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Abstract

This paper introduces the application of mean-variance portfolio
theory to portfolios generating multiple forms of energy such as elec-
tricity, heating or cooling power. Portfolio theory has already been
successfully applied to several cases of electricity generation planning.
A general extension of this method to an arbitrary number of output
energies will be developed in this paper. Instead of calculating means
and variances from time series of historical data - as it is commonly
done - a set of several possible scenarios is used. By this means, the
model allows to appropriately take into account uncertainties about
future developments, which may be able to alter the economic perfor-
mance of the considered generation technologies. In order to illustrate
the proposed method, the model is applied to a portfolio of distributed
electricity and heat generation technologies. In so doing, it is shown
how efficient risk-return combinations for multi-energy generation port-
folios can be determined.

1 Introduction

Optimally designed energy infrastructures should be able to satisfy all types
of energy demand in an environmentally sustainable, secure and competitive
way. Of course, actual solutions will always have to be a trade-off and it will
never be possible in reality to completely bring into line these three criteria.
During the last years, however, the planning of energy systems has been
further complicated by several factors, which make it even more difficult to
find the best possible trade-off between relevant planning criteria.
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Figure 1: World primary energy demand by fuel in the past and projections
for the future based on the reference scenario in the IEA World Energy
Outlook 2005.

First of all, mankind’s thirst for energy seems to be quenchless. The
worldwide demand for primary energy has been increasing over the last
decades and, as Fig. 1 shows, according to the reference scenario of the
IEA in [1] it will continue to grow. Regarding the supply side, the IEA
predicts the peak of non-OPEC conventional crude oil output by the middle
of the next decade [2]. When the increase in demand is accompanied by a
decrease in supply, prices of primary energy sources will unavoidably rise.
High prices, however, represent a threat to the global economy and can
undermine geopolitical stability in the worst case.

Another factor affecting the planning of energy systems is the future
control on carbon emissions. Emission constraints and the corresponding
mechanisms, e.g. emissions trading schemes or carbon taxes, will lead to
the fact that a price is assigned to carbon emissions. In the EU, e.g., an
emission trading scheme has already been implemented. The future price
of an emitted ton of COs is uncertain and this uncertainty should be taken
into account in the planning process.

Additional uncertainties are introduced by the liberalization of energy
markets. Not being part of vertically integrated monopolies any more, power
generators, e.g., have no longer the guarantee to recover all costs from energy
consumers. Furthermore, the future price level in liberalized markets is
unknown.

In view of the broad range and growing importance of uncertainties,
investment decision makers need techniques for the quantification of such
risks. Mean-variance portfolio theory is an adequate tool to take risks of



investment projects into account and has been applied to several studies in
the electric energy sector (see, e.g., [3]-[6]).

Inspired by the "Energy Hub” concept [7], which applies a multi-carrier
greenfield layout as key approach, this paper extends and applies mean-
variance portfolio theory to portfolios generating multi-energy outputs, e.g.
electricity, heat and cooling power. By simultaneously considering various
forms of energy during the planning process, this extension will enable an
integrated long-term investment planning of energy systems . By this means,
potentially exploitable synergies on the technical as well as economic level
can be identified.

The remainder of this paper is structured as follows. Section 2 outlines
the multi-energy model including the underlying assumptions. Section 3
presents an application of the model to an electricity and heat portfolio and
section 4 concludes the paper.

2 The Multi-Energy Portfolio Model

2.1 Why Portfolio Theory?

Energy system planning means taking investment decisions, and investors
being confronted with the uncertainty of unpredictable economic outcomes
commonly use portfolio theory to manage risk and maximize portfolio re-
turn. In the former era, as generation portfolios of utilities were primarily
composed of well established, technologically homogenous, fossil-fired gen-
erating assets, considering risk characteristics would not have changed in-
vestment decisions significantly [8]. When new fixed-cost technology options
such as wind and PV are included, taking into account risk characteristics
becomes imperative [9]. Furthermore, when added to a portfolio of relatively
risky fossil fuel technologies, fixed-cost technologies will surprisingly reduce
overall generating cost for any risk level, although their stand-alone kWh
costs are higher. This means that today’s energy system planners and policy
makers should emphasize less the costs of individual generating technologies
and more the costs of generating portfolios and strategies. Portfolio theory
is an adequate tool to do so.

