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Abstract

We formulate the contingency selection in the security-constrained optimal power flow prob-
lem as a multi-objective problem. By taking into account network configuration and transmis-
sion line reliability, our approach provides an expanded and improved set of solutions than the
conventional N-k criterion. This formulation involves solving mixed-integer nonlinear programs
with nonlinear constraints. Algorithms for this class of problems are designed and implemented.
Numerical examples including an IEEE 30-bus-41-line network are given to demonstrate the ef-
fectiveness of the formulation and the solution technique.

1 Introduction

Electric power is delivered to widely scattered customers through a three-tiered process. It is
first produced from a number of different types of generating units of varying capacities and
sizes. Transmission networks then carry large amounts of power over a long distance at a high
voltage level. From the transmission sources, distribution systems carry the load to a service
area by forming a fine network. Under a regulated set-up, these three functions are provided
by a given electric utility company which is responsible for supplying power over a specified
geographical area and has direct relationships with customers. Under deregulation, which is
becoming quite widespread all over the globe, electricity is traded like any other commodity,
and the producers and consumers have the option to buy and sell power in a marketplace
created to provide competition. Transmission networks can be viewed as consisting of nodes
(or buses) and links (or lines). Power is generated and/or consumed at the nodes, and the lines
connect these nodes. Electricity has two important characteristics that distinguish it from other
commodities. First, it cannot be economically stored. Thus, at every moment, there should be
sufficient generation to meet the demand (or load). Second, the amounts of power that flows
through the individual transmission lines corresponding to given amounts of injections (i.e., the
difference between generation and consumption) at each node cannot be set arbitrarily, but are
determined by the laws of physics. The maximum power flow that can be carried out over any
one line in a given network is also limited by the physical characteristics of the network, known
as the thermal limit.

During the last several years, different market structures have emerged but they all seem
to share the feature that the generation and transmission services are unbundled from each
other. Under all these schemes the generation services are competitive but the transmission
services remain a regulated monopoly that provides open access to the suppliers and consumers
of electricity. This latter function is provided by an impartial entity that is known as the
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Independent System Operator (ISO). We quote from Song et al. (2003), “The minimum functions
of the ISO should include the operation and coordination of the power system to ensure security,
... the maximum functions of the ISO will include all the reliability-related and market-related
functions...”

The term “system security” involves keeping the system operating when some components
fail. Even when a transmission network is operating within the physical limits, there always
remains the possibility that the individual lines may fail due to accidents, such as a lightning
strike, fire, falling trees, harsh weather, or even terrorism. The loss of a single transmission line
would change the power flows over the other operating lines, possibly exceeding the physical
limits. This might result in cascading failures or even collapse of the entire network. To prevent
such a catastrophic result, transmission networks are often operated conservatively so that the
system can withstand this kind of contingencies.

With the system security taken into account, a tradeoff between security and economic
benefit is inevitable. The more security the system requires, the more are the contingencies that
need to be considered, sacrificing more of the economic benefit. Conventionally, the tradeoff
is made using the N-k criterion (Ruff 2000), which requires the system to withstand those
contingencies in which up to k components have failed. For example, in the network operated
by the PJM 1 in the northeastern United States, k = 1. In some other instances 2, k = 2.

The optimal power flow (OPF) problem (Huneault and Galiana 1991) refers to the nonlinear
optimization problem used by the ISO to obtain the optimal amount of the power allocation at
various nodes so as to maximize economic benefit without violating any transmission constraint.
For different systems and problems, the OPF’s could bear different forms of objective functions
and constraints. In a security-constrained OPF, system security is enhanced by adding trans-
mission constraints under certain contingency scenarios. Under the N-k criterion, for example,
the contingency scenarios are those with at most k components failed.

In reality, however, the N-k criterion may not always provide a good tradeoff between security
and benefit. N-1 is sometimes not secure enough, while switching to N-2 or N-3 means too much
sacrifice in the benefit. Whereas N-1.5 does not make practical sense, a search for an intermediate
tradeoff has been widely considered (Clark 2004, Stott et al. 1987).

We make the point in this paper that the deficiency of the N-k criterion results from its
arbitrary choices of contingency scenarios, and more efficient selections of contingencies can be
made by taking into account the configuration of the network and the probabilities of individual
component failures. To focus on this point, we consider a DC lossless load flow model (Schweppe
et al. 1998), in which the transmission constraints reduce to a set of linear (in)equalities. The
DC load flow model has been found to be a good approximation to the more accurate AC load
flow model, and has been widely used when the thermal limit is the primary concern (Day et al.
2002, Hogan 1993). The contingencies we consider are the failures of transmission lines resulting
from uncertainty of the environment.

Various methodologies have been studied to deal with optimization problems involving un-
certainties, among which are stochastic programming and robust optimization. (See Birge and
Louveaux (1997) and Mulvey et al. (1995) for overviews of stochastic programming and robust
optimization, respectively.) We face two issues when trying to formulate this problem as a
stochastic programming problem. First, contingency selection is a preventive approach, which
means that no second stage decision is considered after the occurrence of contingency. Second,
stochastic programming does not generally allow infeasibility under any scenario. Smith et al.
(2004) used a penalty function to relax the absolute feasibility requirement, but the penalty is
simply assumed to be in proportion to the violation. Infeasibility is usually addressed in robust
optimization by chance constraints, in which the choice of infeasibility tolerance needs to be
specified exogenously. Mulvey et al. (1995) says that “RO [robust optimization] models are

1http://www.pjm.com
2House of Commons Trade and Industry Committee. Resilience of the National Elec-

tricity Network. Responses to the Committee’s Third Report of the Session 2003-04.
http://www.publications.parliament.uk/pa/cm200304/cmselect/cmtrdind/630/630.pdf
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parametric programs and we have no a priori mechanism for specifying a ‘correct’ choice of the
parameter.”

In view of the difficulties arising from the straightforward use of the above approaches,
we formulate the contingency selection in the security-constrained OPF problem as a multi-
objective optimization problem. Two conflicting objectives — economic benefit and system
security — are balanced using a parametric utility function. This approach not only answers
the question of which specific contingency scenarios the system should guard against so that
the benefit and security are balanced in the most efficient way, but also provides alternative
solutions for different security level requirements.

This multi-objective problem involves solving mixed-integer nonlinear programs with non-
linear constraints. Algorithms are designed and implemented to solve this class of problems.
Solutions given by this approach are seen to provide more and better tradeoffs than the N-k
criterion. We believe that our formulation along with the solution techniques given here provides
an additional perspective to deal with uncertainties in optimization problems.

A description of the security-constrained OPF problem is given in Section 2. Section 3
formulates it as a multi-objective optimization problem, and illustrates the advantages of this
formulation over the N-k criterion using a 5-bus-6-line example. We present the algorithms
for solving this multi-objective problem in Section 4, which is followed by their application to
a relatively large system (IEEE 30-bus-41-line network) in Section 5. Section 6 concludes the
paper. Appendices are also given to provide more details.

