

Advanced Controls and Communication Systems for Demand Response and Energy Efficiency in Commercial Buildings

Sila Kiliccote, Mary Ann Piette Lawrence Berkeley National Laboratory SKiliccote@lbl.gov, MAPiette@lbl.gov David Hansen

U.S. Department of Energy

January 12, 2006

Second Carnegie Mellon Conference in Electric Power Systems: Monitoring, Sensing, Software and Its Valuation for the Changing Electric Power Industry

Sponsored by U.S. DOE, California Energy Commission and New York State Energy Research and Development Authority

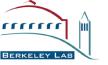
1

Presentation Overview

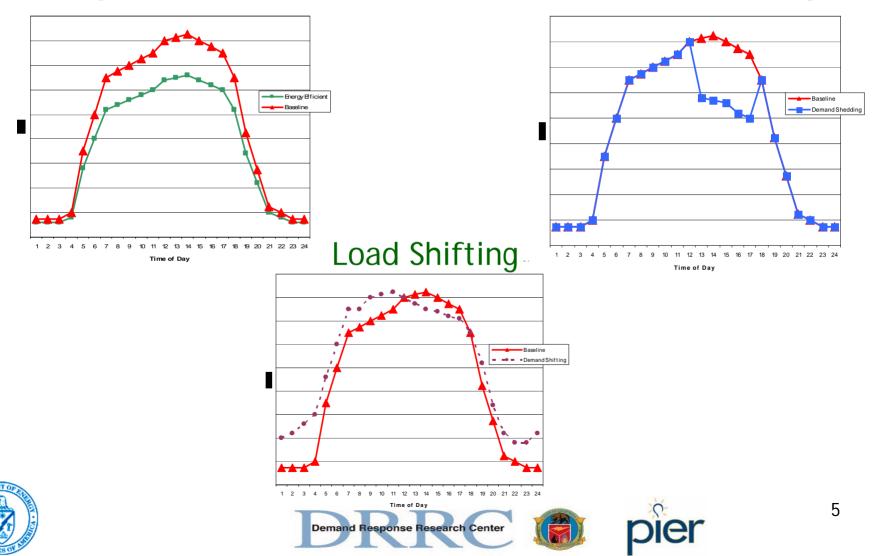
- Demand Response Basics and DR in US
- Demand Response Potential in Commercial Buildings
- Advanced Controls for Commercial Buildings
- Research in California
 - Automation of DR
- Research in New York
 - New York Times Office Building
- National R&D Opportunities

Demand Response Definition

- Demand Response (DR) is the action taken to reduce load when:
 - Contingencies (emergencies & congestion) occur that threaten supply-demand balance, and/or
 - Market conditions occur that raise supply costs
- DR typically involves peak-load reductions
 - DR strategies are different from energy efficiency, i.e., transient vs. permanent


Demand Side Management

	Efficiency and Conservation (Daily)	Peak Load Management (Daily)	<i>Demand Response (Dynamic Event Driven)</i>		
Motivation	- Environmental Protection - Utility Bill savings	- TOU Savings - Peak Demand Charge Reduction - Grid Peak	- Economic - Reliability - Emergency		
Design	- Efficient Shell, Equipment & Systems	-Low Power Design	- Dynamic Control Capability		
Operations	- Integrated System Operations	- Demand Limiting - Demand Shifting	- Demand Shedding - Demand Shifting		



Load Profiles and Terminology

Efficiency and Conservation

Load Shedding

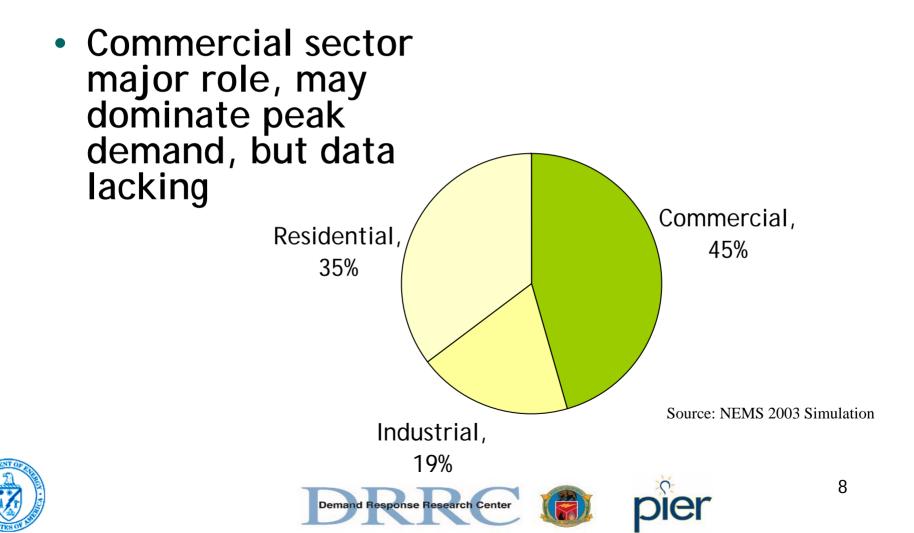
Value of Demand Response

Utility Systems and Societal Value

- Improve Reliability of the System
- Reduce Electricity Costs and Market Efficiency
- Risk Management
- Environmental Impact