For utilities disposing of a certain generating portfolio, it may sometimes
be impossible to realize within a short period of time an efficient portfolio
resulting from portfolio analysis. However, portfolio-based energy system
planning can reveal sensible directions to go to from today on. This aspect
is also in line with the concept of the project "Vision of Future Energy Net-
works” [10], in the framework of which the work presented in this paper has
been carried out. This project applies a so-called ”greenfield approach” to
energy systems, i.e. based on today’s knowledge and possibilities a fictitious
optimal system is built from scratch neglecting the current system struc-
ture. In a second step, the differences between the present situation and the



desirable system are identified and ways how to realize this desirable system
are demonstrated. On that score, portfolio theory is an appropriate method
to determine how the optimal generation portfolio of the future could look
like.

2.2 Fundamentals of Portfolio Theory

Before presenting the application to multi-energy generation portfolios, the
mathematical foundations of portfolio theory will be stated shortly. Port-
folio theory was developed in the early 1950s by Harry Markowitz, who
published a paper about the selection of efficient financial portfolios [11].
He was the first to consider diversification as necessary for the construction
of efficient portfolios and gave a first mathematical formalization of the idea
of diversification in investments.

Portfolio theorists generally define a portfolio as a set of investments
composed of securities. A security is simply a decision affecting the future.
The totality of such decisions constitutes a portfolio [12]. Portfolio manage-
ment aims at finding efficient portfolio mixes, i.e. its purpose is to maximize
expected return for any given possible risk level.

Let P be a multi-security portfolio composed of n securities with
i € [1,...,n]. The allocation vector xp! indicates the share (percentage) of
security ¢ in a portfolio P:

X
T2
xp=| . (1)

In

Portfolio theory uses two quantities to characterize a portfolio. The first one
is the expected return Rp. Let r be the vector of expected returns of the
individual securities:

r= (2)

With these definitions, the expected return of a portfolio can be calculated
as the sum of the expected returns of the individual securities weighted by
their respective share:

Rp = Zﬂfﬂ“i =xpl -1 (3)
=1

L All vectors are represented in small letters and bold font.



The second number that is used for describing the performance of a port-
folio is the standard deviation of its returns op. The standard variation is
a measure for the risk associated with holding a portfolio. If the individual
security returns were independent variables, the portfolio standard deviation
would simply be the weighted sum of all individual standard deviations. Se-
curity or asset prices, however, are generally dependent and thus correlated
variables. A measure of the linear association between two variables is the
covariance. The covariance matrix Xp? contains the covariance values be-
tween the returns of any asset ¢ with the returns of any other asset j for all
i,7 € [1,...,n]:
211 A Eln
Yp= e (4)
Yl oo Xpn

If 7 equals j, the covariance is simply the variance of asset i. By means of
the covariance matrix, the variance of a portfolio can be calculated in the
following way:

n n
op = ) wia;Tij=xp' -Tp-xp (5)
i=1 j=1
With equations 3 and 5, the following set of equations and inequations can
be formulated: .
Rp =) iy @it
2 _ n n
Op = Doim1 2uj—1 Tilj2ij (6)
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With the help of these relations, the so-called efficient frontier can be cal-
culated for various levels of returns by minimizing the Lagrangean function

n n n n
L= Z inxjgij + A1 (Z XT;ri — RP> + Ao <Z T; — 1) (7)
i=1 j=1 i=1 i=1

The efficient frontier indicates the points which offer the highest possi-
ble return for each possible amount of risk. Fig. 2 shows an efficient fron-
tier (green line) for a simple two-assets example and points out the mini-
mum variance portfolio. Given an investor’s preferences (set of indifference
curves), the optimal portfolio allocation x}, can be determined.

Another useful and descriptive number to describe the association be-
tween two variables is the correlation coefficient p;;. It is calculated by
dividing the covariance by the standard deviation of asset ¢ and the stan-

dard deviation of asset j:

(8)

2 All matrices are represented in capital letters and bold font.



100% Asset B

Efficient frontier

Return

Minimum
variance
portfolio

100% Asset A

>

Standard deviation (risk)

Figure 2: Efficient frontier for a two-assets example.