2 Problem Description

This section starts with an introduction and formulation to the OPF problem without security
constraints. Then the uncertainty of transmission line failures and how it affects the decision
making process are discussed.

2.1 Optimal Power Flow Problem

In an electricity transmission network, a set of nodesN located at different locations is connected
by a set of transmission lines L. The sets of nodes with demand for and supply of power are
denoted by C (consumption) and P (production), respectively. According to whether there is
demand for or supply of power, any node in N could belong to either C or P, or both, or neither.
Demand and supply functions are assumed to be linear and deterministic (Hobbs et al. 2000):

qc
n 7→ ac

n − bc
nqc

n, ∀n ∈ C,
qp
n 7→ ap

n + bp
nqp

n, ∀n ∈ P,

where qc
n and qp

n are the quantities (in MWh) of consumption and production of power, respec-
tively. ac

n, ap
n (in $/MWh) and bc

n, bp
n (in $/(MWh)2) are constant parameters.

The OPF problem we study here relates to that of the ISO who determines how much power
is to be consumed and produced at each node at a given hour in order to maximize the social
welfare, subject to the transmission constraints (Biggar 2003).

The benefit (social welfare) function B(·) is defined as the consumers’ gross surplus less
production cost (Chao and Peck 1996):

B(q) =
∑
n∈C

∫ qc
n

0

(ac
n − bc

nx) dx−
∑
n∈P

∫ qp
n

0

(ap
n + bp

nx) dx

=
∑
n∈C

[
ac

nqc
n −

1
2
bc
n (qc

n)2
]
−
∑
n∈P

[
ap

nqp
n +

1
2
bp
n (qp

n)2
]

,

where q =
[

qc

qp

]
.
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If a DC lossless network is assumed, then the transmission constraints can be linearized,
which include thermal and balancing constraints. Each transmission line l has a thermal limit
Tl, which is the maximum amount of power it can carry (in either direction) without causing
heat-related deterioration. The thermal constraints require that the power flow through each
transmission line should not exceed its thermal limit. The balancing constraint means that, with
power loss through transmission ignored, total power production should equal total consumption.

Unlike regular networks, power flows through the electricity network always obey Kirchhoff’s
laws (Biggar 2003): (i) For any node, the total amount of power flows going into and out of the
node are equal; and (ii) For any closed loop, the sum of directed power flows around the loop is
zero. Therefore, after ISO makes the decision about power production and consumption at each
node, the power flow through the entire network will be automatically determined by Kirchhoff’s
laws. A Power Transfer Distribution Factors (PTDF) matrix (Biggar 2003) is used to calculate
the power flow through each transmission line from the power production and consumption at
each node. In a DC network, the PTDF matrix is of size |L|×|N | (with one redundant column),
and is exclusively determined by the topology of the network and the physical characteristics
of the transmission lines (resistance and reactance) (Schweppe et al. 1998). Let H ∈ R|L|×|N|

denote the PTDF matrix, then the power flow through line l is∑
n∈C

Hl,nqp
n −

∑
n∈P

Hl,nqc
n.

Then the thermal constraints can be expressed as∣∣∣∣∣∑
n∈C

Hl,nqp
n −

∑
n∈P

Hl,nqc
n

∣∣∣∣∣ ≤ Tl, ∀l ∈ L.

The balancing constraint is ∑
n∈C

qc
n −

∑
n∈P

qp
n = 0.

(The details about the calculation of PTDF matrix and transmission constraint in a DC load
flow model are given in Appendix A.)

Therefore, the ISO’s OPF problem is:

max
q

B(q) =
∑
n∈C

[
ac

nqc
n −

1
2
bc
n (qc

n)2
]
−
∑
n∈P

[
ap

nqp
n +

1
2
bp
n (qp

n)2
]

(1)

s. t.

∣∣∣∣∣∑
n∈C

Hl,nqp
n −

∑
n∈P

Hl,nqc
n

∣∣∣∣∣ ≤ Tl, ∀l ∈ L (2)∑
n∈C

qc
n −

∑
n∈P

qp
n = 0 (3)

qc
n ≥ 0, ∀n ∈ C; 0 ≤ qp

n ≤ qp
n, ∀n ∈ P, (4)

where qp
n is the capacity of the generators at node n. Coefficients ac

n, bc
n, ap

n, bp
n and qp

n are
assumed to be non-negative and appropriately valued, so that the problem possesses an optimal
solution.

By rewriting constraint (2) as∑
n∈C

Hl,nqp
n −

∑
n∈P

Hl,nqc
n ≤ Tl, ∀l ∈ L∑

n∈C
Hl,nqp

n −
∑
n∈P

Hl,nqc
n ≥ −Tl, ∀l ∈ L,
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we can transform the OPF into a quadratic program with linear constraints, the matrix form
of which will be used throughout the remainder of this paper:

max
q

B(q) = c>q +
1
2
q>Qq

s. t. Aq ≤ b

q ∈ Rm
+ ,

where m = |C| + |P|, and vectors and matrices c, Q, A, and b are appropriately valued. Q
is a diagonal matrix with non-positive components, so this problem is a concave quadratic
maximization program.

2.2 Security-Constrained OPF

System security is the ability to withstand contingencies, in other words, to remain intact even
after outages or equipment failures occur (Shahidehpour et al. 2005). Security plays a crucial
role in the operation of a power system, but absolute system security can never be achieved.

There are two principal classes of methods to enhance the system security: preventive and
corrective methods. The former enables the system to be prepared for certain contingencies
beforehand, while the latter helps make quick and correct responses to the contingencies after
their occurrence. In this paper, we focus on the preventive method. To facilitate the analysis,
we make the following definitions and assumptions.

Transmission line failure

Each transmission line l can be in either of two states: working or failed. We define a binary
random variable Yl which assumes the value 1 when it is working and 0 otherwise. When a
line has failed, we assume it is no longer able to carry any power flow, and is physically off the
network.

Contingency scenarios: S
A contingency scenario s is defined as a binary vector (ys

1, ..., y
s
|L|) ∈ B|L| indicating the states

of transmission lines. Denote by S the complete set of scenarios. We have |S| = 2|L|.

Probability of scenario: ps

For any scenario s ∈ S and its corresponding transmission line state vector (ys
1, ..., y

s
|L|) ∈ B|L|,

the probability of scenario s is

ps := P
[
Y1 = ys

1, ..., Y|L| = ys
|L|

]
.

Appendix B provides a framework for computing these probabilities. Here we assume that
they are known constants. While a scenario with ps = 0 theoretically exists, one could safely
eliminate it from S. We assume throughout that ps > 0,∀s ∈ S. We also have

∑
s∈S ps = 1.

