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US Power Grid: Problems (Opportunities)

• Grid is seeing increasing congestion 
and degraded reliability

• Uncontrolled power flow is a major 
issue for transmission & distribution

• Building new transmission/distribution 
lines is no longer a simple process

• First line to reach thermal rating limits 
system transfer capacity, even as 
neighboring lines are under-utilized

• Real situation is worse as reliability has 
to be ensured with (N-X) contingencies

• Lack of visibility and control leads to 
conservative operation resulting in 
significant under-utilization of assets

• Possible cascading failures under 
contingency conditions 

• Reliability, load growth, RPS standards 
and ‘Smart Grid’ initiatives under EISA 
2007 will be major drivers for new 
investments

Power flow path from Wisconsin to TVA*

*Courtesy: Tom Overbye, UIUC
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Unarticulated Market Need – Controlling Power Flows

• Reliability of meshed networks is substantially higher than for radial systems. 
However, utilization is poorer.

• Controlling network power flows along existing lines has not been considered feasible 
– either technically or economically. 

• Benefits of controlling power flows includes:
– Enhancement in system utilization and capacity without building new lines
– Tool for managing load growth, congestion and contingency issues
– Self-healing grid which responds to contingencies, improving system reliability
– Routing of power along desired pathways, from ‘power-line’ to ‘pipe-line’. ‘Green’

electrons can be verifiably sent from renewable sources to specific loads.
– Effective management of congestion and uncontrolled loop flows
– Reduced level of generation reserves required to ensure system reliability

• Traditional approach has been through the use of phase-shifting transformers (too 
slow) or FACTS devices (too expensive).
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Distributed FACTS for Power Flow Control

• Distributed FACTS suggested by Divan – Smart Wires
– Provide the functionality of FACTS at lower cost and high reliability

– Series VAR injection controls effective line impedance & real power flow
– Large number of modules float electrically and mechanically on the line
– Can be incrementally deployed to provide controllable power flow
– Standard low-cost mass-manufactured modules
– Redundancy gives high reliability and availability
– Phase I supported by TVA, Con Ed, DOE and others

D-FACTS 
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Active Smart Wires

• Distributed Static Series Compensator  (DSSC)
– Active solution employing a synchronous voltage source inverter
– Each module rated for 5 KVA (capable of injecting ± 4.6 V @ 1000 A)
– Communication interface is required to realize the bi-directional control
– Can be made larger for distribution applications (one per line)
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Distributed Series Reactance – Passive Smart Wires

• Simplest implementation of DSI, with inductive impedance injection (Current 
Limiting Conductor or CLiC) – functions as a current limiting system

• As current in a line approaches the thermal limit, CLiC modules incrementally 
turn on, diverting current to other under-utilized lines

• Increase in line impedance can be realized by injecting a pre-tuned value of 
magnetizing inductance of the STT

• Each module is triggered at a predefined set point to reflect a gradual 
increase in line impedance

• No communication required and the devices operate autonomously

Control

Power Line

Transformer

S1

XM

Power 
Supply

SM

I0 Ithermal

Line Current (ILine)

N Xm



Confidential

Increase in System Capacity With DSR Modules
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Increase in Network Utilization

IEEE 39 Bus System  

Network Performance With CLiC
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• Increase in Transfer Capacity from 1904 MWs to 2542 MWs (congested 
corridors and the required MVARs are shown by red lines)

• With (N-1) contingency, capacity is increased from 1469 MW to 2300 MW 
without building additional lines

• Would require 9 additional lines to realize capacity increase
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DSR Prototype

Complete module with the casing • Electrical
– Operating Level : 161 KV, 1,000 A
– ACSR Conductor: Drake (795 Kcmil)
– Injection: 10 kVA, 750 A

• Mechanical
– Target weight per module: 120 lb
– Packaging to avoid corona discharge, 

and other mechanical, thermal and 
environmental issues

• Simple low-cost design suitable for mass 
manufacturing

• Suitable for distribution and transmission 
applications
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Validation at High Voltage and Current

Corona inception: 125 kV Extinction: 123 kV

Photographs correspond to 166 kV
Operation Under Fault Currents
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Investment Cost for IEEE 39 Bus System

• Cost of laying additional lines: $500,000/mile

• Target cost of DSR unit: $100/KVA, cost of 
redeployment: $30/KVA

• ATC of the system is limited to 1904 MWs

• DSR modules can relieve network congestion at a 
lower cost for the first 400 MWs

• DSR continues to be attractive for next  300 MWs

– Building additional lines can be suspended for 
the first 700 MWs

• A combination of the two schemes can provide a 
much lower investment cost

• Allows incremental investment decisions with rapid 
implementation.
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Solution Cost Under Contingencies

• Network congestion occurs at a load of 1470 
MW with one contingency, as opposed to 1900 
MW with no contingencies

• DSR modules are attractive until 2000 MW, i.e. 
for the first 530 MW of load growth.

