The Frequency of Large Blackouts in the United States Electrical Transmission System: an Empirical Study

Paul Hines Jay Apt Sarosh Talukdar Huaiwei Liao

Second Carnegie Mellon Conference in Electric Power Systems, 12 January 2006

Overview

- Blackouts have triggered system changes in the past.
- One might expect that these changes have resulted in a measurable decrease in the frequency of large blackouts.
- Therefore, we seek to study the following hypothesis empirically:
 - The frequency of large blackouts in the United States has decreased over the period for which data are available (1984-2003).

Outline

- Historical background Improvements brought about by past blackouts
- Data sources and filtering methods
- Statistical analysis of this data
- Some possible explanations for this finding
 Conclusions

Historical blackouts and their consequences

1965, Eastern US/Canada

- Reliability councils / NERC
- backup relaying

1977, Eastern US

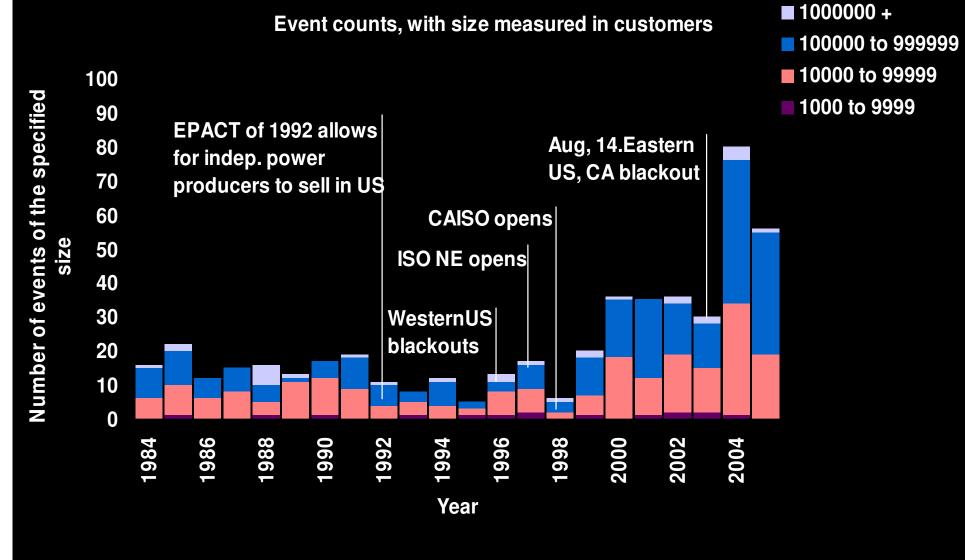
- RAS / SPS
- 5 stage control N-1 criterion

1996, Western US/Canada

- Improvements to RAS / SPS
- Emphasis on managing limits, contingency analysis
- 2003, Eastern US/Canada
 - Mandatory reliability standards
 - Emphasis on software, tree trimming, etc.

