Simplified Models for Use in the Analysis of Future Power Systems

Dr. Aleck W. Leedy, P.E. EE Department Tuskegee University E-mail: aleck.leedy@tuskegee.edu Dr. R. Mark Nelms, P.E. ECE Department Auburn University E-mail: nelms@eng.auburn.edu Development of a Simplified Motor-Drive System Model

- Model is based on [1]:
 - Induction motor equivalent circuits
 - Input-output relationships of the voltage source inverter
 - Power balance at the input and output terminals of the voltage source inverter

The Simplified Model Can be Used in other Topologies

Motor-Drive System Model

- Develop an analytical method to analyze this system.
- Avoid using simulation packages such as PSPICE and Simulink.
- Develop a simplified model of the system.
- Extend the simplified model to a DC power system containing multiple motor-drive loads.

Three-Phase Voltage Source Inverter

(S1, S4), (S3, S6), (S5, S2) are switched as pairs.

Inverter Output Voltage Waveform

Three-Phase Inverter Block Model

- Develop a Fourier series for:
 - Line-to-neutral voltage

Phase *a* Line-to-Neutral Voltage Fourier Series

• The Fourier series can be expressed in the following form for two-level sine PWM and space vector PWM [2]:

$$v_{as}(t) = \sum_{\substack{n=1\\n \neq 3k\\k=1,2,3,\dots}}^{\infty} C_n \cos\left(\frac{2\pi n}{T}t + \delta_n\right)$$

$$C_n = \sqrt{a_n^2 + b_n^2} \qquad \qquad \delta_n = \tan^{-1} \left(-\frac{b_n}{a_n} \right)$$

Phase *a* Line-to-Neutral Voltage Fourier Series

The Fourier series of the six-step inverter phase a line-toneutral voltage waveform with 120° conduction can be expressed as [3, 4]:

$$v_{\phi}(t) = \frac{\sqrt{3}}{\pi} V_i \left[\cos(\omega t + 30^\circ) - \frac{1}{5} \cos(5\omega t + 30^\circ) - \frac{1}{7} \cos(7\omega t + 30^\circ) + \frac{1}{11} \cos(11\omega t + 30^\circ) + \dots \right]$$

The Fourier series of the six-step inverter phase a line-toneutral voltage waveform with 180° conduction can be expressed as [3, 4]:

$$v_{\phi}(t) = \frac{2}{\pi} V_i \left[\cos \omega t + \frac{1}{5} \cos 5\omega t - \frac{1}{7} \cos 7\omega t - \frac{1}{11} \cos 11\omega t + \dots \right]$$

Induction Motor Circuit Models

Inverter Power Balance

- If a value of V_i is assumed at the input terminals of the inverter, a corresponding I_i can be found using a power balance.
- Inverter power balance:

$$V_i I_i = \sum_{k=1}^{\infty} \frac{3}{2} V_k I_k \cos \theta_k$$

V-I Characteristic Curves

 Varying V_i over a range of values produces a V-I load characteristic curve having the following form:

$$V(I_i) = aI_i^2 + bI_i + c$$

• The *polyfit* command in MATLAB can be used to curve fit the generated V-I data.

V-I Characteristic Curve Developed for a 50 Hp Motor and Inverter

- 50 Hp Motor-Drive System was analyzed using MATLAB
- The source voltage was varied over a range of 401V-500V with all other parameters remaining unchanged.
- Induction motor parameters: f = 60 Hz, P = 4, $R_1 = 0.087\Omega$, $R_2 = 0.228\Omega$, $X_1 = 0.302 \Omega$, $X_2 = 0.302 \Omega$, and $X_m = 13.08 \Omega$

V-I Characteristic Curves Developed for a 50 Hp Motor and Inverter

Space Vector PWM Inverter M = 0.7 $m_f = 15$ $T_L = 80$ N-m

Simplified Motor-Drive System Model

 The inverter drive system can now be replaced by a current-controlled voltage source [1].

Multiple Motor-Drive Systems

The network can be represented as [5]:

$$\widetilde{I} = G\widetilde{V}$$

- The simplified model can be extended to a system containing more than one motor-drive.
- Use the V-I characteristic curve of each motor-drive load.
- Incorporate the simplified model into an iterative procedure based on the Newton-Raphson method.

