Outline

A Multi-Objective Formulation of ISO's Optimal Power Flow Problem¹

Lizhi Wang and Mainak Mazumdar

University of Pittsburgh

January 12, 2006

Optimal Power Flow Problem Multi-Objective Formulation

Solution Techniques

Numerical Example

Optimal Power Flow Problem

Multi-Objective Formulation

Utility Function Frontier vs. "N-k" Solutions

An IEEE 30-Bus-41-Line Network

Solution Techniques

Numerical Example

General Formulations

A Nonlinear Optimization Problem

Optimal Power Flow Problem

Multi-Objective Formulation

A Multi-Objective Formulation

General Formulations

 Security Concerns Scope of This Paper

Multiple Objectives

Solution Techniques

Numerical Example

Specific α

Conclusion

Outline

- **Optimal Power Flow Problem**
 - General Formulations
 - Security Concerns
 - Scope of This Paper
- **Multi-Objective Formulation**
 - Multiple Objectives
 - A Multi-Objective Formulation
- **Solution Techniques**
 - Algorithm 1 : Obtaining The Optimal Solution For A
 - Algorithm 2 : Solving The Utility Function Frontier
- **Numerical Example**
 - An IEEE 30-Bus-41-Line Network
 - Utility Function Frontier vs. "N-k" Solutions

Decision Variables

Real/reactive power generation, voltage magnitude/angle, etc.

Algorithm 1 : Obtaining The Optimal Solution For A

Algorithm 2 : Solving The Utility Function Frontier

Objective Function

To minimize fuel costs/real power losses, or to maximize loadability, etc.

Constraints

Thermal limits, Kirchhoff's laws, balancing constraint, voltage constraints, stability requirements, etc.

¹Supported by National Science Foundation grant ECS-0245650

Security Concerns

Security Concerns

What Could Cause Component Failures?

- Lightning strike
- Fire
- Falling trees
- Harsh weather
- Overloading
- Terroristic vandalism

Cascading failure

What Could Happen If They Fail?

- Loss of load
- System collapse
- Blackout

Optimal Power Flow Problem

Multi-Objective Formulation

Solution Techniques

Numerical Example

Conclusion

Optimal Power Flow Problem

Scope of This Paper

Multi-Objective Formulation

Solution Techniques

Numerical Example

Conclusion

Security Concerns

Can We Eliminate The Risk?

Yes, but No

- A tradeoff between **benefit** and **risk** is virtually inevitable
- Competition makes the deregulated power market more susceptible to blackouts

How to Reduce The Risk?

- On the hardware side
 - Sufficient production capacity
 - Transmission grid upgrade
- On the software side
 - Ex ante planning (e.g., the conventional "N-k" criterion)
 - Emergency response capability

Improving the "N-k" Criterion

Weaknesses of "N-k" Criterion

- Arbitrariness, rule of thumb
- Important information is ignored: probabilities of transmission line failures, topology of the network, etc.
- Sometimes "N-1" not reliable enough, but "N-2" often too expensive

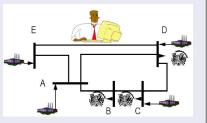
How To Improve "N-k" Criterion?

- Introduce utility function and probabilistic criteria for optimization
- Quantitatively take into account the probabilities of transmission line failures and network topology information
- Provide the class of optimal solutions

Assumptions On The ISO's OPF Problem

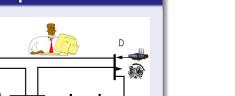
DC Lossless Transmission Network Setup

- A set of nodes \mathcal{N} connected by a set of lines \mathcal{L}
- Demand function: $q_n^c \mapsto a_n^c - b_n^c q_n^c, \ \forall n \in \mathcal{C} \subseteq \mathcal{N}$
- Supply function: $q_n^p \mapsto a_n^p + b_n^p q_n^p, \ \forall n \in \mathcal{P} \subseteq \mathcal{N}$



Independent System Operator (ISO)

- Determines consumption q_n^c and production q_n^p at each node $n \in \mathcal{N}$
- To maximize a benefit (social welfare) function B(q)
- Subject to linearized thermal and balancing constraints



Solution Techniques

Numerical Example

Multi-Objective Formulation

Solution Techniques

Scope of This Paper

Contingency Scenario Considerations

Only Consider Transmission Line Failures

- Every transmission line has two states: working or failed
- Denote as S the complete set of scenarios in terms of transmission line availabilities, then $|S| = 2^{|\mathcal{L}|}$
- For all $s \in S$, denote as p_s the probability for scenario s to occur, then $\sum_{s \in S} p_s = 1$
- Denote as $A^s q \leq b^s$ the set of constraints under scenario s

