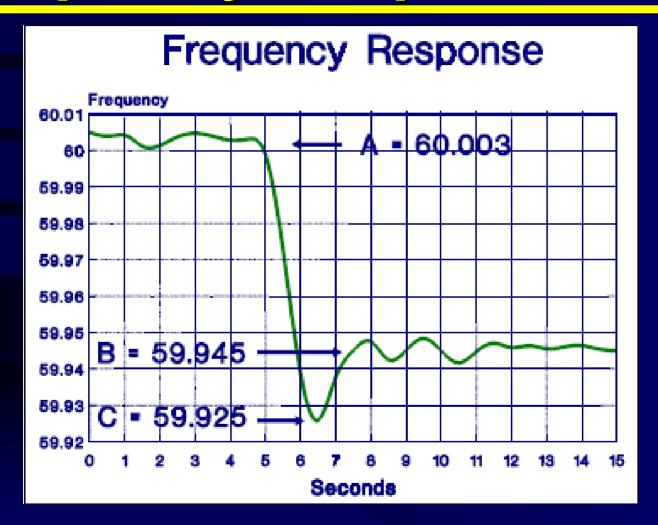
# Frequency Response Standard Technical Issues

Howard F. Illian, President Energy Mark, Inc.
November 15, 2006




#### Overview

- Frequency Response Measurement
- Central vs. Local Measurement
- Sampling Procedures & Bias
- Local Measurement Limitation
- PGFR Measurement Change
  - From Tie Line Error and Frequency
  - To ACE, Bias and Frequency
- Significance of Measured PGFR



## Frequency Response Plot





## Frequency Response

- Initial Frequency Point A
- Settling Frequency Point B
- Minimum Frequency Point C

Oscillations – from C to B



#### **Measurement of PGFR**

- Values of Interest
  - Minimum Frequency
  - Settling Frequency
- Minimum High Resolution Data
- Settling Frequency Step Function
- Use Two Step Measurement ?
  - High Resolution Minimum Frequency
  - Step Function Settling Frequency
  - Consistent Minimum to Settling Ratio ?



#### Central vs. Local Measure

- Central measurement can provide answers to reliability requirements.
- If reliability is affected significantly, then local measurement is required to assign responsibility for meeting minimum reliability needs.



## Sampling Procedures

- Frequency Threshold
  - May tend to select lower response events
- Minute to Minute Unit Step Function
  - Inconsistent selection method
- 3-Minute Unit Step Function
  - Provides more consistent selection
  - Provides multiple data values
  - Enables internal consistency checking



## **Frequency Threshold**

Assume 1,000 Mw Event:

PGFR / 0.1 HZ Frequency Change

A 1,000 MW 100 mHz

B 2,000 MW 50 mHz

C 3,000 MW 33 mHz

40 mHz Sampling Limit will select A and B from above but exclude C.



### Minute to Minute

Assume 1,000 MW Event with a 2,000 MW / 0.1 Hz Response:

```
      Min
      Event at

      Avg
      0 Sec
      15 Sec
      30 Sec
      45 Sec

      1
      60.000
      60.000
      60.000
      60.000

      2
      59.950
      59.963
      59.975
      59.988

      3
      59.950
      59.950
      59.950
      59.950
```

Use Minute 1 to Minute 3 average.



## Minute 1 - Minute 3 Sample

- Minute 1 to Minute 3 sampling provides 1 or 2 samples per event.
- Each event weighted equally.
- Multiple sample events enable the investigation of other data inconsistencies.
- This is still Frequency Threshold Sampling. Can we overcome the sampling bias in other ways?



## **Measurement Limitation**

Balancing Authority Metering

$$\sum \mathbf{E}_{\mathrm{T}} = \mathbf{0}$$

Therefore:

$$\sum \mathbf{E}_{\mathrm{T},1} = \mathbf{0} \cdot \mathbf{\&} \cdot \sum \mathbf{E}_{\mathrm{T},2} = \mathbf{0}$$

> And:

$$\sum \left( \frac{\Delta E_{T}}{\Delta F} \right) = 0 \cdot \& \cdot \sum FR = 0$$



## Local Measure Required

- These equations indicate that the information required determine the contribution to unreliability is contained in the local measurements.
- Therefore, local measurement is required to assign responsibility for provision of Frequency Response.
- The information is contained in combined Disturbance Imbalance Errors and the resulting Frequency Response to them.



## PGFR Measurement Change

- Change PGFR Measurement
  - From Tie Line and Frequency
  - **■** To ACE, Bias and Frequency
- This change is dependent on the consistency of Variable Frequency Bias use.



## Significance of PGFR

- Frequency Error Drivers
  - Normal Control Errors
  - Disturbance Errors
  - Disturbance Recovery Errors
  - Scheduled Time Error Corrections
- Sensitivity Variables
  - Epsilon 1
  - Generation and Transmission Inventory
  - DCS Limits: Size and Recovery Limits
  - **Time Error Correction Procedures**



## Questions