Value of Demand Response

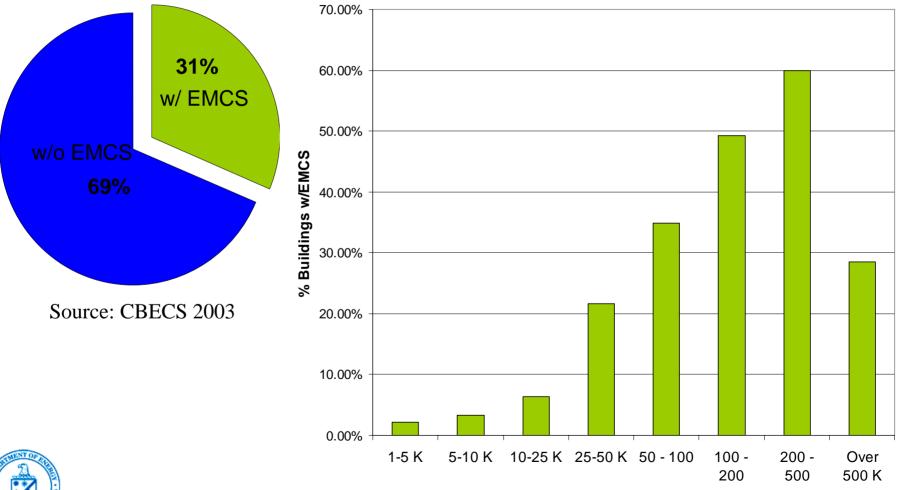
Buildings Industry Opportunity


- Controls Leverage investments combining efficiency and DR capabilities, facilitate Zero Energy Buildings (ZEB)
- Energy Information Leverage knowledge of electric load shape and energy use patterns, Link to commissioning

Commercial Buildings' Contribution to Peak Demand

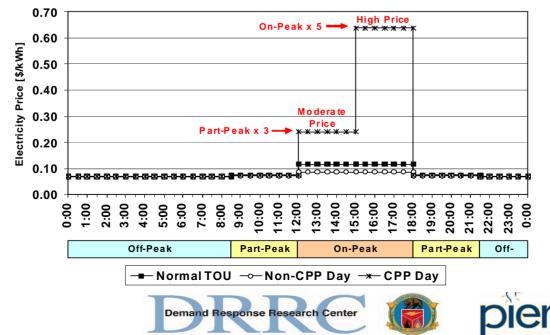
Commercial Buildings' Contribution to Peak Demand

 Commercial Buildings Energy Consumption Survey (CBECS) vs.
 National Energy Modeling System (NEMS)


	1995 (GW)	2003 (GW)
CBECS (1)	273	333
CBECS (2)	317	387
NEMS Coincident	291	328
NEMS Non-coincident	317	363

1/3 of Commercial Building Stock has Energy Management Control System (some "DR Ready")

Building Size (sqft.)



Automated Demand Response in Large Facilities

Goal: Evaluate feasibility of Automated DR hardware & software systems in large facilities

- Can control & communications systems receive signals & execute automated shedding?
- Control strategies for max load sheds & min service loss?

R&D Team: LBNL. Infotility. Akuacom. Shockman Consulting

2003, 2004 and 2005 Auto-DR System

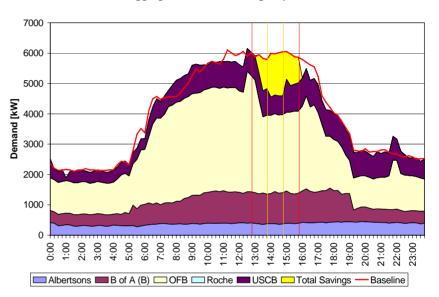
.....

