ILLINOIS INSTITUTE OF TECHNOLOGY

ELECTRIC POWER AND POWER ELECTRONICS CENTER

ROEL OF SECURITY IN OPETIMAL MANITENANCE SCHEDULING

Mohammad Shahidehpour

January 2006

Security Time Scales

- Real-time (on-line) security analysis which maintains the system security in real-time
- Short-term (day ahead and weekly) operation which encompasses security-constrained unit commitment (SCUC) and securityconstrained optimal power flow (SCOPF)
- Mid-term (monthly and yearly) operation planning which encompasses optimal maintenance scheduling of equipments and optimal allocation of resources (fuel and hydro) for maintaining the system security
- Long-term (yearly and beyond) planning which encompasses generation resource and transmission system planning for maintaining the system security

Security Time Scales

- Real-time and short-term operation risks are associated with power system failures, and hourly load fluctuations due to sudden changes in weather conditions.
 - Short-term operation is exposed to financial risks associated with volatility of electricity prices.
- Mid-term operation planning risks are associated with the procurement of fuel or the availability of natural resources such as water inflows.
 - Mid-term operation planning is exposed to financial risks associated with prices of forward electricity and fuel.
- Long-term planning risks are associated with the construction of generating plants and transmission facilities.
 - Financial risks are great due to the construction lead time and interest rates.

Security Time Scales

- A global analysis of security options could provide additional opportunities for seeking optimal states in time scales
 - Long-term and mid-term operation planning could provide a wider range of options for managing security in short-term and real-time power systems operations.
 - Power system operation strategies over shorter time periods (realtime and short-term) could yield security signals for longer-term scheduling (mid-term and long-term).

Example of SCUC

Case 0: UC without transmission and voltage constraints

Daily Cost = \$101,598.18

Hours (0-24)

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Case 1: Steady state dispatch with ac network constraints

							Da	ily	C	os	t =	:\$	10	3,1	35	5.9	0								
Hours (0-24)																									
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	

Case 2: Outage of line 5-6

Daily Cost = \$119,069.80																									
Hours (0-24)																									
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

Mid-term Operation Planning

- GENCOs' mid-term objectives are to extend the life span of existing generating units through proper maintenance and to optimize competitive payoffs by trading energy with the market.
- TRANSCOs' mid-term objectives are to maintain transmission security through proper maintenance and to optimize competitive payoffs by wheeling energy.
- The ISO's responsibility is to guarantee the system security and leave out participants' payoffs as a security constraint.

Mid-term Operation Planning

- Mid-term operation planning intends to satisfy the following requirements:
 - Enhance the power systems security based on limited generation and transmission equipment
 - Optimize the allocation of limited natural resources (water, fuel)
 - Extend the life span of generating and transmission units
 - Prolong investment costs for adding new facilities
 - Reduce operation costs for supplying competitive loads (mid-term load and price forecasts, renewable energy availability)

Cost of Mid-term Operation

- Total cost of mid-term operation planning could be divided into production cost and maintenance cost.
 - Production cost of a GENCO is a function of fuel usage for thermal generating units and other operation costs.
 - Maintenance costs of GENCOs and TRANSCOs could be minimized when outages are scheduled according to seasonal load durations and the availability of resources and manpower.
- System security could create a substantial barrier on the cost minimization of mid-term operation planning when available facilities are on maintenance.

Cost of Mid-term Operation

- Competitive objectives and constraints of market participants could be conflicting.
 - It could be impractical to seek an all-encompassing objective for participants' optimal maintenance scheduling in a secure power system environment.
 - Short-term operation (days or weeks) could impact mid-term operation planning and the overall system security when considering limited resources, transmission facilities, and emission allowance.
 - It could be appealing to the mid-term problem to develop a closer coordination strategy between mid-term operation planning and short-term operation solutions.

