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Background: Self-Healing Power Grid

High reliability
Non-stop service (or graceful/minimal degradation) 
Fail-proof control actions (no errors of omission or commission)
Flexible responses to various disturbances and attacks
Resource deployment to minimize impact of potential problems 
Minimum possible loss of service and time to restore service

Instances of such features already exist
They need to be ubiquitous
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Background: Blackout Experiences
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Background: Off-line Analyses May not Apply in Real-Time

Transfer study cases vs. Actual Transfers

TVA

Actual

Study

covered by the 
study cases
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Background: Why Self-Healing?

Power system is operated much closer to its limits      
(more often!)
Qualitatively a different operating environment 
(more touchy!)
Larger foot-print (more pressure on the operator!)
More volatility
More data, more automation, more control (higher 
performance data processing!)

Need a higher performance IT infrastructure



©
C

op
yr

ig
ht

 A
BB

 -
7

-

CMU Conference in Electric Power Systems: Monitoring, Sensing, Software and Its Valuation, 11-12 January 2006

Background: Drivers of Architectural Innovation            

Large blackouts involve:
Cascading events within seconds

Aggravated by uncoordinated and unintelligent local actions

Prevention/Containment requires:
Better monitoring

Coordinated response

Sub-second response

Centralized systems are too slow
Distributed autonomous systems

Existing RAS is an early example of distributed intelligence

Any number of operating entities (RTO/ISO, TO, etc.)
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Background: Distributed Intelligent Agents

Distributed Agents afford:
Fast response

Flexible framework for various strategies
Distributed applications

Coordination
Hierarchical
Temporal

Reusable plug and play components

Greater level of reliability
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Distributed Agents - State Estimation Example
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Background: Distributed Autonomous System
Function Fi

Function F2

Function F1
(e.g. Voltage Stability)

Intelligent 
Functional 

Agent for F1

Region R1

Intelligent 
Functional 

Agent for F1

Intelligent 
Functional 

Agent for F1

In
te

gr
at

ed
 M

es
sa

gi
ng

/D
at

a

Substation S1

Intelligent 
Functional 
Agent F1

Intelligent 
Functional 

Agent for F1

Intelligent 
Functional 

Agent for F1

Su
bs

ta
tio

ns
R

eg
io

ns

Control Area C1

Intelligent 
Functional 

Agent for F1

Intelligent 
Functional 

Agent for F1

C
on

tr
ol

 A
re

as
G

rid

ActuatorActuatorActuator

Region Ri

Control Area Ck

ActuatorActuatorActuator
ActuatorActuatorActuator
Substation Sn



©
C

op
yr

ig
ht

 A
BB

 -
11

-

CMU Conference in Electric Power Systems: Monitoring, Sensing, Software and Its Valuation, 11-12 January 2006

Background: Execution Cycles  and Temporal Coordination

Power System
Including control, measurement and protection devices

Faster cycles - under 2 sec
Slower cycles – 2 sec & over

Hour-Ahead

cycle
1 min
cycle 100      

m-sec
cycle

5 min
cycle 10 

m-sec
cycle

2 sec
cycle 1 sec

cycle

monitoring control

Feedback data, violations, 
alerts, messages

Forward plans, schedules, 
guidelines controls, messages
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Valuation of Self-Healing Grid

Is the IT infrastructure financially feasible?
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Challenges of Valuation

Framework is broad and flexible
Entire grid - All control levels, geographical areas, etc.
All analytical functions
All time scales - Milliseconds to hour

General systematic methodology
Too many context dependent parameters
Subjectivity of size, existing infrastructure & solutions, costs, benefits
Too many cost factors - R&D, SW, devices, etc.

Meaningful business cases
Too narrow - Not of interest 
Too broad - Provides no specific guidelines



©
C

op
yr

ig
ht

 A
BB

 -
14

-

CMU Conference in Electric Power Systems: Monitoring, Sensing, Software and Its Valuation, 11-12 January 2006

Approach to Valuation

No specific assumptions regarding power system
Focus on IT - all cycles and all hierarchical levels
Plug-and-play intelligent agents

Functionally generic and encompassing
Configurable to existing measurement and control capabilities

Reasonable “upper bounds” on costs 
Reasonable “lower bounds” on Benefits
Consider: 

Incremental implementation
Shared benefits and costs

Existing SW & HW products
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What are we costing?