Transmission constraint: Asq ≤ bs

Every contingency scenario has its own network topology, and thus a unique PTDF matrix.
Therefore, the transmission constraints differ under different scenarios, even in dimension. For
any s ∈ S, we denote the set of constraints under scenario s by Asq ≤ bs. Also denote by rs the
number of rows of As.
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Scenario partition: S0(q) and S1(q)

For any fixed decision q ∈ Rm
+ , we partition the complete set of scenarios S into two subsets:

S0(q) := {s ∈ S : Asq > bs},

and
S1(q) := {s ∈ S : Asq ≤ bs}.

That is, S0(q) and S1(q) are the subsets of scenarios under which the decision q is infeasible
and feasible, respectively.

System infeasibility

After a decision q is made, some transmission lines may suffer an outage. When this happens,
the topology of the network is changed, and power flow through the entire network will then be
automatically re-routed according to the new network topology. Let ŝ denote the scenario that
corresponds to the new topology. If Aŝq > bŝ, or in words, if the re-routed power flow violates
the transmission constraints, then a system infeasibility occurs.

Infeasibility cost: Cs

In the multi-objective approach being proposed, we need an estimate of the cost associated with
system infeasibility, because it will affect decision making. Intuitively, the higher the infeasibility
cost, the more secure we would want the power system to be.

Under decision q and an infeasible scenario s ∈ S0(q), the benefit is assumed to be [B(q)−Cs],
where Cs is the infeasibility cost. The value of Cs is indeed random, because the consequences
of an overload, which indicates system infeasibility, vary from happy endings to catastrophes,
depending on the responses made afterwards. If the overload is quickly detected and all failed
transmission lines are repaired and restored to the network in time, the system simply gets back
on track, in which case Cs ≈ 0; on the other hand, if overload on one line is left unattended
for a long time, it could burn down and cause cascading failures of other lines, and eventually
lead to a system collapse or blackout, where Cs could be in the order of millions of dollars.
For simplicity, we assume that Cs > 0 is a known constant, representing an average value of
infeasibility cost under scenario s.

N-k criterion

In Section 2.1, the OPF problem assumes the best scenario (call it s0), under which all transmis-
sion lines are working, thus the PTDF matrix is derived according to the full network topology.
The optimal solution q∗ to (1), however, is only guaranteed to be “optimal” under s0. Should
any other scenario occur involving transmission line failure(s), q∗ might not even be feasible. To
enhance system security and reduce the risk of system infeasibility, additional contingency sce-
narios should be taken into account in the OPF problem. Nevertheless, considering all possible
scenarios to ensure absolute security is not a sensible proposition. As a matter of fact, under the
worst scenario, in which all transmission lines have failed, there is no feasible solution excepting
when the entire transmission system is left unused thus not creating any economic benefit.

Typically, the tradeoff between economic benefit and system security is made by considering
a pre-determined subset of scenarios using the N-k criterion, which requires the system to
withstand up to k out of N component failures.

Under the N-k criterion, the security-constrained OPF problem becomes

max
q

B(q) = c>q +
1
2
q>Qq

s. t. Asq ≤ bs, ∀s ∈ SN-k

q ∈ Rm
+ ,

6



where SN-k is the subset of scenarios with at most k transmission lines failed:

SN-k :=

{
s ∈ S :

∑
l∈L

ys
l ≥ |L| − k

}
.

While this criterion can effectively enhance system security by preventing system infeasibility
under certain contingencies, it has the following disadvantages:

1. Important information about the transmission line reliability and network topology is
disregarded. Thus, this criterion may be ignoring failures of some unreliable and critical
transmission lines, while considering possible failures of reliable and uncritical ones;

2. The difference between N-k and N-(k+1) may be significant, which means that there are
few or no intermediate choices between a secure but unbeneficial decision and a insecure
but beneficial one;

3. The cost of system infeasibility is not explicitly considered; and

4. Sometimes there may exist solutions that are both more beneficial and more secure than
those given by the N-k criterion.

3 Multi-Objective Formulation

In this section, we present a multi-objective formulation that will

1. Quantitatively take into account the probabilities of transmission line failures and topology
of the network, so that only the failures of the most unreliable and/or critical transmission
lines are considered;

2. Provide an expanded and improved set of solutions to the decision maker compared to
those of the N-k criterion;

3. Explicitly consider the tradeoff among benefit, infeasibility cost and risk of infeasibility;
and

4. Guarantee the optimality of solutions under a probabilistic criterion.

3.1 Formulations MOF1(α) and MOF2(α)

For any s ∈ S, a binary decision variable xs is introduced to indicate whether the contingency
scenario s should be considered to ensure the feasibility of q (xs = 1) or not (xs = 0). The
contingency selection is then determined by the following optimization program:

MOF1(α): max
x,q

αB(q) +
∑
s∈S

Cspsxs

s. t. Asq ≤ bs, if xs = 1, ∀s ∈ S
Asq > bs, if xs = 0, ∀s ∈ S (5)

x ∈ B|S|, q ∈ Rm
+ .

To explain the motivation behind this formulation, we first make the following definitions.

Definition. Define the feasibility function f(·) : B|S| 7→ [0, 1] as

f(x) :=
∑
s∈S

psxs.

For a given feasible solution (x, q) to MOF1(α), f(x) evaluates the system security in terms
of the probability that q is feasible. If ps is perceived as the expected proportion of time that
the system operates under scenario s, then f(x) gives the expected proportion of time that q is
feasible.
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Definition. Define the prevention function g(·) : B|S| 7→ [0, 1] as

g(x) :=
∑

s∈S Cspsxs∑
s∈S Csps

.

Prevention function is a cost weighted feasibility function. For a given feasible solution (x, q)
to MOF1(α), g(x) evaluates the system security in terms of the percentage of infeasibility cost
that is prevented by (x, q).

Definition. For any x ∈ B|S|, q ∈ Rm
+ , and α ∈ [0,∞), define the utility function as

Uα(x, q) := αB(q) +
∑
s∈S

Csps · g(x) = αB(q) +
∑
s∈S

Cspsxs.

Consider a feasible solution (x, q) to MOF1(α). Under a feasible scenario s ∈ S1(q), the
benefit is B(q); under an infeasible scenario s ∈ S0(q), the benefit is B(q)− Cs. If the ISO is a
risk-neutral decision maker, then his objective would be to maximize the expected benefit∑

s∈S1(q)

B(q)ps +
∑

s∈S0(q)

[B(q)− Cs]ps

= B(q)−
∑

s∈S0(q)

Csps

= B(q)−
∑
s∈S

Csps(1− xs)

= B(q)−

(∑
s∈S

Csps −
∑
s∈S

Cspsxs

)
,

which is equivalent to maximizing the utility function Uα(x, q) with α = 1. Notice that B(q)
is the definite benefit that one gets for certain, while

(∑
s∈S Csps −

∑
s∈S Cspsxs

)
depends on

the uncertain cost Cs that is incurred randomly. Therefore, we introduce the parameter α to
represent risk preferences of different decision makers over “hard” benefit and “soft” cost. Risk-
averse and risk-loving decision makers would prefer to maximize the utility function Uα(·, ·) with
0 ≤ α < 1 and α > 1, respectively. By maximizing the utility function with a decision-maker-
determined α, one gets the most efficient balance of benefit and risk. The optimal solution x∗

indicates the contingency selection decision, while q∗ gives the optimal power allocation in light
of the selected contingencies.