Price Server Polling Client & IP-Relav Software 1. LBNL defines price schedule <mark>2</mark> 2. Price published on XML (eXtensible Infotility Markup Language) server 3. Clients request price from server Internet every minute & send shed & private WANs I BNI commands **Price Scheduler EMCS** carries out shed 4 automatically IP-Gateway Relay dib dib -Polling 3 Client Internet and EMCS EMCS Protocol Protocol **Private WANs** 4 (C) (\mathbf{C}) **Electric Loads** Electric Loads = Price Client Test Sites C = EMCS Controllers = Pilot site 2003 test was Gateway only = Price Server 2004 was Gateway or Relay = Development Site 2005 both Demand Response Research Center

12

Project Phases

- 2003 5 Sites (all Gateway Connectivity)
 - Demonstrated basic concept and technical feasibility
- 2004 18 sites (13 Gateway, 5 Internet Relay)
 - Demonstrated greater diversity in building systems and DR shed strategies
- 2005 12 sites, Automated CPP with PG&E
 - Demonstrated compatibility with utility DR programs
 - 3 XML Gateways, 9 Internet Relays
- 2006 Plans to Scale Up Field Tests with California Utilities
 - Target 40 sites with PG&E, discussions with SCE and SDG&E
 - Evaluate economics, reliability, market size, market barriers

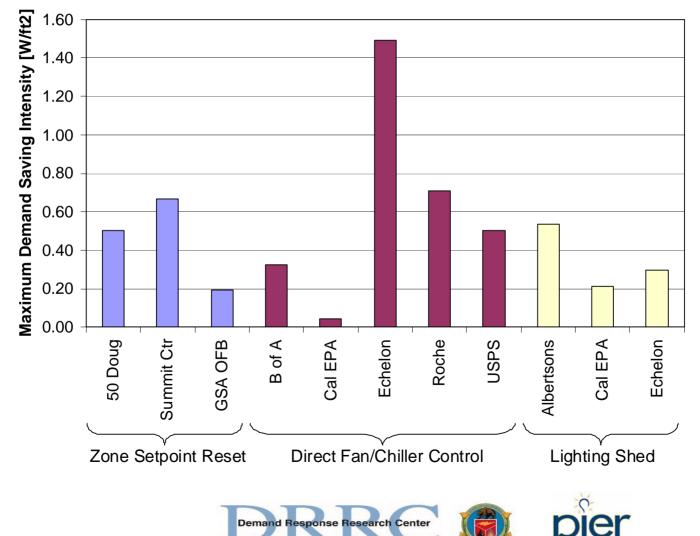


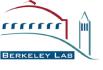
Results on Automated-DR

Demand Response Research Center

- Established capabilities of current controls and communications with EMCS and XML
- Demonstrated initial design of signaling infrastructure and system capability
- Demonstrated large sheds can take place without complaints
- Demonstrated range of strategies to produce sheds and capabilities needed
- Average reduction 8%
- Range up to 56% reduction

Aggregated Demand Saving, Sept 8th


	Number of sites	Average Savings (%)	Max. Savings (%)
2003	5	8	28
2004	18	7	56
2005	12	10	38



End-Use Data for Selected Sub-sample Need Additional Field Studies

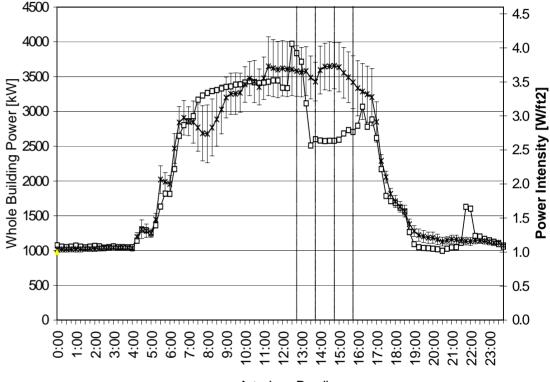
Auto-CPP DR Strategies by Sites (2005)

								/.	n/					
		31002			amer	it saile contraction of the second		duci		5 ⁰				ed pe
				3011	9 0/:		(8 ³⁾	SUII!	Juner Juner Juner	imit	ndill	,, ,,		ed pe
			en					one	-urrer	dell'	ocho)	ding	edes	COM6
		-1003		- 30 <					viller	oillet	NO C	ji ojing teng) ¹ 01	onn
Office A	\mathbf{f}	ي× رو	<u>)</u> * ``		<i>\</i> /~~	E/ (<i>)</i> /	7× ×	(/ X		<u>)</u> (
Office B														
Office C														
Office D														
Office E														
Office F														
Office G														
Office H														
Office I														
Retail A														
Retail B														
Post Office														
Museum														
High School														
Data Center														

16

Greatest Potential from Global Temperature Adjustment

Demand Response Research Center


Global Temperature Adjustment of EMCS proposed for 2008 California Building Energy Efficiency Standards

