Synchronized Phasor Measurements for Response-Based One-Shot Control

Steven M. Rovnyak Indiana University - Purdue University Indianapolis

Kejun Mei Purdue University, West Lafayette

Second Carnegie Mellon Conference in Electric Power Systems, Pittsburgh, PA, Jan. 11-12, 2006.

Automate Design of Wide-Area Stability Controls

- Uses large amounts of simulation data to develop the controls
- Uses pattern recognition tools such as decision trees and neural networks
- Not necessarily optimal
- Demonstrate net improvement

Work in Progress

 Present results that use R-Rdot
Kejun Mei, and S.M. Rovnyak, "Response-Based Decision Trees to Order Stabilizing Control," *IEEE Transactions on Power Systems*, pp. 531-537, February 2004

Plan results that use PMUs – Kejun Mei

One-Shot Stability Control

Open-loop discrete-event
Feed-forward discontinuous
Many controls one-shot by nature generator tripping load shedding

Other controls maybe one-shot by design: HVDC fast power changes

Event-Based Control

Event-based controls very common: Remedial action schemes (RAS)

- Controls are predetermined for specific events through off-line simulation
- Typically consist of generator tripping and reactive switching
- Load shedding also possible

Simulations for Response-Based Control

Converting Simulations to Input-Output Pairs

- PACI = Tesla phase angle John Day phase angle
- Input Vector = { R , Rdot }
- Desired Output = Trip if PACI < 120</p>

<u>Time</u>	R	Rdot	PACI	Desired Output
4.833	17.64	-26.77	-112.10	0 (No Action)
4.850	16.89	-44.70	-114.16	0 (No Action)
4.867	16.16	-44.02	-116.32	0 (No Action)
4.883	15.40	-45.51	-118.59	0 (No Action)
4.900	14.58	-48.93	-120.99	1 (Take Action)
4.917	13.84	-44.50	-123.51	1 (Take Action)
4.933	12.72	-64.78	-126.16	1 (Take Action)

Training Data for Response-Based Control

Decision Region for Response-Based Control

Decision Region for Response-Based Control

Different Regions for Different Purposes

Kejun Mei, and S.M. Rovnyak, "Response-Based Decision Trees to Order Stabilizing Control," *IEEE Transactions on Power Systems*, February 2004

Trajectories with and without Control

Step 1: Train DT to Detect or Predict Stability

- Run training simulations
- Convert data to input-output pairs
- Each input vector represents a simulated measurement instant
- Desired output = 0 or 1 depending on stability at the measurement instant

Step 1: Train DT to Detect or Predict Stability

- Specify relative misclassification costs for DT training software
- Affect the relative number of errors
 - Errors when desired output = 1
 - Errors when desired output = 0
- Affect size of the decision region
- Choose parameter values & train DT

Step 2: Find a good combinations of controls

- Choose one specific combination of one shot controls (lets call this a "Trial Combo")
- Re-run training simulations
- Trigger the "Trial Combo" the first time during a simulation that a set of measurements results in a DT output 1 (Take Action)
- Choose different "Trial Combo" and repeat

Step 2: Find a good combinations of controls

- Each "Trial Combo" evaluated over all the training simulations
- Objective function approach
 - Add 1 point for each simulation stabilized by the control
 - Subtract 3 points for each simulation destabilized by the control

Step 2: Find a good combinations of controls

- Combinatorial search for the best "Trial Combo" is time consuming when considering different control amounts like how many MW of load to trip
- Would like to try changing the amounts of several controls between "Trial Combos"
- In any case, settle on the best "Trial Combo" in Step 2 and call it "The Final Control Combination"

Step 3: Evaluate DT to Trigger "The Final Control Combo" on New Simulations

Run a test set of simulations

- Trigger the "The Final Control Combo" the first time during a simulation that a set of measurements results in a DT output 1 (Take Action)
- Evaluate results over all the test simulations

Simulation Study

176-bus simplified model of WECC

- 29 generator buses
- 385 training simulations
- 1600 test set simulations
- Wide variety of events in simulations
 - Various fault locations and durations
 - Single line to ground and 3 phase faults
 - Double contingency outages

Simulation Study

R-Rdot measured middle of PACI

- Final Control Combo consists of three simultaneous one-shot controls
- In 2 HVDC fast power changes and one generator tripping = "3-Bang control"
- "Take Action" in 116 of 385 train sims
- "Take Action" in 491 of 1600 test sims

Stability Criterion is Loss of Synchronism Across PACI

Control in 116 train simulations
Control in 491 test simulations

	Train Set	Test Set
Stabilized	46	253
Stable	61	185
Unstable	9	53
Destabilized	0	0

Stability Criterion is Network-Wide Synchronism

PACI Angle Still Used as Stability Criterion for Step 2 Objective Function

	Train Set	Test Set
Stabilized	5	19
Stable	59	103
Unstable	52	369
Destabilized	0	0

Step 2 Objective Function is PACI Synchronism

	Train Set	Test Set
Stabilized Over PACI	46	253
Stabilized Network-Wide	5	19

Step 2 Objective Function is Network-Wide Synchronism

	Train Set	Test Set
Stabilized Over PACI	10	74
Stabilized Network-Wide	17	1

Comparison

PACI Objective	Train Set	Test Set
PACI Stabilized	46	253
Net-Wide Stabilized	5	19

Network-wide Objective	Train Set	Test Set
PACI Stabilized	10	74
Net-Wide Stabilized	17	1

Extension to Synchronized Phasor Measurements

Input vector contains phase angle measurements and rates of change Desired output = "Take Action" if any generator losing synchronism - i.e. network-wide stability Objective function in Step 2 is network-wide stability

Extension to Synchronized Phasor Measurements

Hope to use large-scale simulation Hope to vary multiple parameters while searching the space of "Trial Combos" like gradient descent May use continuous objective function $J = \int_{0}^{\infty} \sum_{i} \frac{1}{M_{total} T} M_{i} \left(\delta_{i}(t) - \delta_{coa}(t)\right)^{2} dt$

Extension to Synchronized Phasor Measurements

ISGA reference

- Guang Li, and S.M. Rovnyak, "Integral Square Generator Angle Index for Stability Ranking and Control," *IEEE Trans on Power Systems*, May 2005
- Gradient descent to find combo of one-shot controls for one event
- Straightforward adaptation to use gradient descent for multiple events