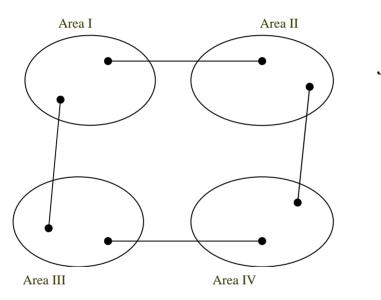
Overlapping Decomposition of Load Flow Jacobian for Static Voltage Stability Indicator in Interconnected Power System

> Marija Ilic & Le Xie Dept. of ECE Carnegie Mellon University

Problem Posing


- Needs for monitoring the interconnection based on QIs essential for deciding the severity of the operating mode in a decentralized way
- Static voltage stability is an important and starting point for research in power system stability
- How to monitor static voltage stability from some practically effective and decentralized QIs?

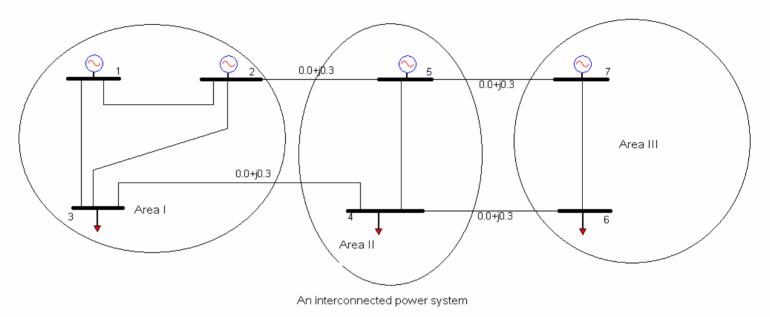
Problem Solving: Model Review

- DAE Equations-> ODE Equations-> Linearized Model
 - Monitoring load flow Jacobian determinant can detect a possible dynamic instability under certain assumptions [1]
- Load level producing zero determinant can serve as an upper bound of steadystate stability
- Load flow Jacobian determinant is a main QI for static voltage stability

Decomposition of Load Flow Jacobian

Properties of load flow Jacobian

 $J = \begin{bmatrix} J_{I-I} & J_{I-II} & J_{I-III} & J_{I-IV} \\ J_{II-I} & J_{II-II} & J_{II-III} & J_{II-IV} \\ J_{III-I} & J_{III-II} & J_{III-IV} \\ J_{IV-I} & J_{IV-II} & J_{IV-III} & J_{IV-IV} \end{bmatrix}$


$$J_{I-IV} = 0, J_{II-III} = 0$$

 $J_{III-II} = 0, J_{IV-I} = 0$

By overlapping decomposition of J with tieline buses overlapped, one can effectively get a probably promising decentralized indicator of static voltage severity

1/10/2006

Ilic & Xie, ECE/CMU

Example: 7 Bus System

All intra-area transmission lines are with impedance of **0+j0.1** Bus 1 is a slack bus, bus 2, 5, 7 are P-V buses, and bus 3,4,6 are P-Q buses.

Load at bus 3, 4 and 6 have same power factor of 0.995 Keep increasing load at bus **6**, while keeping all the other loads constant

1/10/2006

Ilic & Xie, ECE/CMU

Simulation Results By disjointly partitioning load flow Jacobian

Load level (load at bus 6)	Minimum eigenvalue of system load flow Jacobian	Minimum eigenvalue of area-based partitioned block matrices
250 + j25 MVA	0.4931	2.0686
285 + j28.5 MVA (close to collapse)	0.2222	1.1355

By overlapping decomposition of load flow Jacobian

Load level (load at bus 6)	Minimum eigenvalue of system load flow Jacobian	Minimum eigenvalue of overlapping decomposed block matrices
250 + j25 MVA	0.4931	0.4931
285 + j28.5 MVA (close to collapse)	0.2222	0.2222

Observation

- Simple block partition of system load flow Jacobian does not effectively indicate static voltage severity
- By overlapping decomposition of load flow Jacobian, the minimum eigenvalue of block matrices can serve as an indicator of system static voltage severity
- Only tie line buses' entries in system load flow Jacobian matrix are needed to exchange between neighboring areas

Conclusion

- Our work proposes a possibly promising indicator for static voltage stability
- This indicator could be achieved in a decentralized way. Only a small piece of information is needed to exchange between neighboring areas
- More theoretical work is required for justification of guaranteed performance of this method

Key References

- [1] P.W. Sauer, M.A. Pai, "Power system steady-state stability and the load-flow Jacobian", IEEE Transactions on Power Systems 1990
- [2] M. Ilic, E. Allen et. al, "Preventing Future Blackouts by Means of Enhanced Electric Power Systems Control: From Complexity to Order", IEEE Proceedings 2005, pp 1920-1941

Thank You!

1/10/2006

Ilic & Xie, ECE/CMU