Software components/intelligent agents
IT hardware
System deployment and integration
Control equipment (if absolutely needed)

Not costed - Communication Connectivity
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Cost Models: Software Components/Intelligent Agents

R&D / Prototype Costs
Investigate/demonstrate innovative concepts and algorithms

One-time cost

Productization Costs
Robustness, models, solutions, performance, visualization
Integration of R&D results to standardized modules

Shakedown Costs
Database development, system configuration & integration

Maturity through multiple implementations for “plug-and-play” status: 
Substation: 10 implementations

Zone/vicinity: 5 implementations

Control Area: 2 implementations
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Cost Models: Software Components/Intelligent Agents

# Level Prototype / 
Productization
(Person-Yrs)

Field Deployment
- Shake-down
- Later implementations

1 Substation 3  /  11 - 10% for the first 10 substations (13 
person-months each)
- 0.5% later (3 person-weeks each) 

2 Zone/Vicinity 4  / 13 - 15% for the first 5 zones/vicinities (23 
person-months each) 
- 3% later(5 person-months each)

3 Control Area 10  / 30 - 25% for the first 2 control areas (90 
person-months each)
-15% later (54 person-months each)

4 Region 2  /  8 - 25% for the first 2 regions (24 person-
months each) 
- 15% later (14 person-months each)

5 Grid 2  /  5 - 25% for the first 2 grids (15 person-
months each) 
- 15% later (9 person-months each)

Total 21 / 67 Use above formulae for various systems
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Cost Models: IT hardware

Measurements
PMUs as representative 

Communications
Consider routers at all locations of the hierarchy

Computing
Standard computing modules each with:

2 CPUs (3.6 GHz or higher)
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Costs Model – Typical HW Requirements and Costs

# Level PMU/PDC Routers SCM Cost/Site

1 Substation 2 PMUs 3 3 $83 k

2 Zone/ Vicinity 2 PDCs 6 4 $135 k

3 Control Area 0 4 8 $100 k

4 Region 0 1 3 $33 k

5 Grid 0 2 4 $50 k

200 Substations, 20 Vicinity/Zones – per CA
20 Control Areas/ Region, 10 Regions/Grid
Communications connectivity already exists
Assume $15k/PMU, $22.5k/router and $7.5k/computer              
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Costs Model – System deployment and integration

Efforts for different levels and stages include:
DB development

Configuration

Integration

Field verification

etc.  

Cost roughly proportional to the number of 
substations

Integration cost – system dependent
Typically 30% of total cost of SW deployment & HW
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Cost Models: Control Equipment

Where absolutely necessary
Consider shunt FACTS devices as representative
Potentially about 10% of transmission system 
supplied reactive requirements through FACTS

Translates to 4 MVAr per 100 MW peak load

Costed at $50k/MVAr
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Benefits Model – Which benefits?

Limit improvement:
Improved market prices/production 
costs

Blackout containment:
Reduced unserved energy

Possible others: 
Reduction of emergency 
maintenance costs
Deferral of capital expenses
Improved power quality
Etc.

Selected   
Benefits

Σ Reduced 
Unserved 

Energy

Reduced Prices/ 
Production Costs

Reduced 
Emergency  

Maintenance

Potential 
Benefits
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Benefits Models - Limit Improvements
Thermal being the binding limit

Thermal Limit

Voltage Limit

Stability Limit

Actual Operation

Voltage Limit

Thermal Limit

Stability Limit

Actual Operation

Thermal Limit

Voltage Limit

Stability Limit

Actual Operation

Stability Limit

Voltage Limit

Thermal Limit

Actual Operation

Thermal Limit

Voltage Limit

Stability Limit

Actual Operation

Thermal Limit

Stability Limit

Voltage Limit

Actual Operation

Ideal limit order 
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Limit Improvements – Less Expensive MWh

Estimated price differential
Gas CC vs Coal
Typically $20/MWh

Estimated effective hours/year
Capacity factor of CC
Typically 45%

Possible Limit Improvement 
Transfer limit
1% of base load
Analytically justified Weighted Average LMPs for PJM Market - 2004
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Limit Improvements - Industry Statistics for Parameters
# Description Range in 

Industry 
Statistics

Sources Value used in this 
project

1 LMP 
Differentials

$0-$438 
/MWh

Delmarva Study,
NYISO real-time  LMP’s
PJM State of the Market

$20/MWh

2 Hours with 
high LMP’s
(>$45/MWh)

45% = 
3942hrs /Yr

PJM State of the Market 
Report

3942 hrs/Yr

3 Base load MW 
at Low LMP’s
($0-$25)/MWh

80% of 
average load

PJM State of the Market 
Report

80% of average load

4 Average MW 
affected

0-1136 MW

1888 MW 
/TLR Event

Delmarva study,

TLR report

1% of base load for 
45% of the hours 
= ~ 31.5 Sys.Hrs/Yr
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Limit Improvement - Validation of Model

# Description GWh/Yr
1 Congested GWh in Top 20 paths in Eastern Grid 

(National Transmission Grid Study Report)
107,470

2 Congested GWh in Top 20 paths in Western Grid 
(National Transmission Grid Study Report)

38,548

3 Energy schedules cut by TLR’s (Eastern Grid - actual) 
(NERC TLR data)

3,468

Description Value
Effective congested hours (45%) 3942 hr/Yr
1% of base load for entire U.S. 3,560 MW
Potential Impact 14,034 GWh/Yr