A correlation coefficient of +1 corresponds to a perfect positive linear rela-
tionship between the returns of asset ¢ and j. If p;; = —1, there is a perfect
negative linear relationship between the two variables. If the variables are
completely independent, the correlation coefficient is 0. The converse, how-
ever, does not hold true because the correlation coefficient detects only linear
dependencies between two variables.

By diversifying a portfolio, i.e. by dividing investments into 2 or more
assets that are less than perfectly correlated, one is able to reduce risk
without reducing return at the same time. This is the so-called portfolio
effect. Fig. 3 shows how the risk-return characteristic of a portfolio with two
assets changes when the correlation coefficient increases from —1 to 1. It can
be observed that a portfolio constructed with two assets, whose correlation
coefficient equals 1, yields no portfolio effect because risk and return change
linearly as the portfolio allocation changes from 100% of asset A to 100% of
asset B. The lower is the correlation coefficient, the greater is the portfolio
effect. If there is a decreasing linear relationship between assets A and B
(p = —1), the investor has the possibility to construct a portfolio without
risk.

2.3 Application and Extension to Multi-Energy Portfolios

Generation Technologies and Financial Assets: Analogies and Dif-
ferences

To be able to apply portfolio theory to energy generation, one has to define
the return of an energy generation technology. In conformity with the def-
inition in the financial world, where expected return is the output (yield)
divided by the input (cost), the return of a generation technology is defined
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Figure 3: Risk and return of a two-assets portfolio as function of the corre-
lation pis.

as reciprocal value of the generation costs.® Return is thus expressed in
“amount of energy per monetary unit”.

Although this definition analogous to the one used in financial science
may be sound, it should be noted that portfolio theory is based on several as-
sumptions which may not strictly hold in the case of "real” generating assets.
One difference, e.g., is that unlike financial assets, which are readily sellable,
the liquidation of generating assets may be more difficult. Furthermore, the
fact that power plants are non-dividable assets built in discrete size units
may cause discontinuities in the portfolio allocation. For the analysis of large
national portfolios, this may not pose significant problems. When analyzing
portfolios containing exclusively small distributed generation technologies,
the non-divisibility of production facilities may not be problematic even if
the physical size of the portfolio is smaller.

Scenario-Based Portfolio Model

Usually the mean value and standard deviation of the expected return are
derived by a time series analysis of historical data. Applying this ex-post
point of view, one assumes that the past is a good "adviser” for the future
and that by studying the past, it is possible to make inferences about the
future. Experience, however, can become an unreliable guide for the future

3The analysis is based on costs and not on revenues from energy sales since from a
societal point of view, it is appropriate to minimize costs and risks arising from energy
production. If desired, it is possible to include revenues in the model. This would introduce
the need to model further quantities, e.g. the evolution of the electricity price in the future.



especially in businesses where technology holds promise for dramatic change
in the business environment [13]. In today’s energy system environment,
radical changes are ongoing and various factors, which have not existed be-
fore, strongly influence the evolution of energy systems. Among these factors
are the liberalization process of energy industries and already established as
well as expected regulations concerning CO2 emissions. By relying on his-
torical data, the influence and risks introduced by these relatively recent
factors can not be taken into account. Furthermore, a significant number of
new generation technologies are currently emerging. If one wants to include
them in a portfolio analysis, it is obviously impossible to calculate means
and variances from historical cost data since these are not yet existing.

In order to be able to derive efficient generation portfolios for the future
taking into account recent developments, this paper proposes to calculate
means and covariances of expected returns on the basis of a set of possible
future scenarios instead of using historical data. As the evolution of the
future energy system will be determined by a combination of external drivers
and technological development, the set of scenarios will be defined on the
basis of different possible states of these external drivers. External drivers
can for instance be environmental concern regarding climate change, which
has an effect on policy measures and thus on the price of CO2 emissions,
or geopolitical tensions, which have a bearing on prices of primary energy
sources. Possible states - e.g. ’high’, 'medium’ and ’low’ - are assigned to
each of the drivers considered in the analysis. Depending on the number
of drivers and possible states, a certain number of scenarios results. For
example in the case of two drivers and three possible states, 32 = 9 different
scenarios result. In general, levelized generation costs of technologies will
depend on the considered scenarios. If geopolitical tensions are high and
prices of primary energy carriers increase, this will lead to an increase in the
costs of generating technologies using natural gas or oil. The cost values can
be summarized in the overall cost matrix Ciot:

Cn - Cis
Ctot = | . (9)
Cn - Cys

with ¢ being the number of technologies and s being the number of scenar-
ios. This means that each column of the matrix Ciot corresponds to the
generation costs of all considered technologies in a certain scenario.