The optimal solutions to the utility functions with different α could be different. We define a
solution q to be utility-optimal if there exists an α ∈ [0,+∞) such that q is an optimal solution
to MOF1(α). In contrast, a solution is said to be dominated if it is not utility-optimal, because
for any α ∈ [0,+∞), there exists another solution that dominates it in the utility function. For
a specific power system at a given time, the ISO would have a fixed risk preference value of
α, thus the utility-optimal solution to MOF1(α) gives the best tradeoff for him. But the ISO
may not be aware of his value of α exactly, we thus set our goal to find the complete set of
utility-optimal solutions, and the range of α for each solution to remain optimum. A set of
utility-optimal solutions is said to be complete if for any α ∈ [0,+∞), there exists a solution in
the set that is optimal to MOF1(α). The complete set of utility-optimal solutions connected by
segments of utility functions will be referred to as the utility frontier. The ISO can thus choose
his favorite tradeoff from the utility frontier without exactly knowing his α beforehand, and he
also has the option of choosing different tradeoffs for different system requirements.

By relaxing the strict inequality (5), we get

MOF2(α): max
x,q

αB(q) +
∑
s∈S

Cspsxs

s. t. Asq ≤ bs, if xs = 1, ∀s ∈ S
x ∈ B|S|, q ∈ Rm

+ .
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Table 1: Node data of the 5-bus-6-line example
node demand function supply function

A N/A q 7→ 7 + 0.0452q, 0 ≤ q ≤ 210
B q 7→ 100− 0.2629q N/A
C q 7→ 100− 0.2550q q 7→ 23.51 + 0.0600q, 0 ≤ q ≤ 520
D q 7→ 100− 0.2333q q 7→ 15 + 0.1210q, 0 ≤ q ≤ 200
E N/A q 7→ 5 + 0.0092q, 0 ≤ q ≤ 600

The following proposition proves the equivalence of MOF1(α) and MOF2(α) under optimum.

Proposition 1. (x, q) is an optimal solution to MOF1(α) if and only if (x, q) is an optimal
solution to MOF2(α).

Proof. Let (x2, q2) be any optimal solution to MOF2(α). Then it suffices to prove that for all
s ∈ S, Asq2 ≤ bs ⇔ x2

s = 1 (and thus Asq2 > bs ⇔ x2
s = 0).

⇐: (x2, q2) is a feasible solution to MOF2(α).
⇒: Prove by contradiction. Suppose there exists a scenario s′ ∈ S such that As′q2 ≤ bs′

and xs′ = 0. Define x̂ ∈ B|S| as x̂s =
{

1, if Asq2 ≤ bs;
0, otherwise. ,∀s ∈ S, then (x̂, q2) is a feasible

solution to MOF2(α). Moreover, Uα(x̂, q2)− Uα(x2, q2) ≥ Cs′ps′xs′ > 0, which contradicts the
assumption that (x2, q2) is an optimal solution to MOF2(α).

3.2 Multi-Objective Formulation vs. the N-k Criterion

When the contingency selection x is pre-determined as

xs =
{

1, s ∈ SN-k,
0, otherwise,

MOF2(α) reduces to the security-constrained OPF problem under the N-k criterion, and it is
independent of α. Therefore, the N-k solutions are special feasible solutions to MOF2(α), but
not necessarily the optimal ones.

The difference between utility-optimal solutions and N-k solutions can be demonstrated with
the following example. Figure 1 is a 5-bus-6-line network example from PJM website 1, in which
N ={A, B, C, D, E}, C ={B, C, D}, P ={A, C, D, E}, L ={A-B, B-C, C-D, D-E, E-A, A-D}.
Details about the network parameters are given in Tables 1 and 2. There are 26 = 64 scenarios
in S. The probability of failure of a transmission line l, P (Yl = 0), is randomly generated
from a uniform distribution U(0,0.04). For computational simplicity, we assume that Yl’s are
independent, so that the probability of a scenario s can be conveniently obtained from

ps = P
(
Y1 = ys

1, ..., Y|L| = ys
|L|

)
=
∏
l∈L

P (Yl = ys
l ).

Infeasibility cost Cs is assumed to be

Cs = 10000
(

5−
∑

l∈L ys
l

|L|

)
,∀s ∈ S.

This example is solved using both the N-k criterion and the multi-objective approach. The
algorithms that we use to obtain the utility-optimal solutions will be given in Section 4.

The N-k and utility-optimal solutions are listed in Tables 3 and 4, respectively, and illustrated
in Figure 2. We can see that N-0, N-2 and N-3 coincide with utility-optimal solutions 1, 8 and
9, respectively, but N-1 is dominated. Utility-optimal solutions intermediate between N-0 and

9



Figure 1: A 5-bus-6-line network example

Table 2: Transmission line data of the 5-bus-6-line example
line line resistance reactance thermal limit probability

number R (Ω) X (Ω) (MWh) of failure
1 A-B 0 0.0281 377 0.2494%
2 B-C 0 0.0108 77 3.8443%
3 C-D 0 0.0297 223 1.9658%
4 D-E 0 0.0297 240 2.5701%
5 E-A 0 0.0064 360 0.5435%
6 A-D 0 0.0304 159 1.1895%

Table 3: N-k solutions of the 5-bus-6-line example
Solution f(x) g(x) B(q)

N-0 0.90032 0.68397 46,826
N-1 0.99762 0.99216 31,591
N-2 0.99998 0.99992 21,964
N-3 1.00000 1.00000 19,202
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Table 4: Utility-optimal solutions of the 5-bus-6-line example
Solution f(x) g(x) B(q) Range of α
number within which solution is optimal

1 0.90032 0.68397 46,826 0.8185 ≤ α
2 0.95437 0.85506 44,074 0.2978 ≤ α ≤ 0.8185
3 0.96586 0.89151 42,463 0.2623 ≤ α ≤ 0.2978
4 0.99615 0.98760 37,640 0.0186 ≤ α ≤ 0.2623
5 0.99735 0.99156 34,832 0.0184 ≤ α ≤ 0.0186
6 0.99932 0.99778 30,384 0.0080 ≤ α ≤ 0.0184
7 0.99978 0.99926 27,944 0.0015 ≤ α ≤ 0.0080
8 0.99998 0.99992 21,964 0.0004 ≤ α ≤ 0.0015
9 1.00000 1.00000 19,202 0 ≤ α ≤ 0.0004

Figure 2: Utility frontier of the 5-bus-6-line example
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N-1 and between N-1 and N-2 are also provided by this multi-objective approach. Connected
by segments of utility functions, the utility-optimal solutions are “optimal” in the sense that no
feasible solution exists beyond the frontier (in the increasing directions of both axes), while all
feasible solutions within the frontier are dominated.