• DSR modules can maintain optimal congestion 
levels from a pricing perspective

• If 2.5% load growth is assumed, the investment 
in the new line can be deferred for 13-15 years. 
Reduces uncertainty and risk, improves ROI.

• Interest on deferred cost of new line may pay 
for DSR modules!
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Drivers for Transmission Capacity Investments

• In a free market, price differentials should provide incentives for investments to 
increase transmission capacity

– Lower cost generator’s opportunity for windfall profits should incent him to invest in 
incremental transmission capacity

– Congestion costs provide the opportunity of arbitrage
– Price differentials help to finance investments

• In a regulated market, increase in societal welfare is supposed to form the 
basis of any policy initiative

– Reliability improvements are easily supported by PSC’s and can support capacity 
increases

• Increased societal benefits can be realized from congestion relief, but it is not 
clear how such investments may be funded.

With Congestion With Complete Congestion Relief
LMPA ($/MW) 25 25

LMPB ($/MW) 50 49

Consumers costs in region A ($) 3750 3750

Consumers costs in region B ($) 7500 7350

Gen. A revenue ($) 6250 11100

Gen, B revenue ($) 2500 0

Available revenue for transmission Inv. ($) 0 4850
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Impact of Incremental Transmission Capacity
•Incremental increase in transmission capacity affects 
market participants differently

•The congestion revenue collected by ISO increases 
•Gen. B loses revenue, while Gen. A gains revenue. Net 
change in generator revenue is negative.
•Consumer welfare increases; ISO’s allocate congestion 
costs back to market participants (FTR)
•Consumers may not benefit uniformly with increase in 
transmission capacity (marginal costs can cause 
consumers in Region A to pay more)
•Market operates under the assumption that 
infrastructure changes happen too slowly, and so 
congestion costs are redistributed to participants.
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Reliability 

•Works well with the traditional utility approach of maintaining system reliability

•In line with EISA, “Creation of smart grid to improve reliability and performance.”

Economics/Congestion

•Investor model: A profit sharing mechanism between investor and consumer 

Directed Power Flow

• ‘Green’ electrons can be directed along a designated network path (pipeline)

• Carbon cap & trade may generate opportunities for investment

Business Models for Smart Wires

$13000 /MW 
(cost for 13 
modules)

DSR Cost
PI=8

500 hours

Congested 
Hours/year

$12,500/ 
year/MW

Increase 
in welfare

50% consumers, 50% 
investors till desired ROI 

is reached

$25/ 
MWHr

Profit-Sharing FormulaCongestion 
Costs

$ 18750$ 6250-36 months

$ 12500

$ 6250

Consumer 
welfare

-

$ 13000

Investment 
Costs

- $ 500

- $ 6250

Investor 
profit

24 months
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Time

Congestion relief through outside investment can provide break-even in 2 years
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Title XIII of the Energy Independence & Security Act of 2007

Places great emphasis on Smart Grid – Electricity delivery network modernization using 
latest technologies to meet key defining functions: 

• Optimizing asset utilization and operating efficiently
• Self healing and resilient operation
• Greater control of the grid to enable new business models and functionality
Financial Incentives 
• $100M/year for 2008-12, 50% cost share for utilities on demonstration projects, 20% 

reimbursement for expenditures on Smart Grid
• Rate recovery and accelerated depreciation allowed
Renewable Portfolio Standards and Real-Time Pricing.  
• Results in significant level of dynamics on the grid, with significant challenges
• Increased adoption of Advanced Meters to serve as pricing gateways will result in 

greater volatility of loads

Key Technologies Targeted:
• Controls to improve reliability, dynamic optimization of grid operations, smart 

appliances, to facilitate integration of advanced technologies in electric networks to 
improve performance, power flow control and reliability.
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Smart Wires in a Smart Grid

• It is proposed that the use of distributed solutions based on low-power power 
electronics can allow utilities to move towards dynamically controllable meshed grids, 
significantly enhancing grid reliability, capacity and utilization. This can enable:

• Improved reliability without having to build new lines

• Improved dynamic coordination between regions

• Reduction in dynamic capacity reserve for generators

• Possibility of moving power along a predetermined contract path

• Can be applied at the transmission, sub-transmission and distribution levels.

• Can be layered incrementally onto the existing infrastructure as desired, and will not 
degrade the inherent reliability of the existing system.

• Makes the grid self-healing, automatically maintaining safe operating levels even in
the face of contingencies.
• Funding such investments on the basis of congestion relief is problematic in 

regulated environments, new mechanisms may have to be found.

• Project is supported by IPIC, TVA, ConEd, Southern, NRECA, and others. Target 

full-scale pilot demonstrations in 18-24 months.