Features of Mid-term operation Planning

- Generation and transmission maintenance schedules
- MIP-based SCUC (ac constraints)
- Long-term fuel and emission constraints
- Hourly-based variable maintenance cost
- Hourly-based variable maintenance duration

Coordination in the Integrated Model

- Coordination between generation and transmission maintenance
- Coordination between security-constrained generation scheduling and equipment maintenance
- Coordination between resource allocation and optimal generation
- Coordination between transmission security and optimal maintenance & generation scheduling

Objective

{

}

+

operation cost

equipment maintenance cost

Constraints

- 1. Generation maintenance constraints
 - maintenance windows
 - resources and crew availability
- 2. Transmission maintenance constraints
 - maintenance windows
 - resources and crew availability

Constraints (cont.)

- 3. Generation constraints
 - Load balance
 - System spinning and operating reserve requirements
 - Minimum up and minimum down times
 - Ramp rate limits
 - Startup and shutdown characteristics of units
 - Generating capacity of generating units
- 4. Fuel consumption and emission allowance constraints

Constraints (cont.)

- 5. Coupling constraints between generation maintenance and unit commitment decision variables
- 6. DC transmission coupling constraints between transmission maintenance and economic dispatch decision variables:
 - First Kirchoff's law for bus power balance
 - Second Kirchoff's law for lines
 - Transmission flow limits
 - Limits on phase-shifting transformers

- 6.
- DC transmission coupling constraints between transmission maintenance Y and economic dispatch P decision variables:

First Kirchoff's law for bus power balance: sf + wp = dSecond Kirchoff's law for lines:

$$\left|f_{mn} - \gamma_{mn} \left(\theta_m - \theta_n\right)\right| \le M_j * (1 - Y_{jt}) \quad (j \in m, n)$$

Transmission flow limits:

 $|f_{mn}| \le PL_{j,\max} * Y_{jt} \qquad (j \in m, n)$

One-line diagram for 6-bus test system

Unit data

			Pmax	Pmin		
Units	Bus No.	а	b	c .	(MW)	(MW)
		(Mbtu)	(MBtu/MWh)	(MBtu/MW ² h)		
Gl	1	176.9	13.5	0.00045	220	100
G2	2	129.9	32.6	0.001	150	50
G3	6	137.4	17.6	0.005	100	20

Units	Ini. St. (h)	Min Down (h)	Min Up (h)	Ramp (MW/h)	StartUp (MBtu)
Gl	ON 4	4	4	55	100
G2	ON 2	3	2	50	200
G3	ON 1	1	1	40	0

Branch data

Line	From Bus	To Bus	R (pu)	X (pu)	Limit (MW)
Line 1	1	2	0.0050	0.170	200
Line 2	1	4	0.0030	0.258	200
Line 3	2	4	0.0070	0.197	80
Line 4	5	6	0.0020	0.140	100

Т.	From Bus	To Bus	X (pu)	Max Tap /Degree	Min Tap /Degree	Limit (MW)
T1	2	3	0.037	1.08	1.02	100
T2	4	5	0.037	1.08	1.02	100
P1	3	6	0.018	30	-30	100

Equipment maintenance limits for 6-bus system

Equip.	From/ At Bus	To Bus	Windows	Duration (hours)	Cost (\$/hour)
U1	1	-	Mon Sun.	24	84
U2	2	-	Mon Sun.	24	125
U3	6	-	Mon Sun.	24	167
L1-2	1	2	Tue Sat.	24	2080

Case studies

- Case 0: Without any equipment maintenance
- Case 1: With generation maintenance
- Case 2: With transmission maintenance
- Case 3: With generation and transmission maintenance

Case 0

Case 2

Maintenance of line 1-2 and hourly violations

Iteration	Hours on Maintenance	Hours with Violation
1	75-98	80-93
2	97-120	104-109, 110-118
3	56-79	56-70
4	119-142	138-140
5	25-48	31-47
6	119-142	None

Equipment maintenance limits for 118-bus system

Equip.	From/ At Bus	To Bus	Windows	Duration (hours)	Cost (\$/hour)
U10	25	-	Mon Sun.	24	1200
U20	49	-	Mon Sun.	24	1000
U34	76	-	Mon Wed.	24	400
L51	38	37	Mon Fri.	18	5000

Case 1: SCUC without equipment maintenance

Operating cost = \$10,112,075.13 Total cost = \$10,112,075.13

UC for Case 1

UC for Case 2