The difference between f(x) and g(x) results from the different perspectives of risk evaluation
used in their definitions. Taking the first solution (x1, q1) as an example, f(x1) = 0.90032 means
that in about 90% of the time, q1 is feasible; while g(x1) = 0.68397 means that (x1, q1) prevents
about 68% of all expected infeasibility cost. The more Cs differ among scenarios, the more f(x)
and g(x) differ from each other. If Cs is independent of s, f(x) and g(x) become the same.

4 Solution Techniques

In this section, we give two algorithms. Algorithm 1 is for solving MOF2(α) for a specific value
of α, and algorithm 2 is for finding the complete set of optimal solutions on the utility frontier.
Effectiveness of these algorithms for larger systems will be demonstrated in Section 5 with an
IEEE 30-bus-41-line network example, in which a set of 862 scenarios is considered.

4.1 Preliminaries

Consider the following problem:

MOF3(α, d): max
x,q

αB(q) +
∑
s∈S

Csps · g(x)

s. t. Asq ≤ bs + (1− xs)ds, ∀s ∈ S
x ∈ B|S|, q ∈ Rm

+ ,

where, for all s ∈ S, ds is a parametric vector with the same dimension as bs, and d =

 d1

...
d|S|

.

Let (x2, q2) be an optimal solution to MOF2(α). Denote the set of optimal solutions to
MOF2(α) by

XQ2(α) := {(x, q) :αB(q) +
∑
s∈S

Csps · g(x) = αB(q2) +
∑
s∈S

Csps · g(x2),

Asq ≤ bs if xs = 1, ∀s ∈ S,

x ∈ B|S|, q ∈ Rm
+}.

Proposition 2. For any α ∈ [0,+∞), there exists a finite vector d(α) such that the following
inequality holds for all (x, q) ∈ XQ2(α):

Asq ≤ bs + (1− xs)ds(α), ∀s ∈ S.

Proof. Consider any α ∈ [0,+∞). Let (x0, q0) be any feasible solution to MOF2(α). Then the
following inequality is satisfied for all (x2, q2) ∈ XQ2(α):

αB(q2) +
∑
s∈S

Csps · g(x2) ≥ αB(q0) +
∑
s∈S

Csps · g(x0),

then

αB(q2) ≥ αB(q0) +
∑
s∈S

Csps · [g(x0)− g(x2)] ≥ αB(q0) +
∑
s∈S

Csps[g(x0)− 1],
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or equivalently

c>q2 +
1
2
(q2)>Qq2 ≥ B(q0) +

1
α

∑
s∈S

Csps[g(x0)− 1].

Now consider the following problem

max
q

as
i q (6)

s. t. c>q +
1
2
q>Qq ≥ B(q0) +

1
α

∑
s∈S

Csps[g(x0)− 1]

q ∈ Rm
+ ,

where as
i is the ith row of As. This problem is a linear program with quadratic constraints,

whose feasible region is a convex compact set, and thus has a finite optimal solution. Denote by
qs
i (α) the optimal solution to (6) corresponding to as

i . For all s ∈ S and i ∈ {1, ..., rs}, define

d̃s
i (α) := max{as

i q
s
i (α)− bs

i , 0}, (7)

then for all (x, q) ∈ XQ2(α), d̃s(α) satisfies

Asq ≤ bs + (1− xs)d̃s(α), ∀s ∈ S.

Proposition 3. For any α ∈ [0,+∞), (x, q) ∈ XQ2(α), and s ∈ S, let ds(α) satisfy

Asq ≤ bs + (1− xs)ds(α).

Then (x, q) ∈ XQ2(α) if and only if (x, q) is an optimal solution to MOF3(α, d).

Proof. ⇒: By the definition of d(α), for any (x2, q2) ∈ XQ2(α), (x2, q2) is feasible to MOF3(α, d).
(x2, q2) is also an optimal solution to MOF3(α, d), because any feasible solution to MOF3(α, d)
is also feasible to MOF2(α, d).

⇐: For any optimal solution (x3, q3) to MOF3(α, d), we know (x3, q3) is feasible to MOF2(α).
By the (⇒) part, we have

αB(q3) +
∑
s∈S

Csps · g(x3) = αB(q2) +
∑
s∈S

Csps · g(x2),

therefore, (x3, q3) is also an optimal solution to MOF2(α).

MOF3(α, d) has only linear constraints, and is thus more tractable than MOF2(α). By
proposition 3, we can solve MOF3(α, d) for a sufficiently large d to get the optimal solution to
MOF2(α). Proposition 2 guarantees the existence of a finite d, and the proof shows how to
obtain it.

4.2 Algorithm 1

Algorithm 1 is to find an optimal solution to MOF3(α, d) for a specific value of α ∈ [0,+∞).

Step 0. Select an error tolerance parameter δ ≥ 0.
Step 1. Solve for (η∗, x∗) to the master problem

(PM): max
η,x

αη +
∑
s∈S

Cspsxs

s. t. cuts, if any

η ∈ R+, x ∈ B|S|.

If (PM) is infeasible, then stop, and MOF3(α, d) is infeasible. Otherwise continue to step
2.

13



Step 2. Solve for (q∗, λ∗) to the subproblem

max
q

c>q +
1
2
q>Qq (8)

s. t. Asq ≤ bs + (1− x∗s)d
s : (λs), ∀s ∈ S

q ∈ Rm
+ ,

where, for all s ∈ S, λs ≥ 0 is the dual variable for its corresponding constraint. x∗ is the
optimal solution obtained in step 1.
If η∗ ≤ c>q∗ + 1

2 (q∗)> Qq∗ + δη∗, then stop; otherwise add the following cut to master
problem (PM) and go back to step 1:

η +
[(

d1
)> (

λ1
)∗

, ...,
(
d|S|

)> (
λ|S|

)∗]
x (9)

≤ c>q∗ +
1
2

(q∗)> Qq∗ +
[(

d1
)> (

λ1
)∗

, ...,
(
d|S|

)> (
λ|S|

)∗]
x∗.

Theorem 1. If the number of scenarios is finite, algorithm 1 finitely converges to an optimal
solution when it exists or proves the infeasibility of MOF3(α, d).

Proof. Notice that MOF3(α, d) is equivalent to the following problem

MOF4(α, d): max
η,x

αη +
∑
s∈S

Cspsxs

s. t. η ≤ B(x)

η ∈ R+, x ∈ B|S|,

where

B(x) = max
q∈Rm

+

{
c>q +

1
2
q>Qq : Asq ≤ bs + (1− xs)ds, ∀s ∈ S

}
.