Model: Entire US

Industry:
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Benefits Models - Unserved Energy

Weighted Average Value $/kwh

Residential Cust. ($/kwh)

Commercial Cust. ($/kwh)

Industrial Cust. ($/kwh)

Reduction in 
Unserved Energy

(Mwh)

Benefit: Reduction in Unserved Energy ($)

Average Unserved Mwh
due to Transmission 

Outages

Published 
Information
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Unserved Energy - Parameters for Valuating

# Description Range Sources Value 
used

1 Service interruptions 
due to transmission 
problems ignoring 
major disturbances

4-22 

System-
minutes 
per year

- PG&E, Reliability Indices 
Report submitted to CPUC 
(10 year history)
- TVA
- NERC/DAWG Database 
(Year 2002)

10 
sys.min. 
per year

2 Interruptions due to 
major disturbances due 
to transmission 
problems

0-133 

System-
minutes 
per year

- PG&E, Reliability Indices 
Report submitted to CPUC 
(10 year history).

20 
sys.min. 
per year

3 Fraction of the above 
that could be avoided

------- - Analytically justified 10% 

4 Value of unserved 
energy

$1,000-
$361,000 

/MWh

PG&E, Ontario Hydro, SCE 
and other studies –
adjusted for inflation 

$24,000/M
Wh
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Benefit Models: Unserved Energy Value ($/MWh)

Source: 
PG&E report (1990) quoted in PJM white-paper (2004) on 
“Future PJM Capacity Adequacy Construct- The Reliability Pricing Model”

Sector PG&E
1990
$/MWh

PJM
Inflation                
. Factor

2004 
$/MWh

Residential 4,640 1.42 6,590

Commercial 31,630 1.42 44,910

Industrial 10,770 1.42 15,290

Agricultural 3,670 1.42 5,210

Weighted 16,930 1.42 24,040
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Business Case – Model for Full Scale Implementation 

A reasonably large control area embedded in an 
interconnection 

# Description Value
1 Peak load 20,000 MW 

5 Substations 200
6 Vicinities/zones 20 

2 Average load 12,500 MW 
3 Base load 10,000 MW
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Full Scale Implementation – Total Deployment Cost

# Description Cost ($K)

1 SW Deployment Subtotal 11,400

2 IT Hardware 19,400

3 System Integration 
(30% of SW & HW)

9,240

Deployment Total 40,040
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Full Scale Implementation – Costs and Benefits Summary

Item K$
SW + HW + Integration 40,040
Control Equipment N/A
Total Costs 40,040
Limit improvement benefit 39,420
Avoided unserved energy benefit 75,000
Total Benefits 114,420

• SW implementation cost includes deployment at 200 substations, 20 
vicinities, and the control area as well as interfaces with region and grid

• The SW development cost of $34 M to be distributed/licensed
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Partial Implementation Problem 1 - EHV Outage Stresses HV System

When one of the EHV lines is out for maintenance, the contingent outage of 
another EHV line places severe stress on the underlying HV system. 

1200 MW

900 MW
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Partial Implementation Problem 2 - Voltage Collapse

When one line is down due to maintenance or forced outage, the (N-1) reliability 
criterion is not met. The underlying sub-transmission system will be subject to 

voltage collapse if another line fails.

161kV

161kV

161kV

CT’s

4x80 
MW
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Partial Implementation Problems - Costs and Benefits

# Description Amount 
($K)

1 Problem 1

1.3 Benefit / Cost ~149
2 Problem 2
2.1 Cost (at 3 substations) ~ 400

1.1 Cost (at 3 substations) ~ 400
1.2 Total Benefits ~ 60,000

2.2 Total Benefits 2,660
2.3 Benefit / Cost ~6.67

• All software and hardware has matured in prior implementations.

• Only interfaces necessary for the two specific problems are included
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Empirical Models – Costs and Benefits
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Conclusions

Systematic and general methodology to translate 
broad scope into quantifiable costs and benefits

Identification of significant cost components 
Identification of financially significant benefits
Scalable framework of models to assess reasonable 
“upper bounds” on costs and “lower bounds” on benefits 
for localized or system-wide implementations 
Validation of the models against industry statistics.
Analytical justification of model parameters. 
Development of an empirical model to facilitate feasibility 
analysis 
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Conclusions

Inevitable grid-wide penetration of self-healing 
capabilities:

First implementation would substantially bring down the “entry 
barrier” for the remaining utilities to a level comparable to 
traditional control centers
Steady decline of cost of computing power 
Value of benefits continue to increase as the economy and 
quality of life become more dependent on a reliable power grid 
For the entire U.S. , benefits (billions of $) would far exceed 
initial R&D costs of $65M   

The above conclusion remains valid and unaffected 
by any reasonable changes in the specific values 
of the parameters used in the calculations.
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