OPF Formulation

Scope of This Paper

$$\max_{q} \quad B(q) = \sum_{n \in \mathcal{C}} \left[a_{n}^{c} q_{n}^{c} - \frac{1}{2} b_{n}^{c} \left(q_{n}^{c} \right)^{2} \right] - \sum_{n \in \mathcal{P}} \left[a_{n}^{p} q_{n}^{p} + \frac{1}{2} b_{n}^{p} \left(q_{n}^{p} \right)^{2} \right]$$

s.t.
$$\left| \sum_{n \in \mathcal{C}} PTDF_{I,n} q_n^c - \sum_{n \in \mathcal{P}} PTDF_{I,n} q_n^D \right| \le C_I, \ \forall I \in \mathcal{L}$$
$$\sum_{n \in \mathcal{C}} q_n^c - \sum_{n \in \mathcal{P}} q_n^D = 0$$

$$q_n^c \ge 0, \ \forall n \in \mathcal{C}; \ 0 \le q_n^p \le \overline{q_n^p}, \ \forall n \in \mathcal{P}.$$

Matrix Form

$$\max_{q \in \mathbb{R}_+^m} \left\{ B(q) = c^ op q + rac{1}{2} q^ op Qq : Aq \leq b
ight\}$$

Outline

- **Optimal Power Flow Problem**
 - General Formulations
 - Security Concerns
 - Scope of This Paper
- **Multi-Objective Formulation**
 - Multiple Objectives
 - A Multi-Objective Formulation
- **Solution Techniques**
 - Algorithm 1 : Obtaining The Optimal Solution For A
 - Algorithm 2 : Solving The Utility Function Frontier
- **Numerical Example**
 - An IEEE 30-Bus-41-Line Network
 - Utility Function Frontier vs. "N-k" Solutions

To Maximize Social Welfare

To Minimize Risk

OPF Under The Best Scenario s^0

$$\max_{q \in \mathbb{R}_+^m} \left\{ B(q) = c^ op q + rac{1}{2} q^ op Qq : A^{s^0} q \leq b^{s^0}
ight\}$$

Problem: Too Risky

- Objective value $B(q^*)$ is large, but optimal solution q^* is only guaranteed to be feasible under s^0
- Should some lines fail during power transmission, q* could become infeasible, and the system would have to be shut down

OPF Under All Possible Scenarios

$$\max_{q \in \mathbb{R}_+^m} \left\{ \textit{B}(q) = \textit{c}^\top q + \frac{1}{2} \textit{q}^\top \textit{Q} \textit{q} : \textit{A}^{\textit{s}} \textit{q} \leq \textit{b}^{\textit{s}}, \forall \textit{s} \in \mathcal{S} \right\}$$

Problem: Too Conservative

- There is zero risk of infeasibility, but objective value is too small
- In fact, the entire transmission network is then idle

Optimal Power Flow Problem

Multi-Objective Formulation

Solution Techniques

Numerical Example Co

sion Opti

A Multi-Objective Formulation

Multi-Objective Formulation

Solution Techniques

Numerical Example

Conclusion

Multiple Objectives

How Does "N-k" Criterion Balance These Objectives?

Formulation and Explanation

"N-k" Criterion

$$\max_{q \in \mathbb{R}_+^m} \left\{ B(q) = c^ op q + rac{1}{2} q^ op Qq : A^s q \leq b^s, orall s \in \mathcal{S}^\mathsf{N-k}
ight\}$$

where $\mathcal{S}^{\text{N-k}}$ is the subset of scenarios with at most k out of N lines failed

Problem: Selection of Scenarios May Be Inefficient

- Considering failures of reliable and/or uncritical lines, and
- Ignoring failures of unreliable and/or critical lines

$$\max_{x \in \mathbb{B}^{|\mathcal{S}|}, q \in \mathbb{R}^m} \left\{ f(x) B^{\alpha}(q) : A^{s} q \leq b^{s} \text{ if } x_{s} = 1, \forall s \in \mathcal{S} \right\}$$

- For all $s \in S$, binary decision variable x_s indicates whether scenario s should be considered ($x_s = 1$) or not ($x_s = 0$)
- $f(x) = \sum_{s \in S} p_s x_s$ is a feasibility function
- $f(x)B^{\alpha}(q)$ is a utility function
- \bullet α is a risk preference parameter
 - $\alpha = 1$: risk neutral
 - $0 \le \alpha < 1$: risk averse
 - 1 < α < $+\infty$: risk loving