Now consider the following problem:

β(x) = min
λ∈R

∑
s∈S rs

+ ,p∈Rm

{∑
s∈S

[bs + (1− xs)ds]> λs − 1
2
p>Qp :

∑
s∈S

(As)> λs −Qp ≥ c

}
.

By comparing the KKT conditions of B(x) and β(x), one can see that for any x0 ∈ B|S|, if q0 is
the optimal solution to B(x), then there exists an optimal solution (λ0, p0) to β(x) with p0 = q0,
and B(x0) = β(x0). Let (η0, x0) be any feasible solution to MOF4(α, d) and (λ0, p0) be the
optimal solution to β(x0). The following (in)equalities hold for any feasible solution (η, x) to
MOF4(α, d):

η ≤ B(x)
= β(x)

≤
∑
s∈S

[bs + (1− xs)ds]> (λs)0 − 1
2
(
p0
)>

Qp0

=
∑
s∈S

[
bs +

(
1− (xs)

0
)

ds
]>

(λs)0 − 1
2
(
p0
)>

Qp0 +
∑
s∈S

[
(xs)

0 − xs

]>
(λs)0

= β(x0) +
∑
s∈S

[
(xs)

0 − xs

]>
(λs)0

= B(x0) +
∑
s∈S

[
(xs)

0 − xs

]>
(λs)0

= c>q0 +
1
2
(
q0
)>

Qq0 +
[(

d1
)> (

λ1
)0

, ...,
(
d|S|

)> (
λ|S|

)0
]

(x0 − x),
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which justify constraint (9).
The finite convergence follows from the fact that there is a finite number of feasible solutions

x.

4.3 Algorithm 2

Algorithm 2 obtains all the optimal solutions on the utility frontier as the value of α varies
within [0,+∞).

Step 1. Solve for q∗ to the following problem

max
q

c>q +
1
2
q>Qq

s. t. Asq ≤ bs, ∀s ∈ S
q ∈ Rm

+ .

Set B = c>q∗ + 1
2 (q∗)> Qq∗ and g = 1.

Step 2. Set B = max
{
c>q + 1

2q>Qq : q ∈ Rm
+

}
and g =

∑
s∈S1(q∗) Csps/

∑
s∈S Csps.

Step 3. Define B =
{(

B,B
)}

, G =
{(

g, g
)}

, and U =
{
(B, g) ,

(
B, g

)}
.

Step 4. If B 6= ∅ and G 6= ∅, then
1. Let (B1, B2) and (g1, g2) be the first elements in B and G, respectively;
2. Calculate α =

∑
s∈S Csps(g2 − g1)/(B1 − B2), and determine a vector d accord-

ingly using (7);
3. Solve for an optimal solution (B∗

α, g∗α) to MOF3(α, d) using the algorithm in
Section 4.2;

4. If (B∗
α, g∗α) 6= (B1, g1) and (B∗

α, g∗α) 6= (B2, g2), then
B = B∪{(B∗

α, B1) , (B∗
α, B2)}, G = G ∪{(g∗α, g1) , (g∗α, g2)}, and U = U ∪ (B∗

α, g∗α);
5. B = B\(B1, B2), G = G\(g1, g2); and
6. Repeat step 4.

Otherwise stop, and U is the complete set of optimal solutions on the utility frontier.

Theorem 2. Algorithm 2 obtains a complete set of utility-optimal solutions.

Proof. First, algorithm 2 terminates finitely, because there is a finite number of feasible solutions
x. Suppose it terminates with N utility-optimal solutions: U = {(B1, g1), ..., (BN , gN )} with
B1 < · · · < BN and g1 > · · · > gN , where B and g represent the values of B(q∗) and g(x∗) in
MOF3(α, d), respectively. For all i, j ∈ {1, ..., N}, define αi,j =

∑
s∈S Csps(gj − gi)/(Bi −Bj).

We know that αi−1,i < αi,i+1,∀i = 2, ..., N − 1, because of utility-optimality of U .
Step 1 obtains the most conservative solution (B, g) = (B1, g1), which is optimal to MOF3(α, d)

for 0 ≤ α ≤ α1,2. Step 2 obtains the least conservative solution (B, g) = (BN , gN ), which is
optimal to MOF3(α, d) for α ≥ αN−1,N . We see from step 4(4) that, for all i = 2, ..., N − 1,
(Bi, gi) is optimal to MOF3(α, d) for both α = αi−1,i and α = αi,i+1.

Finally, show that for i = 2, ..., N − 1, (Bi, gi) is optimal to MOF3(α, d) for any α ∈
(αi−1,i, αi,i+1). As a matter of fact, for any (B̂, ĝ) ∈ R+ × [0, 1] and α̂ ∈ (αi−1,i, αi,i+1),
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we have (
α̂Bi +

∑
s∈S

Cspsgi

)
−

(
α̂B̂ +

∑
s∈S

Cspsĝ

)

=
αi,i+1 − α̂

αi,i+1 − αi−1,i

[(
αi−1,iBi +

∑
s∈S

Cspsgi

)
−

(
αi−1,iB̂ +

∑
s∈S

Cspsĝ

)]

+
α̂− αi−1,i

αi,i+1 − αi−1,i

[(
αi,i+1Bi +

∑
s∈S

Cspsgi

)
−

(
αi,i+1B̂ +

∑
s∈S

Cspsĝ

)]
≥ 0.

5 An IEEE 30-Bus-41-Line Network Example

The algorithms presented in Section 4 are implemented with MATLAB 7.0.4 3 and CPLEX
9.0 4, and are applied to the IEEE 30-bus-41-line example 5. The configuration of the network
is shown in Figure 3, and detailed node and transmission line data are given in Tables 5 and
6. The data are taken from Alsac and Stott (1973) and Hobbs et al. (2000). Probabilities
of transmission line failures are randomly generated from a uniform distribution U(0,0.015).
Infeasibility cost Cs is assumed to be

Cs = 1000
(

5−
∑

l∈L ys
l

|L|

)
,∀s ∈ S.

For a network of this size, a complete implementation of the algorithms is virtually impos-
sible. As a matter of fact, in this example, |L| = 41, |S| = 2|L| = 241 ≈ 2× 1012. Therefore, in
problem (PM), the number of variables is 241 + 1.

Instead of considering a complete set of scenarios S, here we consider a small subset of

scenarios S ′ where at most two transmission lines are failed. Then |S ′| =
∑2

i=0

(
41
i

)
= 862,

and
∑

s∈S′ ps = 0.99741. The prevention function is calculated within the subset of S ′, so in
this example

g(x) =
∑

s∈S′ Cspsxs∑
s∈S′ Csps

,

and it gives the percentage of expected infeasibility cost under contingencies S ′ that can be
prevented.