Ciot represents the total cost of providing a certain amount of output
energy. In general, this output can be any form of energy or a combination
of these. In the case of a cogeneration technology, e.g., the corresponding
value indicates the costs of providing a certain amount of electricity and
heat. In the case of trigeneration, the cost of supplying cooling power would
additionally be included. If one generally assumes a multi-energy generation



portfolio providing a number of « energy output carriers and supposes that
the costs for each technology generating more than one output energy can
be allocated to the individual outputs, one obtains:

Ciot = »_ Ci (10)
=1

Inverting the values in Cyot leads to the overall return matrix Riot:

1 1
T Ry - Ris
Riot =| © - 1 | =| ¢+ . (11)
1 1
e Ry - Ry

with return being expressed in "amount of energy per monetary unit”.

Individual probabilities of occurrence are assigned to each of the s sce-
narios. In this way, higher probabilities can be given to scenarios which are
considered more likely to occur. The individual probabilities are gathered
in the vector p:

P
D2 u
p=|". with d pi=1 (12)
: i=1
Ds

By varying the probabilities assigned to the individual scenarios, one can
carry out a sensitivity analysis in order to see how different assumptions
about the future affect the portfolio choice. In this way, it is possible to
determine robust portfolios that continue to be economical under a variety
of uncertain future outcomes.

With the help of the overall return matrix Rtot and the probability vec-
tor p, one can calculate the quantities needed for mean-variance portfolio
analysis, namely the expected return of each technology and the covariance
matrix. Using these quantities, one can compute the possible portfolio allo-
cations and the corresponding efficient frontier according to equation 7.

Portfolios with Multi-Energy Outputs

When analyzing a multi-energy generation portfolio providing different en-
ergy outputs such as electricity, heat and cooling power or a chemical energy
carrier like hydrogen, one is of course not only interested in costs and risks of
a particular portfolio, but also in the share of the individual output energy
carriers in the total energy output. For this purpose, the conversion efficien-
cies of each technology with respect to each output energy, e.g. the electric
efficiency of a CHP plant, are taken and related to the overall efficiency of
the converter.* The resulting value is the share of a certain energy output

4Conversion efficiencies are considered to be constant representing average values over
the assumed lifetime of the plant.



in the overall energy output of one technology. For a certain technology ¢
with a conversion efficiency 7;; with respect to the kth output energy and a
total efficiency of 7; ;o¢, the share of output k in the total energy output of
a converter is simply

ik
Nitot

T = (13)

With the help of equation 13, one can define the output ratio matriz T,
which indicates for the whole set of technologies the share with respect to
each of the a energy outputs:

Iy Ty
r=| : -~ (14)
Fal o I\ozt
Multiplying T with the portfolio allocation vector xp = [ T1 e Xy ]T,

which indicates the share of each technology in the overall portfolio, yields
the portfolio energy carrier ratio Xeout:

Lout,1
Tout,2 . @
Xout = . =T xp with Z Toutk = 1 (15)
: k=1
Lout,a

Lower and upper bounds on the values contained in xp can be defined in
order to account for planning constraints with respect to individual technolo-
gies. The vector Xqout contains information about the share of each output
energy carrier in the total output of the multi-energy portfolio. Using this
information, a portfolio with the desired ratio between the different types of
output energy can be chosen.

With this extension of mean-variance portfolio theory to multi-energy
portfolios, it is possible to determine efficient portfolios, which provide an
arbitrary number of energy outputs. Including the analysis of a set of pos-
sible scenarios, the presented model can be used as tool for an integrated
long-term investment planning of future energy supply systems. Section 3
will present an application of the model to an electricity and heat generation
portfolio.