A Multi-Objective Formulation

A Multi-Objective Formulation

Multi-Objective Formulation vs. "N-k" Criterion

Multi-Objective Formulation vs. "N-k" Criterion: A Small Example

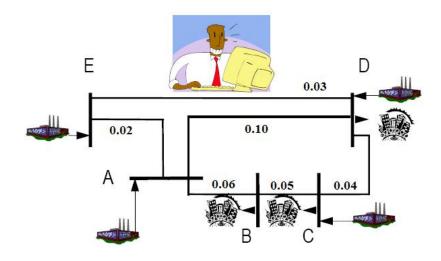
Multi-Objective Formulation

$$\max_{x \in \mathbb{B}^{|\mathcal{S}|}, q \in \mathbb{R}^m} \left\{ \left(\sum_{s \in \mathcal{S}} p_s x_s \right) B^{\alpha}(q) : A^s q \leq b^s \text{ if } x_s = 1, \forall s \in \mathcal{S} \right\}$$

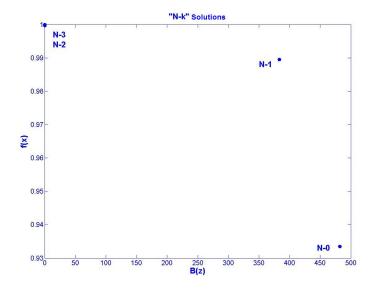
"N-k" Criterion

$$\max_{q \in \mathbb{R}_+^m} \left\{ \textit{B}(q) : \textit{A}^{\textit{s}}q \leq \textit{b}^{\textit{s}}, orall \textit{s} \in \mathcal{S}^{\mathsf{N-k}}
ight\}$$

where $\mathcal{S}^{\text{N-k}}$ is the subset of scenarios with at most k out of N lines failed

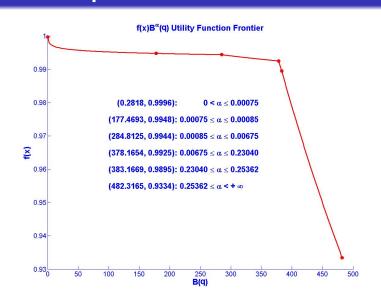


Multi-Objective Formulation vs. "N-k" Criterion: A Small Example

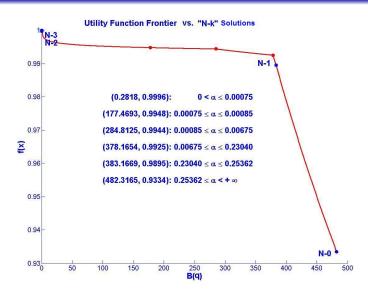


Solution Techniques

Multi-Objective Formulation



Multi-Objective Formulation vs. "N-k" Criterion: A Small Example



Solution Techniques

Numerical Example

Outline

- **Optimal Power Flow Problem**
 - General Formulations
 - Security Concerns
 - Scope of This Paper
- **Multi-Objective Formulation**
 - Multiple Objectives
 - A Multi-Objective Formulation
- **Solution Techniques**
 - Algorithm 1 : Obtaining The Optimal Solution For A Specific α
 - Algorithm 2 : Solving The Utility Function Frontier
- **Numerical Example**
 - An IEEE 30-Bus-41-Line Network
 - Utility Function Frontier vs. "N-k" Solutions

Multi-Objective Formulation

Solution Techniques

Numerical Example

Algorithm 2: Solving The Utility Function Frontier

Algorithm 1 : Obtaining The Optimal Solution For A Specific α

- $\max_{x \in \mathbb{B}^{|\mathcal{S}|}, q \in \mathbb{R}^m} \left\{ f(x) B^{\alpha}(q) : A^{s} q \leq b^{s} \text{ if } x_{s} = 1, \forall s \in \mathcal{S} \right\}$
- **1** Solve for (η^*, x^*) to the master problem:

(PM):
$$\max_{\eta \in \mathbb{R}_+, x \in \mathbb{B}^{|\mathcal{S}|}} \left\{ f(x) \eta^{\alpha} : \text{ cuts, if any } \right\}.$$

2 Solve for q^* to the subproblem:

$$(\mathsf{PS}) \colon \max_{q \in \mathbb{R}^m} \left\{ B(q) : A^{\boldsymbol{s}} q \leq b^{\boldsymbol{s}} + (1 - x_{\boldsymbol{s}}^*) d, \forall \boldsymbol{s} \in \mathcal{S} \right\}.$$