In both this example and the smaller one in Section 3.2, we have restricted ourselves to the
utility-optimal solutions that are feasible under at least one scenario. This is done by changing
B in algorithm 2 to

B = max
{

c>q +
1
2
q>Qq : As0

q ≤ bs0
, q ∈ Rm

+

}
.

By doing so, we eliminate the utility-optimal solution that is infeasible under all scenarios (even
the best one s0). While this solution is mathematically “optimal” for an extremely risk-loving
decision maker, it is practically unthinkable.

The N-k and utility-optimal solutions are listed in Tables 7 and 8, respectively, and illustrated
in Figure 4. N-0, N-1 and N-2 solutions coincide with utility-optimal solutions 1, 4 and 7,

3http://www.mathworks.com
4http://www.ilog.com
5http://www.ee.washington.edu/research/pstca/pf30/pg tca30bus.htm
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Figure 3: IEEE 30-bus-41-line network
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Table 5: Node data of the 30-bus-41-line example
node demand function supply function

1 N/A q 7→ 0 + 2.00q, 0 ≤ q ≤ 200
2 q 7→ 40− 0.2304q q 7→ 0 + 1.75q, 0 ≤ q ≤ 80
3 q 7→ 40− 2.0833q N/A
4 q 7→ 40− 0.6579q N/A
5 q 7→ 40− 0.0531q q 7→ 0 + 1.00q, 0 ≤ q ≤ 50
6 N/A N/A
7 q 7→ 40− 0.2193q N/A
8 q 7→ 40− 0.1667q q 7→ 0 + 3.25q, 0 ≤ q ≤ 35
9 N/A N/A
10 q 7→ 40− 0.8621q N/A
11 N/A q 7→ 0 + 3.00q, 0 ≤ q ≤ 30
12 q 7→ 40− 0.4464q N/A
13 N/A q 7→ 0 + 3.00q, 0 ≤ q ≤ 40
14 q 7→ 40− 0.8065q N/A
15 q 7→ 40− 0.6098q N/A
16 q 7→ 40− 1.4286q N/A
17 q 7→ 40− 0.5556q N/A
18 q 7→ 40− 1.5625q N/A
19 q 7→ 40− 0.5263q N/A
20 q 7→ 40− 2.2727q N/A
21 q 7→ 40− 0.2857q N/A
22 N/A N/A
23 q 7→ 40− 1.5625q N/A
24 q 7→ 40− 0.5747q N/A
25 N/A N/A
26 q 7→ 40− 1.4286q N/A
27 N/A N/A
28 N/A N/A
29 q 7→ 40− 2.0833q N/A
30 q 7→ 40− 0.4717q N/A
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Table 6: Transmission line data of the 30-bus-41-line example
line line resistance reactance thermal limit probability

number R (Ω) X (Ω) (MWh) of failure
1 1-2 0.0192 0.0575 130 1.4705%
2 1-3 0.0452 0.1852 130 0.4781%
3 2-4 0.0570 0.1737 65 0.9308%
4 3-4 0.0132 0.0379 130 0.2523%
5 2-5 0.0472 0.1983 130 0.7458%
6 2-6 0.0581 0.1763 65 0.4358%
7 4-6 0.0119 0.0414 90 0.8567%
8 5-7 0.0460 0.1160 70 1.0431%
9 6-7 0.0267 0.0820 130 1.2155%
10 6-8 0.0120 0.0420 32 1.2099%
11 6-9 0 0.2080 65 0.4767%
12 6-10 0 0.5560 32 1.0459%
13 9-11 0 0.2080 65 0.6875%
14 9-10 0 0.1100 65 1.2737%
15 4-12 0 0.2560 65 0.4532%
16 12-13 0 0.1400 65 0.9324%
17 12-14 0.1231 0.2559 32 0.2100%
18 12-15 0.0662 0.1304 32 0.2195%
19 12-16 0.0945 0.1987 32 0.6097%
20 14-15 0.2210 0.1997 16 0.7552%
21 16-17 0.0824 0.1932 16 0.1503%
22 15-18 0.1070 0.2185 16 0.2676%
23 18-19 0.0639 0.1292 16 0.5326%
24 19-20 0.0340 0.0680 32 0.2730%
25 10-20 0.0936 0.2090 32 0.5097%
26 10-17 0.0324 0.0845 32 0.9870%
27 10-21 0.0348 0.0749 32 1.0654%
28 10-22 0.0727 0.1499 32 0.9882%
29 21-22 0.0116 0.0236 32 0.6989%
30 15-23 0.1000 0.2020 16 0.4093%
31 22-24 0.1150 0.1790 16 1.0361%
32 23-24 0.1320 0.2700 16 0.2423%
33 24-25 0.1885 0.3292 16 0.6479%
34 25-26 0.2544 0.3800 16 0.9444%
35 25-27 0.1093 0.2087 16 0.4459%
36 28-27 0 0.3960 65 0.6801%
37 27-29 0.2198 0.4153 16 0.8327%
38 27-30 0.3202 0.6027 16 0.4581%
39 29-30 0.2399 0.4533 16 0.5680%
40 8-28 0.0636 0.2000 32 0.3078%
41 6-28 0.0169 0.0599 32 0.0647%
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Table 7: N-k solutions of the 30-bus-41-line example
Solution f(x) g(x) B(q)

N-0 0.97190 0.94017 2,312
N-1 0.99670 0.99834 1,826
N-2 0.99741 1.00000 1,431

Table 8: Utility-optimal solutions of the 30-bus-41-line example
Solution f(x) g(x) B(q) Range of α
number within which solution is optimal

1 0.97190 0.94017 2,312 24.7918 ≤ α
2 0.98098 0.96145 2,311 0.1503 ≤ α ≤ 24.7918
3 0.98998 0.98258 2,070 0.1109 ≤ α ≤ 0.1503
4 0.99670 0.99834 1,826 0.0939 ≤ α ≤ 0.1109
5 0.99714 0.99937 1,807 0.0238 ≤ α ≤ 0.0939
6 0.99728 0.99969 1,784 0.0015 ≤ α ≤ 0.0238
7 0.99741 1.00000 1,431 0 ≤ α ≤ 0.0015

Figure 4: Utility frontier of the 30-bus-41-line example
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respectively. For those ISO’s who plan to increase the system security from N-1 to a higher
level but are reluctant to use the N-2 criterion because of the marked drop in benefit, the utility
frontier provides two alternative solutions 5 and 6, which are more secure than N-1, and are
much more economically beneficial than N-2.

6 Conclusion

This paper has presented a multi-objective approach of contingency selection in the security-
constrained optimal power flow problem. This approach is able to provide an expanded and
improved set of tradeoffs between economic benefit and system security than the conventional
N-k criterion. The multi-objective formulation quantitatively evaluates the influence of each
contingency by taking into account the probabilities of transmission failures and network topol-
ogy, and it selects only the most critical contingencies to consider so that benefit and security
are balanced efficiently.