The Bus Voltages

 Since the system studied contains motordrive loads, each bus element of V will have the following form:

$$\widetilde{V} = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ \vdots \\ V_n \end{bmatrix} = \begin{bmatrix} V_1 \\ a_2 I_2^2 + b_2 I_2 + c_2 \\ a_3 I_3^2 + b_3 I_3 + c_3 \\ \vdots \\ a_n I_n^2 + b_n I_n + c_n \end{bmatrix}$$

(where, V_1 is the swing bus, and *n* is the number of buses)

A Newton-Raphson Based Method

- The network is a system of simultaneous nonlinear algebraic equations.
- An iterative procedure based on the Newton-Raphson method can be used to solve for the load currents [1].
- After the currents have converged, the bus voltages can be found by substitution into the voltage vector.

10-Bus System with Two-Level Sinusoidal PWM Inverter Drives

	Load		Line	
Bus	Torque	Line	Resistance	
Number	(N-m)	Section	$(m\Omega)$	
1				
2		1 - 2	10	
3	70	2 - 3	20	
4	65	2 - 4	30	
5	100	2 - 5	40	
6	60	2 - 6	50	
7	50	2 - 7	60	
8	40	2 - 8	70	
9	30	2 - 9	80	
10	80	2 - 10	90	

19

10-Bus System with Two-Level Sinusoidal PWM Inverter Drives

- The swing bus voltage was chosen to be 550V.
- The inverter parameters used for all of the inverters in the system were: f_1 =60 Hz, m_a =1.4, and m_f =15.
- The induction motor equations, the two-level PWM inverter relationships, and the power flow equations were all coded in MATLAB.
- The voltage at each load bus of the system was varied over the range of 496V-595V, with all other parameters in the system remaining unchanged.
- Induction motor parameters: 50Hp, f = 60 Hz, P = 4, $R_1 = 0.087\Omega$, $R_2 = 0.228\Omega$, $X_1 = 0.302 \Omega$, $X_2 = 0.302 \Omega$, and $X_m = 13.08 \Omega$

Power Flow Results for the Two-Level Sine PWM Inverter

	Current	Converged		Current	Voltage	Converged		Voltage
	from	Current		Percent	from	Voltage		Percent
Bus	PSPICE	(MATLAB)	ΔI	Error	PSPICE	(MATLAB)	ΔV	Error
Number	(A)	(A)	(A)	(% of PSPICE)	(V)	(V)	(V)	(% of PSPICE)
3	24.6824	24.6512	0.0312	0.1262	547.7546	547.7583	0.00370	0.000675
4	22.9430	22.9104	0.0326	0.1422	547.5599	547.564	0.00410	0.000749
5	35.2968	35.253	0.0438	0.1241	546.8364	546.8412	0.00480	0.000878
6	21.2136	21.1773	0.0363	0.1710	547.1876	547.1924	0.00480	0.000877
7	17.7230	17.6864	0.0366	0.2063	547.1849	547.1901	0.00520	0.000950
8	14.2392	14.2022	0.0370	0.2595	547.2515	547.2571	0.00560	0.001023
9	10.7636	10.726	0.0376	0.3490	547.3871	547.3932	0.00610	0.001114
10	28.3157	28.2638	0.0519	0.1834	545.6998	545.7076	0.00780	0.001429

Advantages of the Analytical Method Presented

- Faster than simulation packages such as PSPICE
- Produces results that are comparable to other simulation packages
- The analytical method presented can be used regardless of the switching scheme employed in the inverter (two-level sinusoidal PWM, space vector PWM, etc.)

Advantages of the Analytical Method Presented

- The simplified model developed can be utilized in the analysis of a multiple-bus power system containing multiple motordrive loads
- The simplified model can be used in DC or AC system analysis

References

- [1] A.W. Leedy and R.M. Nelms, "Analysis of DC Power Systems Containing Multiple Induction Motor-Drive Loads", Proceedings of the 39th IEEE Southeastern Symposium on System Theory, Mercer University, Macon, GA, March 4-6, 2007, pp. 52-57.
- [2] A.W. Leedy and R.M. Nelms, "Harmonic Analysis of a Space Vector PWM Inverter Using the Method of Multiple Pulses", Proceedings of the International Symposium on Industrial Electronics (ISIE2006), ETS Downtown, Montreal, Canada, July 9-13, 2006.
- [3] J.M.D. Murphy and F.G. Turnbull, *Power Electronic Control of AC Motors*, NY: Pergamon Press, 1988.
- [4] R.A. Pearman, *Power Electronics: Solid State Motor Control*, Reston Publishing Company, Inc., VA: 1980, pp. 170-182.
- [5] C.A. Gross, *Power System Analysis*, 2nd ed., John Wiley & Sons, Inc., NY: 1986, pp. 255-273.

Questions???