3 Application Example: An Electricity and Heat
Portfolio

In the following, the application of the general multi-energy portfolio model
to a portfolio with two outputs - electricity and heat - will be presented.
Furthermore, for the sake of clarity this application example is restricted to
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a set of small distributed generation technologies. The following technologies
are included in the portfolio:

Technologies with electricity as output

e T1: Wind
e T2: Photovoltaics (PV)

Technologies with electricity and heat as output

e T3: Biogas engine
e T4: Natural gas fired engine

Technologies with heat as output

e T5: Solar (thermal)
e T6: Gas boiler

In a next step, a set of scenarios is defined. The differences between
the scenarios come from different possible states of external drivers. The
following three major drivers are assumed:

e D1: Environmental concern regarding climate change
e D2: Energy-related research efforts
e D3: Geopolitical tensions

D1 has an impact on policy measures with respect to climate change
mitigation and thus on the price assigned to CO2 emissions. D2 influences
efficiency improvements especially of emerging generation technologies and
D3 has an effect on prices of primary energy sources. Each of the three
drivers can have two different states - "high’ or ’low’. The possible combi-
nations of the states of the drivers, i.e. high/low environmental concern,
high /low energy-related research efforts and high /low geopolitical tensions,
result in the 23 = 8 different scenarios shown in table 1.

Table 1: Scenario definition.
‘Scenarios H S1 ‘ S2 ‘ S3 S4 ‘ S5 ‘ S6 ‘ S7 ‘ S8 ‘

D1 high | high | high | high | low low low | low
D2 high | high | low low high | high | low | low
D3 high | low low high | high | low low | high

In each of the scenarios, the socio-technical environment as well as the
economic conditions of the energy system and consequently also the gener-
ation costs of technologies will be different. Cost data for electricity and
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cogeneration technologies from the NEA/IEA report "Projected Costs of
Generating Electricity” [14] as well as data for heat generating technologies
from [15] serves as a basis for the formulation of scenarios. The cost val-
ues are in many cases strongly dependent on specific local realities. The
levelized costs of a PV plant, e.g., highly depend on the average radiation
intensity at the plant location and costs of wind power plants are above all
determined by the average on-site wind speed. Hence the purpose of this
application example is not to derive an efficient generation portfolio with
general validity, but to illustrate the principle of the proposed method.

The data from [14] and [15] are considered to correspond to scenario
S7, where the state of all drivers is 'low’. Starting from this base scenario,
the remaining scenarios are built by adjusting the levelized generation costs
according to the state of each driver.

Strong environmental concern (D1 *high’) will result in a certain price for
carbon emissions and lead to an increase in generation costs of technologies
generating COg2, which are in this case the natural gas fired engine (T4)
and the gas boiler (T6). With an assumed COz price of 30 USD/t and the
respective emission intensity factors, the change in generation costs for T4
and T6 can be calculated. As the other technologies feature no net COq
emissions, their costs remain unaffected by a COs price.

Intensive energy-related research efforts (D2 ’high’) will lead to efficiency
improvements above all in the case of emerging technologies like PV, thermal
solar panels and biogas engines. Efficiency improvements and the resulting
cost reductions for other technologies are assumed to be smaller depending
on their maturity level.

Last but not least, high geopolitical tensions (D3 ’high’) can lead to
higher prices of primary energy carriers. As in the case of a price for COa,
this only affects the fuel costs of T4 and T6 since the other technologies do
not use fossil fuels to produce energy.

With the scenarios defined in table 1, one obtains the following cost
matrices for the electricity and heat output:

43.3 433 442 442 433 433 442 442
253.3 253.3 287.8 287.8 253.3 253.3 287.8 287.8
59.9 599 63.0 630 599 599 63.0 63.0
814 647 660 830 778 612 624 794
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 |

(16)
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and

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
C | 114 114 120 12.0 114 114 120 12.0
heat = | 312 256 26.1 31.7 27.8 22.2 22.7 284
13.2 13.2 147 14.7 13.2 13.2 14.7 14.7
16.8 13.9 140 17.0 104 75 7.6 10.6 |

(17)

with the unit of all cost values being USD/MWHh.