3 If $\eta^* \leq B(q^*)$, then stop, and (η^*, x^*) is the utility function optimal solution for α . Otherwise add the following cut to (PM) and go back to step 1:

$$\eta + (\mathbf{d} \otimes \lambda^*)^{\top} \mathbf{x} \leq \mathbf{B}(\mathbf{q}^*) + (\mathbf{d} \otimes \lambda^*)^{\top} \mathbf{x}^*.$$

- Obtain $(\underline{B}, \overline{f})$ and $(\overline{B}, \underline{f})$.
- 2 Define $\mathcal{B} = \left\{ \left(\underline{B}, \overline{B} \right) \right\}$, $\mathcal{F} = \left\{ \left(\overline{t}, \underline{t} \right) \right\}$, and $\mathcal{P} = \left\{ \left(\underline{B}, \overline{t} \right), \left(\overline{B}, \underline{t} \right) \right\}$.
- **1** If $\mathcal{B} \neq \emptyset$ and $\mathcal{F} \neq \emptyset$, then
 - Let (B_1, B_2) and (f_1, f_2) be the first elements in \mathcal{B} and \mathcal{F} , respectively:
 - Calculate $\alpha = (\log f_2 \log f_1)/(\log B_1 \log B_2)$;
 - Solve for an optimal solution $(B_{\alpha}^*, f_{\alpha}^*)$;
 - If $(B_{\alpha}^*, f_{\alpha}^*) \neq (B_1, f_1)$ and $(B_{\alpha}^*, f_{\alpha}^*) \neq (B_2, f_2)$, then set $\mathcal{B} = \mathcal{B} \cup \{(B_{\alpha}^*, B_1), (B_{\alpha}^*, B_2)\}, \mathcal{F} = \mathcal{F} \cup \{(f_{\alpha}^*, f_1), (f_{\alpha}^*, f_2)\},$ and $\mathcal{P} = \mathcal{P} \cup (B_{\alpha}^*, f_{\alpha}^*);$
 - Set $\mathcal{B} = \mathcal{B} \setminus (B_1, B_2)$, $\mathcal{F} = \mathcal{F} \setminus (f_1, f_2)$; and
 - repeat step 3.

Otherwise stop, and \mathcal{P} is the set of optimal solutions on the utility function frontier.

An IEEE 30-Bus-41-Line Network

Outline

- **Optimal Power Flow Problem**
 - General Formulations
 - Security Concerns
 - Scope of This Paper
- **Multi-Objective Formulation**
 - Multiple Objectives
 - A Multi-Objective Formulation
- **Solution Techniques**
 - Algorithm 1 : Obtaining The Optimal Solution For A
 - Algorithm 2 : Solving The Utility Function Frontier
- **Numerical Example**
 - An IEEE 30-Bus-41-Line Network
 - Utility Function Frontier vs. "N-k" Solutions

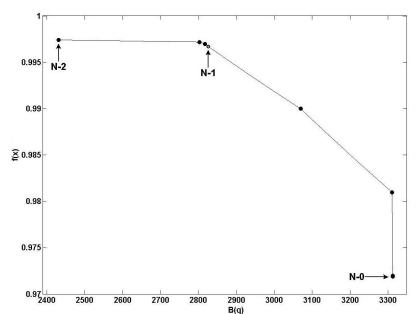
- 6 supply buses and 21 demand buses
- Probabilities of transmission line failures randomly generated from a uniform distribution U(0, 0.015)



Solution Techniques

Numerical Example

Conclusion



Outline

Optimal Power Flow Problem

Multi-Objective Formulation

- General Formulations
- Security Concerns
- Scope of This Paper
- **Multi-Objective Formulation**
 - Multiple Objectives
 - A Multi-Objective Formulation
- **Solution Techniques**
 - Algorithm 1 : Obtaining The Optimal Solution For A
 - Algorithm 2 : Solving The Utility Function Frontier
- **Numerical Example**
 - An IEEE 30-Bus-41-Line Network
 - Utility Function Frontier vs. "N-k" Solutions
- Conclusion

Conclusion

Contributions

- The multi-objective formulation proposes a new methodology to deal with uncertainties in optimization problems
- The utility function frontier provides **more** and **better** tradeoffs than the "N-k" criterion

Future Research

- Further improving algorithms
- Applying methodology to larger networks