

Outline

#Capacity market **#**Capacity market model **Background #**Game model **Equilibrium** analysis **H**Numerical examples **#**Conclusions

Capacity Market

#Not enough investment incentives in energy only markets

- Very low scarcity rent
 - Little price response from the demand side
 - Price caps and other market power mitigation mechanisms
- Volatile prices
- Capacity markets can provide investment incentives.

Example: PJM Capacity Market

Reliability Pricing Model

- Multi-auction structure
 - Base Residual Auction: held three years prior to the start of the Delivery Year
 - Incremental Auctions: up to three auctions for additional resource commitments prior to the beginning of the Delivery Year
 - Bilateral Market
 - Resource providers' opportunity to cover any auction commitment shortages
 - Load Serving Entities' opportunity to hedge against the Location Reliability Charge

Motivation

- There are studies on market power issue in capacity markets.
 - By reduced capacity bids at competitive price
- In this study, the possibility of the opposite behavior is examined.
 - By exaggerated capacity bids

Figure from "A Capacity Market that Makes Sense," Peter Cramton and Steven Stoft, *Electricity Journal*, 18, 43-54, 2005.

Market Model for Analysis

- Only two identical strategic generators considered
 - The other generators bid truthfully.
 - Two strategies
 - True capacity C_T and exaggerated $C_E(C_T < C_E)$
 - The residual demand is less than $2C_T$.
- Penalty F for not following ISO's dispatch instructions
 - Relevant only for exaggerated bids

Market Results

Awards and prices

	C _T	C _E
C _T	$(C^{A}_{TT}, C^{A}_{TT}), P_{TT}$	$(C^{A,T}_{ET}, C^{A,E}_{ET}), P_{ET}$
C _E	$(C^{A,E}_{ET}, C^{A,T}_{ET}), P_{ET}$	$(C^{A}_{EE}, C^{A}_{EE}), P_{EE}$

Assumptions

- $C^{A}_{TT} \leq C_{T}$
- $C^{A,E}_{ET} > C_T, C^{A,T}_{ET} < C_T$ $\bullet C^{A,T}_{ET} < C^{A}_{TT}$

Capacity Payments and Penalty

t Capacity payments = price × awards • $\pi_{TT} = P_{TT}C^{A}_{TT}$ • $\pi^{E}_{ET} = P_{ET}C^{A,E}_{ET}, \ \pi^{T}_{ET} = P_{ET}C^{A,T}_{ET}$ • $\pi_{EE} = P_{EE}C^{A}_{EE}$

 Failure to follow ISO's dispatch instruction as a probabilistic event
Prob_{ET}, *Prob_{EE}* (*Prob_{ET}* < *Prob_{EE}*)

Ez	xpected Payo	ffs
	C _T	C _E
C _T	(π_{TT}, π_{TT})	$(\pi^{T}_{ET}, \pi^{E}_{ET} - Prob_{ET}F)$
C _E	$(\pi^{E}_{ET} - Prob_{ET}F, \pi^{T}_{ET})$	$(\pi_{EE} - Prob_{EE}F, \pi_{EE} - Prob_{EE}F)$

#Generators aim to maximize their expected payoffs.

Background

■ Moral hazard

- Principal cause: asymmetries of information between entities
- Entities can take advantage of other entities' 'observability' problem.
- **#** Game theory
 - Analysis of conflict situations
 - Nash equilibrium is the most popular solution concept
 - No player has incentive to unilaterally deviate from the equilibrium

Game Model

± Conflict situation ■ Players: generators Only two strategic generators are considered. **#** Strategies: capacity market bids Only two strategies are considered • Truthful capacity bid: C_T • Exaggerated capacity bid: C_F ■ Payoffs: expected value of (capacity payments – dispatch penalty)

	Equilibrium Ana	alysis
	C _T	C _E
C _T	(π_{TT}, π_{TT})	$(\pi^{T}_{ET}, \pi^{E}_{ET} - Prob_{ET}F)$
C _E	$(\pi^{E}_{ET} - Prob_{ET}F, \pi^{T}_{ET})$	$(\pi_{EE} - Prob_{EE}F, \pi_{EE} - Prob_{EE}F)$

- Two cases of pure-strategy Nash equilibrium
 - (C_T, C_T) : Truthful bid case
 - $\pi_{TT} > \pi^{E}_{ET} Prob_{ET}F$ and $\pi^{T}_{ET} > \pi_{EE} Prob_{EE}F$
 - Preferable equilibrium from ISO's point of view
 - F can be set very high, but market participants may not agree.
 - (C_E , C_E): Moral hazard case
 - $\pi_{TT} < \pi^{E}_{ET} Prob_{ET}F$ and $\pi^{T}_{ET} < \pi_{EE} Prob_{EE}F$
 - Highly probable when Prob_{ET} and Prob_{EE} are small.
 - More conservative procurement will provide smaller *Prob_{ET}* and *Prob_{EE}*

Parameters for Numerical Example

C_T = 100MW, C_E = 110MW **#** C^A_{TT} = 100MW, $C^{A,E}_{ET}$ = 108MW, $C^{A,T}_{ET}$ = 80MW, C^A_{EE} = 104MW **#** F = \$10,000 **#** P_{TT} = P_{ET} = P_{EE} = 10\$/MW

Numerical Examples

$Prob_{ET} = 0.05, Prob_{EE} = 0.1$

		CCCC
C _T	(\$1,000, \$1,000)	(\$800, \$580)
C _E	(\$580, \$800)	(\$40, \$40)

$Prob_{ET} = 0.005$, $Prob_{EE} = 0.01$

又专家	C _T	C _E
C _T	(\$1,000, \$1,000)	(\$800, \$1,030)
C _E	(\$1,030, \$800)	(\$940, \$940)

Conclusions

- A possible weakness of a simple capacity market design, moral hazard, has been demonstrated.
- Two player game model was used for equilibrium analysis.
- The more conservative ISO's capacity procurement, the higher the risk of moral hazard.