(Title 24)

ASHRAE 55-2004, Paragraph 5.2.5.2 Change in Temp

Time Period 2 °F -15 minutes 3 °F - 30 minutes 4 °F - 1 hour 5 °F - 2 hours

6 °F - 4 hours

--- Actual --- Baseline

Average of ~800 kW, 0.8 W/ft² > 20% shed for 3 hrs. by set point increase 72 F to 78 F

New York Times HQ Building

NY Times/ Renzo Piano/ Fox & Fowle/ Gensler/ Flack+Kurtz/ Susan Brady Lighting

The Challenge

- Integrated shading & dimming
- Under floor air systems
- Commissioning in mockup
- Field test supported by NYSERDA, DOE, and CEC

Demand Response

- EnergyPlus simulations of DR strategies
- Commissioning and controls
 plans for DR strategies

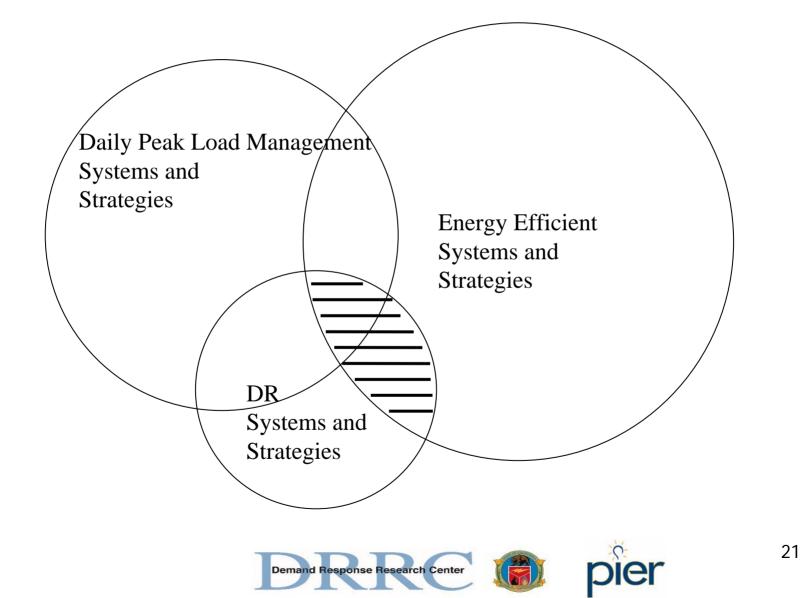
The New York Times Building

Strategies -> Sequence of operations

- Lighting Level 1: Reducing lighting to 50% in core, 70% in PC dominated interior and perimeter zones.
- Lighting Level 2: Reducing lighting to 50% in core, 70% in interior zones and off in perimeter zones.
- Temperature Setup 1: Cooling set point increase from 74F to 76.5F
- Temperature Setup 2: Cooling set point increase to 78.5F
- Fan Box: Reduce perimeter fan boxes to 30% capacity from 2pm. to 6pm.
- Supply Temperature: Cooling supply temperature is set to 54 F until 2 pm. At 2 pm, it is increased to 59.5 F until 6pm.

Existing and New Dynamic Operational Modes

- Operational modes implemented with EMCS
 - Current Systems
 - Occupied/Unoccupied
 - Maintenance/Cleaning
 - Warm up/Cool down
 - Night purge
 - Advanced- Integrated Master Controls → FINANCIAL FEEDBACK
 - Daily cost minimization and IEQ optimization- non-DR Day
 - Cost Minimization in Demand Response Mode (modify IEQ for short term)
 - Cost minimization for On-Site Generation (dynamic control)
- Master Controls needed to integrate HVAC, Lighting, Façade - Currently not intelligent, no decision making is required
- Zero Energy Buildings Same dynamic control needed for grid power or on-site power


 $\int dx = \int dx =$

20

National R&D Opportunities Advanced Controls for DR and Efficiency

Summary

- Demand Response and Dynamic Pricing growing nationwide
- DR capabilities in buildings revolve around controls!
- Field tests show DR potential 5-10% in many buildings with EMCS, yet limited knowledge on how to develop strategies
- Research needed to evaluate DR control capabilities in broader stock, control vintage, upgrade capabilities, market segments, and new construction.
- National and Regional leadership needed to collaborate with controls, engineering, and buildings industries, government buildings early adopters
- DR is not driver, high performing buildings are:
 - Low energy costs, well-commissioned, low maintenance costs
 - Key is advanced controls, feedback systems, integrated performance
 - Controls for Zero Energy Buildings have common goals as DR controls