The total cost matrix Cior and the total return matrix Riot are calcu-
lated according to equation 10 and 11. It is assumed that all scenarios have
equal probabilities of occurrence, i.e.:

pi = 0.125 Vi=1,..,8 (18)

Furthermore, the thermal and electric efficiencies of the cogeneration
technologies result in the following output ratio matrix for this example:

11 039 049 0 O
I'= 0 0 061 051 1 1 (19)

With these data and parameters, the share of electricity and heat can
be determined for any possible portfolio allocation. Fig. 4 indicates for each
combination of risk and return the corresponding electricity share, i.e. the
part electricity production has in the total energy production within the
portfolio.

One observes that portfolios with a high electricity share show low risk at
low returns or high production costs respectively. Wind and PV, which are
the technologies producing only electricity, are not affected by uncertainties
regarding fuel or COq prices, which explains the low standard deviation
of portfolios with a high share of electricity. Since the exergy, i.e. the
energetic quality, of 1 MW of electricity is higher than that of 1 MW of
heat, the returns of portfolios with a low electricity and a high heat share
are consequently higher. The average production costs of PV, which are by
far the highest of all technologies, further amplify this effect.

Fig. 5 shows the same type of diagram for the heat share. Since the sum
of electricity and heat share is equal to 1 for each risk-return combination,
the heat share is low for points with a high electricity share and vice versa.
By means of this type of diagrams, the system planner can choose an effi-
cient mix of generation technologies, which corresponds to his degree of risk
aversion and for which the outputs - in this case electricity and heat - have
the desired ratio.

The resulting efficient frontier, i.e. the points featuring the highest pos-
sible return for each possible risk level, is computed according to equation 7
and depicted in Fig. 6.

13



0.8
0.9—
06— 0.7
0.7 0.6
& 0.6—
o 0.5
& 05—
w
2 0.4
S 04—
g
o 03— 0.3
0.2—| 02
0.1+ 100
0.1
0= 50
0 2 4 6 8 10 12 14 16 187 O

Return [kWh/USD]

Standard deviation (risk)

Figure 4: Share of electricity in the combined electricity and heat portfolio
as function of risk and return.
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Figure 5: Share of heat in the combined electricity and heat portfolio as
function of risk and return.
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Figure 6: Efficient frontier of the combined electricity and heat portfolio.

The efficient frontier indicates the points featuring the highest return for
each possible risk level regardless of the shares of the individual outputs in
the overall portfolio output. It may therefore occur that no portfolio on the
efficient frontier can fulfill the planning requirements concerning the ratio
between the energy outputs. In order to check the physical feasibility of a
portfolio, the shares of electricity and heat along the efficient frontier are
calculated and illustrated in Fig. 7.

One can see that, in the case of this example, any electricity or heat
share between 0 and 1 is realizable. The highest electricity shares result
for portfolios with low risk, whereas the heat share rises with increasing
risk. The majority of the portfolios on the efficient frontier only produce
heat. If the portfolio analysis results in an efficient frontier that does not
include any point allowing to realize the desired ratio between the output
energy carriers, one has to choose an "inefficient” point. In such a case, the
economic performance of the portfolio would be limited by physical planning
requirements.

Eventually, Fig. 8 shows which technologies constitute the portfolios ly-
ing on the efficient frontier. In this application example electricity produc-
tion solely comes from wind power plants, whereas PV and the two cogen-
eration technologies do not contribute to the efficient frontier. Portfolios
providing both electricity and heat are made up almost exclusively by wind
and solar panels. Only with increasing risk the share of gas boilers goes up.
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4 Conclusion

This paper presented the application of mean-variance portfolio theory to
multi-energy portfolios. Mean-variance portfolio theory had already been
applied to electricity generation portfolios. The model stated in this paper
is a general extension of this application and enables an integrated assess-
ment of portfolios generating multi-energy outputs such as electricity, heat,
cooling, etc. Using a set of several possible scenarios, the model allows to
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appropriately incorporate uncertainties about future developments that can
alter the economic performance of the considered generation technologies.
By assigning individual probabilities of occurrence to the different scenarios
and by analyzing them in an integrated way, energy system planners can
determine a portfolio being the best answer to a set of possible future de-
velopments as a whole instead of having to choose a portfolio being only
efficient for one single scenario. In this way the model provides a useful tool
to derive efficient multi-energy generation portfolios for the future and thus
provides valuable support for investment decision makers.
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