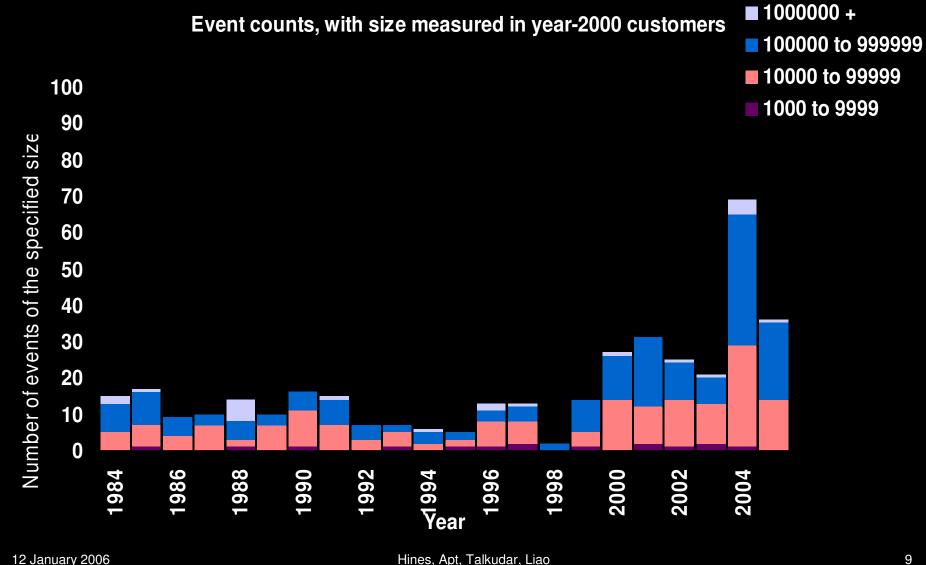
Hypothesis

- Many improvements have been implemented.
- Technology has improved significantly
- Therefore, one might expect that:
 - the frequency of large blackouts in the United States has decreased over the period for which data are available (1984-2003).
- This paper seeks to confirm or refute this hypothesis using publicly available data.

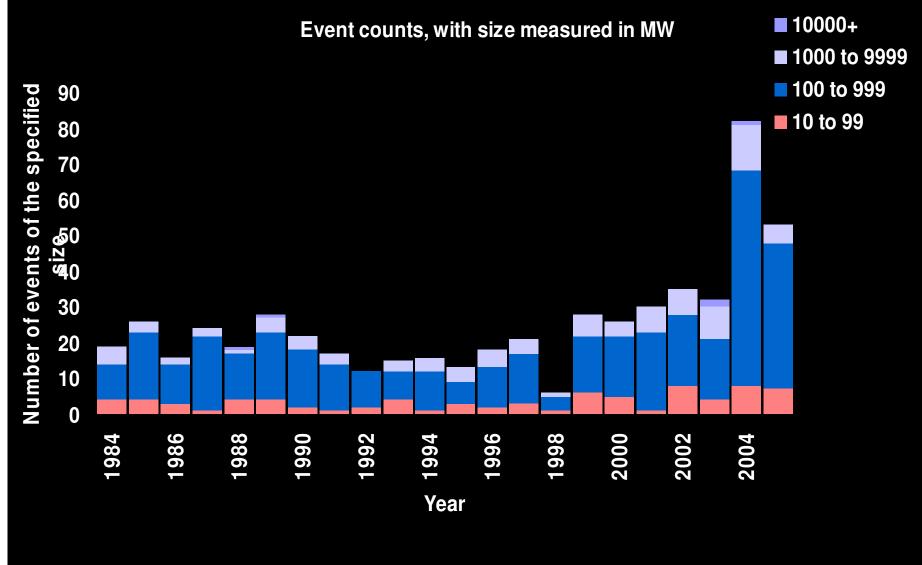

Data sources

- Primary data source: NERC Disturbance Analysis Working Group.
- Secondary data (for 2004, 2005) from DOE Energy Information Agency form 417 data.
- Data include date, time, size (in MW and/or customers affected), and the cause of hundreds of events
 - 715 events for 1984-2003 in DAWG data
 - 164 events for 2004, 2005 in EIA data

