System Reliability and Price Responsiveness of Residential Loads

Hyungna Oh and Stratford Douglas Department of Economics

Asawari Moholkar and Powsiri Klinkhachorn Lane Department of Computer Science & Electrical Engineering

West Virginia University / Advanced Power & Electricity Research Center (WVU / APERC)

2nd Carnegie Mellon Conference in Electric Power Systems January 12, 2006

Outline of Talk

Computer-Aided Home Energy Ι. **Management System (CAHEM)** A. CAHEM Design B. Simulations of its Effects on Load Market and System Effects of Residential Н. **Sector Price-Responsiveness** A. Effect if Supplier Behavior is Unchanged **B. Effect of PRRL on Behavior of Suppliers C. Multi-Agent Simulation of Market D.** Assessment of Net Effects on Market: **1. Price Levels** 2. Reserve Margin

Computer Aided Home Energy Management

Increased Customer Choice

CAHEM Block Diagram

Load Models – Air Conditioner

'Cooling Load' is the thermal energy that must be removed from the interior of a house in order to maintain desired comfort conditions, specified by interior dry-bulb temperature.

 Dynamic cooling load calculations to characterize the effects of thermostat setback/setup
 Hourly cooling load calculations

Assumptions:

- Single-family detached house with single
 cooling zone with uniform room temperature
- No humidity control
- Each component of a house envelope (including walls, roof, and windows) is uniform
- No independent thermal storage

* Specified by American Society for Heating Refrigerating and Air-Conditioning Engineers (ASHRAE)

Fuzzy Logic Load Control

Fuzzy Rules

- 1. If load is high, then the thermostat setting is at desired.
- 2. If *load* is *medium* and *price* is *high*, then the *thermostat setting* is at *desired*.
- 3. If load is low and price is high, then the thermostat setting is at desired.
- 4. If *load* is *medium* and *price* is *not high*, then the *thermostat setting* is *cool*.
- 5. If *load* is *low* and *price* is *low*, then the *thermostat setting* is *cool*.
- 6. If load is low and price is lower, then the thermostat setting is cooler.

Simulation Data

Pennsylvania-New Jersey-Maryland (PJM) Market

Simulation Duration:

June 1,1999 – August 31, 1999

Generation Capacity: 55 GW

Price Duration Curve

Offer Curve

Individual House-Level Results

Hour-Ahead Notification

Peak Load Reduction

Impact of PRL on Supplier Offer Strategy

$$\max_{P} P \cdot [D(P,e) - S^{j}(P)] - C(D(P,e) - S^{j}(P))$$

Optimum Offer: $P = C'(\cdot) + \frac{Q_i}{S'^j(P) - D'(P,e)}$, where $D'(P) \le 0$

PRL \rightarrow D'(P) < 0 \rightarrow optimum offer Price decreases. So, PRL mitigates suppliers' mark-up pricing behavior

How Does PRL Affect Capacity Withholding Behavior? –
1) Reduces Market Power → Less Price Manipulation
2) PRL Decreases Price Spikes (and Expected Revenues)
→ More Generation Withheld due to Standby Costs.

Multi-Agent Simulation

Supplier Agent Learning and Decision Algorithms

Last market outcome

Multi-Agent Market Simulation Scenarios

Base Scenarios	E0: Perfectly Competitive Market					
occitatios	E1: Oligopolistic Base Scenario					
PRL Scenarios	E2: Naive	Suppliers	E3: Strategic Suppliers			
	\$500 Threshold Price	\$300 Threshold Price	\$500 Threshold Price	\$300 Threshold Price		
Low PRL Penetration (20%)	S21	S22	S31	S32		
High PRL Penetration (40%)	S23	S24	S33	S34		

Simulation: PRL Management Reduces Load

Simulation Results: Effect of PRL on Price Spikes

Naive Suppliers (E2)

Strategic Suppliers (E3)

Simulation Results

Prices, Spikes, and Reserve Margins

Summary and Conclusions

A Residential PRL System Can:

- Reduce price spikes
- Reduce Average Prices
- Improve Reliability
- But . . .
- Rational Sellers Will React to PRL by Reducing Generation Capacity Availability
 - Strategic Response Reduces Benefits of PRL Program
 - Price spikes, low capacity margins return (though weaker)
- Penetration Rates and Aggressiveness of Price Responsiveness Affect this Tradeoff
- Decline in Local Generation Capacity Availability May Increase Stress on Transmission System, Despite Lower Overall Loads

Policy Conclusions

- Initiate Price-Responsive Reactions at Relatively Low Prices.
- Carefully Monitor Aggressive PRL Programs for Seller Response.
- Sellers May Respond to PRL by Reducing Capacity Offers (Decline in Local Supply).
- Decline in Local Supply May Increase Stress on Transmission System, Despite Lower Overall Loads.
- Current Real-World PRL programs are unlikely to do much harm (or good) because of low penetration rates.

Preliminary MAS Simulation Results

		Ave_Load (GW)	Ave_Price (\$/MWh)	% of time w/ Price Spikes >\$300/MWh	% of time w/ Reserve Margin <10%	Avg_Cost \$million (** compared to E1)
Actual		34.0	53.7	3.5	N.A.	4,031
E0 (Efficient case:No PRL)		34.0	26.6	0.0	0.0	1,997
E1 (Base case:No PRL)		34.0	94.7	5.9	13.1	7,109
E2: PRL, Naïve Sellers	S21 (0.2, \$500) Low-Pen, Modest	33.5 (-1.5%)**	57.0 (-39.8%)**	0.5 (-90.8%)**	11.5 (-12.8%)**	4,216 (-40.7)**
	S22 (0.2, \$300) Low-Pen, Aggressive	33.5 (-1.5%)**	54.5 (-39.8%)**	0.0 (-100%)**	11.5 (-12.4%)**	4,031 (-43.3%)**
	S23 (0.4, \$500) Hi-Pen, Modest	33.4 (-1.8%)**	57.0 (-42.5%)**	0.5 (-90.8%)**	11.5 (-12.8%)**	4,204 (-40.9%)**
	S24 (0.4, \$300) Hi-Pen, Aggressive	33.4 (-1.8%)**	54.3 (-42.7%)**	0.0 (-100%)**	11.5 (-12.4%)**	4,004 (-43.7%)**
E3: PRL, Strategic Sellers	S31 (0.2, \$500) Low-Pen, Modest	33.9 (-0.3%)**	88.4 (-6.7%)**	5.6 (-6.1%)**	9.4 (-28.6)**	6,617 (-6.9%)**
	S32 (0.2, \$300) Low-Pen, Aggressive	34.0 (0%)**	77.0 (-18.7%)**	4.4 (-25.2%)**	11.5 (-12.8%)**	5,781 (-18.7%)**
	S33 (0.4, \$500) Hi-Pen, Modest	33.9 (-0.3%)**	76.8 (-%)**	4.3 (-26.7%)**	10.9 (-17.2%)**	5,749 (-19.1%)**
	S34 (0.4, \$300) Hi-Pen, Aggressive	33.9 (-0.3%)**	69.2 (-%)**	3.8 (-36.6%)**	13.0 (-1.4%)**	5,180 (-27.1%)**