Identification of Harmonic Sources by Underdetermined State Estimator

Huaiwei Liao PhD Student (ECE, Carnegie Mellon) Advisor: Prof. Sarosh Talukdar Carnegie Mellon Electricity Conference Jan. 11~12 2006 Pittsburgh, PA

Overview

- Background
- Harmonic Source Identification
- Observability with Sparse Prior
- Source Identification via Sparsity Maximization
- Numerical Results
- Conclusions

Background

 Harmonics: Periodic distorted voltage/current waveform can be decomposed into components with whole multiples of the fundamental frequency.

Harmonic Pollutions

- Harmonic Sources: Converters, Inverters, static VAR compensators, switch-mode power supplies, pulse-wide-modulated drives
- Harmful Effects of Harmonics
 - shorten equipment life
 - Interfere communication
 - Induce malfunction of protective/control devices

Harmonics Propagation

Harmonic State Estimation

- Identify major harmonic sources by real-time harmonic measurements.
- Estimate harmonic distribution for harmonic reduction.

Harmonic State Estimation

Observability

• Observability of (1) requires full rank of measurement matrix, i.e.

of measurements ¤ # of state variables

- However, only limited # of harmonic meters available because
 - Harmonic meters are expensive
 - Extra cost of communication channels

The Difficulties

• Available meters # < Suspicious bus #

Harmonic State Estimator

• Underdetermined

• M>=N, but H is ill-conditioned

Existing Approach

- SVD (Singular value decomposition)-
 - Decompose the network into observable and unobservable parts
 - Estimate observable parts only
- Optimal Meter placement
 - Still need full rank of measurement matrix

An Observation : Spatial Sparsity of Sources

Observability with Sparse Prior

- **Sparsity:** only a small portion of nodes have significant harmonic injections, while the rest have zero injections.
- **Spark**: smallest possible number of the matrix's columns that are linearly dependent.

Example

- We know only one entry of x is non-zero
- We don't know which entry of x is non-zero.
- Spark(A)=3 : Any two columns are linearly independent
- The task: Solve x, given y and A

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \mathbf{A}_{2\times 3} \mathbf{x}_{3\times 1}^* = \begin{bmatrix} \alpha_1, \alpha_2, \alpha_3 \end{bmatrix} \begin{bmatrix} 0 \\ d \\ 0 \end{bmatrix}$$

Uniqueness

Let
$$x_1 = \begin{bmatrix} k_1 \\ 0 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 0 \\ k_2 \\ 0 \end{bmatrix}, x_3 = \begin{bmatrix} 0 \\ 0 \\ k_3 \end{bmatrix}$$

The following must be true

$$Ax_1 - y \neq Ax_2 - y \neq Ax_3 - y$$
$$\alpha_1 x_1 - y \neq \alpha_2 x_2 - y \neq \alpha_3 x_3 - y$$

otherwise $\alpha_1 x_1 + \alpha_2 x_2 = 0$ or $\alpha_1 x_1 + \alpha_3 x_3 = 0$ or $\alpha_2 x_2 + \alpha_3 x_3 = 0$ or $\alpha_2 x_2 + \alpha_3 x_3 = 0$

Observability in Underdetermined Systems

Theorem: The underdetermined linear system

[**H**] [**x**]=[**z**]

is observable if x has at most s non-zero entries and spark(H) > 2s.

Sparsity Maximization

• The sparest solution is the unique one.

 However, to solve it, need combinatorial optimization methods

Sparsity Maximization by L1-norm

Illustration

Solve Sparsity Maximization by Linear Programming

The optimization problem (4) can be cast into a standard convex program by applying $\mathbf{x} = \mathbf{x}_p - \mathbf{x}_n$, $\mathbf{x}_p \ge 0$, $\mathbf{x}_n \ge 0$. We have

$$\min_{\substack{\mathbf{x}_{p},\mathbf{x}_{n} \\ \text{subject to}}} f = \gamma \mathbf{1}^{T} (\mathbf{x}_{p} + \mathbf{x}_{n})$$

$$\sup_{\substack{\mathbf{x}_{p} \geq 0, \\ \mathbf{x}_{n} \geq 0}} f = \gamma \mathbf{1}^{T} (\mathbf{x}_{p} + \mathbf{x}_{n})$$
(16)

IEEE 14-bus Test System

- 13 suspicious nodes
- 9 meters
- Underdetermined estimator

Electrical & Computer

Noiseless Measurements

Noisy Measurements(5% noises)

Conclusions

- By utilizing sparsity, underdetermined systems can become observable
- The underdetermined state estimator can reliably identify harmonic sources

Acknowledgement

The author would like to thank Professor Marija Ilic (ECE, Carnegie Mellon) for the initial discussion regarding this idea.

Question?

Huaiwei Liao HLIAO@CMU.EDU