Data filtering

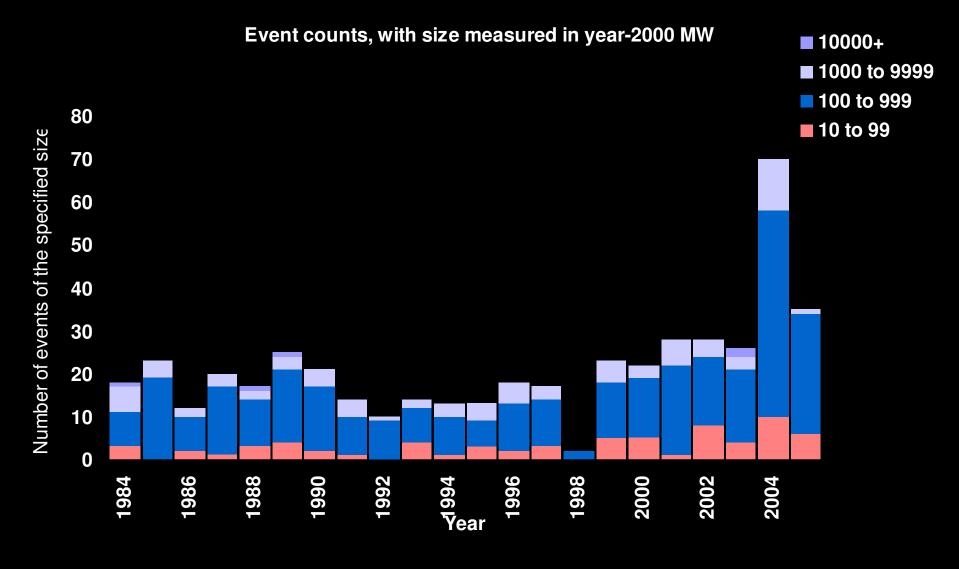

- If MW or customers blank or reported n/a we interpolated using the average customers / MW (768 customers / MW)
- In order to adjust for load growth and population growth we normalized the data to year-2000 MW and year-2000 customers.
- 1998, 2004, 2005 data not included in statistics
 - For 1998 data a large portion of the year's data is missing in the DAWG database.
 - 2004, 2005 data come from EIA, not DAWG.

Customer event counts before scaling



Hines, Apt, Talkudar, Liao

Customer event counts after scaling



MW event counts before scaling

Hines, Apt, Talkudar, Liao

MW event counts after scaling

12 January 2006

Hines, Apt, Talkudar, Liao

Year – frequency correlation

Tests the hypothesis that the (centered) correlation between years and frequency is significantly different than zero.

Results:

- For events 10,000 customers and larger
 - corr. coef = 0.48, P = 0.03
- For events 10 MW and larger
 - corr. coef = 0.13, P=0.59
- Therefore, there is a slight positive correlation between years and event frequency for customers, not for MW. No evidence of a negative correlation exists.

T-test – compare distributions

Kruskall Wallis t-test

- Compares the distributions of non Gaussian data.
- Tests the hypothesis that the medians are significantly different
- Divide data at 1998.
 - Significant changes after '96 blackouts.
- Results
 - Events 10,000 customers and larger:
 - Sets significantly different, P=0.005
 - Mean for '84 '97 = 11
 - Mean for '99 '03 = 22
 - Events 10 MW and larger:
 - Sets significantly different, P=0.04
 - Mean for '84 '97 = 15
 - Mean for '99 '03 = 18

In summary

There is some statistical evidence that the frequency of blackouts in the US in increasing with time.

We can therefore safely reject the hypothesis that the frequency is decreasing.

Some possible explanations

Lack of transmission investment

- though some increase in last 5 years,
- new construction in areas where most needed unlikely solution
- Inherent complexity of the system
 - Carrerras, Newman, Dobson, Poole (2005)
 - Proposed solutions are difficult to verify (Talukdar et al., 2003)
- Lack of system-level control of a system-level problem
 - Apt, Lave, Talukdar, Morgan, Ilic (2004)
- Failure of the protection system to address the cascading failure problem.

Conclusions

- The existing data shows clearly that we are not winning the battle against large blackouts.
- There is some evidence that we may be losing.
- Potential measures include:
 - System-level control. Changes to the Air Traffic Control system reduced fatal accidents by 97% between 1960 and 2000.

• ref. Apt. et al 2004

- Changing the protection system to specifically ensure that the system solves the right problem:
 - Protect the systems ability to deliver energy to customers.
 - ref. Talukdar talk from Wed.