Randy Schrieber, Gary Rackliffe, Le Tang, Zhenyuan Wang

The Future of Power System Monitoring and Control Applications

© ABB Group - 1 -10-Jan-06

- The objectives of the 21st century power system infrastructures and applications
- System monitoring
- Condition monitoring
- Wide area monitoring
- Real-time transmission capacity monitoring
- Control room applications

The 21st Century Power System

- The limitations:
 - The aging infrastructure
 - Most major apparatus are at the end of their designed life
 - Environmental concerns
 - The investment and the incentive for investment
- The trend (answer?)
 - Go green
 - Renewable energy distributed generation
 - Asset utilization push more, use/waste less
 - Asset management no waste/less disposal, defer investment
 - Smart grid
 - Monitoring system state, asset condition
 - Protection cascading outage prevention
 - Control energy market, asset utilization

System Monitoring

- Objective is system state (topology and power flow snapshot)
 - Generator dispatch and power flow control
 - Disturbance identification (Voltage instability, power oscillation, etc.)
- EMS/SCADA infrastructure and applications
 - PT, CT, PMU, RTU
 - Power flow, CB status
 - State estimation
- Fast simulation and modeling (FSM)
 - Faster than real-time
 - Accurate state estimation

Condition Monitoring

- Objective is asset condition
 - Incipient fault
 - Remaining life
 - Real-time ratings (power transformers and transmission lines)
- Infrastructure
 - Standalone systems
 - Advanced substation automation systems
- Characteristics
 - Data intensive
 - Knowledge intensive smart!!!
 - Information fragmentation and uncertainty

Wide Area Monitoring

- Objective is the marriage between system monitoring and part of condition monitoring
 - PMU based
 - Local voltage instability identification
 - Aid in state estimation improvement
 - Real-time transmission capacity estimation
- Integration with EMS/SCADA has benefit
 - Loose integration
 - Tight integration

Real-Time Transmission Capacity Monitoring

- Objective is for better utilization of transmission asset (power transformers and transmission lines) – green!
- Infrastructure and algorithms
 - Temperature monitoring
 - Load level monitoring
 - Transformer thermal modeling
 - Need a simple way of model setup
- Potential applications
 - A EMS software module to utilize the available transmission capacity in case of emergency?
 - What are the complications?
 - Legal, energy market pricing
 - What else need to be considered?
 - Risk
 - Long term impact on asset life

New Control Room Applications

- Optimal load flow control based on real-time transmission capacity monitoring
 - Trade-off between short term financial gain and long term reliability due to the loss of asset life
 - Consideration of technical, economical and political factors
- Wide area monitoring, protection and control
 - Prevent cascading outages (voltage instability)
 - Damp power oscillations
- Control room visualization techniques
 - Animation on GIS maps

#