This approach also presents a new framework to deal with uncertainties in optimization
problems. It allows infeasibility under rare scenarios, and searches for different optimal tradeoffs
according to risk preferences. The algorithms given in this paper can also be applied to problems
outside the power industry that fit in the multi-objective framework.

One difficulty with this approach is the size of the networks that can be handled. For a
network with |L| transmission lines, the master problem (PM) will have 2|L| + 1 variables, thus
it is virtually impossible for the entire algorithms to be applied to large networks. However, as
the example in Section 5 has demonstrated, even if applied to only a small subset of scenarios
S ′ with

∑
s∈S′ ps close to 1, this approach still dominates the N-k criterion.

Appendix

A PTDF Matrix and Transmission Constraint Calculation

Once the net injection (power generation less consumption) into each node is determined, the
power flow through the electric network will be uniquely and automatically determined by
the laws of physics. The PTDF matrix H is used to calculate the power flow through each
transmission line. Given the generation and consumption at each node, the power flow through
line l can be calculated as∑

n∈N
Hl,n(qp

n − qc
n) =

∑
n∈C

Hl,nqp
n −

∑
n∈P

Hl,nqc
n.

In the DC load flow model, the PTDF matrix has a closed form expression (Schweppe et al.
1998):

H|L|×(|N |−1) = ΩA(A>ΩA)−1,

where Ω ∈ R|L|×|L| is the reactance-resistance matrix, and A ∈ R|L|×(|N |−1) is the reduced sized
arc-node incidence matrix. The original arc-node incidence matrix is a |L| by |N | matrix with a
column rank of |N |−1, thus an arbitrary column needs to be deleted from A, otherwise (A>ΩA)
will be a singular matrix. The PTDF matrix we get from the above formula has one less column
than |N |, to which we add a zero column to retrieve a size of |L| by |N |.
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The set of transmission constraints includes:∑
n∈C

Hl,nqp
n −

∑
n∈P

Hl,nqc
n ≤ Tl, ∀l ∈ L∑

n∈C
Hl,nqp

n −
∑
n∈P

Hl,nqc
n ≥ −Tl, ∀l ∈ L∑

n∈C
qc
n −

∑
n∈P

qp
n = 0

qp
n ≤ qp

n, ∀n ∈ P.

Take the 5-bus-6-line network as an example, in which

Ω = diag
[

Xl

R2
l + X2

l

]
=


35.5872 0 0 0 0 0

0 92.5926 0 0 0 0
0 0 33.6700 0 0 0
0 0 0 33.6700 0 0
0 0 0 0 156.2500 0
0 0 0 0 0 32.8947


and

A|L|×|N| =

A B C D E
A−B
B − C
C −D
D − E
E −A
A−D


1
0
0
0

−1
1

−1
1
0
0
0
0

0
−1

1
0
0
0

0
0

−1
1
0

−1

0
0
0

−1
1
0

 .

If we choose the column corresponding to bus E (this bus is called swing bus) in A|L|×|N| as the
redundant column, then the PTDF matrix under the best scenarios s0 is:

Hs0

|L|×|N| =

A B C D E
A−B
B − C
C −D
D − E
E −A
A−D


0.0344
0.0344
0.0344
0.1120

−0.8880
0.0776

−0.6354
0.3646
0.3646
0.2629

−0.7371
−0.1017

−0.5085
−0.5085

0.4915
0.3209

−0.6791
−0.1706

−0.1595
−0.1595
−0.1595

0.4805
−0.5195
−0.3600

0
0
0
0
0
0


,

22



and then the transmission constraint As0
q ≤ bs0

is

−0.6354 −0.5085 −0.1595 −0.0344 0.5085 0.1595 0
0.3646 −0.5085 −0.1595 −0.0344 0.5085 0.1595 0
0.3646 0.4915 −0.1595 −0.0344 −0.4915 0.1595 0
0.2629 0.3209 0.4805 −0.1120 −0.3209 −0.4805 0

−0.7371 −0.6791 −0.5195 0.8880 0.6791 0.5195 0
−0.1017 −0.1706 −0.3600 −0.0776 0.1706 0.3600 0

0.6354 0.5085 0.1595 0.0344 −0.5085 −0.1595 0
−0.3646 0.5085 0.1595 0.0344 −0.5085 −0.1595 0
−0.3646 −0.4915 0.1595 0.0344 0.4915 −0.1595 0
−0.2629 −0.3209 −0.4805 0.1120 0.3209 0.4805 0

0.7371 0.6791 0.5195 −0.8880 −0.6791 −0.5195 0
0.1017 0.1706 0.3600 0.0776 −0.1706 −0.3600 0

1 1 1 −1 −1 −1 −1
−1 −1 −1 1 1 1 1

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





qc
B

qc
C

qc
D

qp
A

qp
C

qp
D

qp
E


≤



377
77
223
240
360
159
377
77
223
240
360
159
0
0

210
520
200
600



.

To illustrate how the constraints differ under different scenarios, let us consider another
scenario s1, in which the two most unreliable lines B-C and D-E are failed. Under scenario s1,
the arc-node incidence matrix is

As1

|L|×|N| =

A B C D E
A−B
C −D
E −A
A−D


1
0

−1
1

−1
0
0
0

0
1
0
0

0
−1

0
−1

0
0
1
0

 ,

the PTDF matrix is

Hs1

|L|×|N| =

A B C D E
A−B
C −D
E −A
A−D


0
0

−1
0

−1
0

−1
0

0
1

−1
−1

0
0

−1
−1

0
0
0
0

 ,

and the transmission constraint As1
q ≤ bs1

is

−1 0 0 0 0 0 0
0 1 0 0 −1 0 0

−1 −1 −1 1 1 1 0
0 −1 −1 0 1 1 0
1 0 0 0 0 0 0
0 −1 0 0 1 0 0
1 1 1 −1 −1 −1 0
0 1 1 0 −1 −1 0
1 1 1 −1 −1 −1 −1

−1 −1 −1 1 1 1 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





qc
B

qc
C

qc
D

qp
A

qp
C

qp
D

qp
E


≤



377
223
360
159
377
223
360
159
0
0

210
520
200
600



.
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B Estimation of ps

Computationally, the probability of scenario ps can be obtained using the historical data of
transmission line states. We may consider a historical period of time [0, T ] for which transmission
reliability data is available. The states of transmission line l during this period can be regarded
as a continuous time binary stochastic process Yl(t). The probability of scenario s can be
estimated by the average expected proportion of the time during which the transmission lines
are in state (ys

1, ..., y
s
|L|) ∈ B|L|:

ps :=
1
T

∫ T

0

P
[
Y1(t) = ys

1, ..., Y|L|(t) = ys
|L|

∣∣∣Y1(0), ..., Y|L|(0)
]
dt.
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