

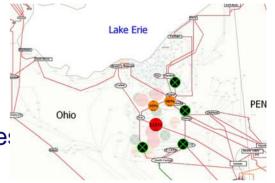
High Confidence Computing Technology and Power Grid Research

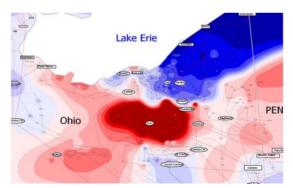
Helen Gill, Ph.D.

CISE/CNS

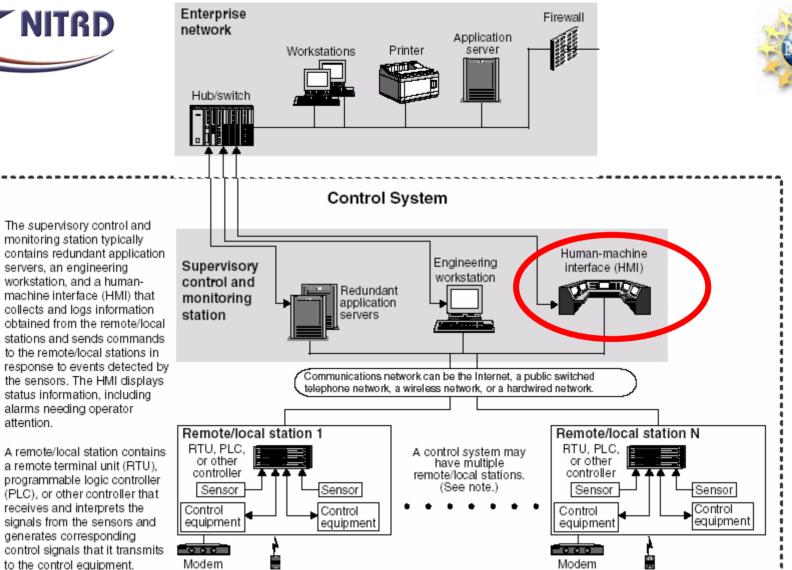
National Science Foundation

U.S. Power Grid: Well-Known Challenges




Status

- Vulnerability to failures, attacks, misuse
 - Cascading failures, market manipulation
 - Waning expertise, training limitations
 - Insider threats
 - Interdependencies of Critical Infrastructures
- Slow pace of technology insertion
 - Micro-grids
 - FACTS, PMUs, etc.
- Technical, market barriers to change


- Protection (cyber security)
- Renewal

attention.

Handheld device

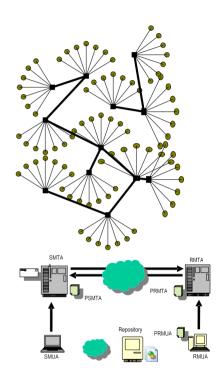
Handheld device

From the Outside: A View of The Power Grid

Current

- Human-centric system of systems, information-enabled regional coordination
- Static structure, with protection equipment, human operation
- Built infrastructure; stressed by power routing; complex market, regulatory, and advisory environment
- No storage, shrinking stability margin
- Not secure, minimal cost incentive to change
- Enterprise/market/control interaction, air gap violated

Midterm


- FACTS better flow control
- PMUs better local state information
- Super-capacitors better buffering, increased stability
- GridWise, GridStat, ...-- better global information
- NERC 1200 Security Standard: guidelines, progress toward industry-specific IT security standards, SCADA security

The Outsider's Strawman (Continued)

- Long Term, "Energy Independence" Future Goal
 - Physical System
 - Highly decentralized, distributed generation, configurable sources, ubiquitous measurement and flow gating devices
 - Intermittent sources, smart motor loads
 - Storage? (Hydrogen, battery, ...)
 - Information Technology
 - Next generation supervisory control
 - System of real-time embedded systems, mutiauthority (local? regional?) structure,
 - Real-time, multi-modal, mixed-initiative control
 - Open, dynamic topology
 - Security built in, policy-driven, adaptive

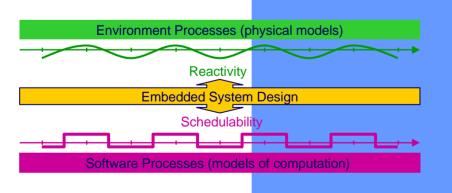
A (fairly obvious) prediction about the Future of Physical and Engineered Systems

- Power generation and distribution
 - Deregulation, competition
 - Mix of generation technologies
 - Fossil fuels
 - Solar, wind
 - Hydrogen, fuel cells
 - Fusion?
- Future airspace
 - Airspace management
 - · Free flight
 - **UAVs**
 - Critical Infrastructure Protection
 - Higher performance vehicles
- Health care
 - Infusion pumps, ventilators,...
 - EMT and ICU of the future
 - Triage and transport
 - Home care

- General transportation
 - Highway system technologies
 - Vehicle technologies
 - Hybrid engines, alternative fuels
 - Coordinated motor, braking, transmission
 - Continuously varying transmission control
 - ABS, regenerative braking, etc...

Environmental monitoring

- Global warming
 - Environmental observation strumentation, control
- Agriculture and ecology
 - Herd health monitoring
 - Remote veterinary care
 - Crop condition monitoring
- Emergency response
 - Rescue robotics
 - Command and control



Status Check: Embedded Systems for Engineering and Science

- Embedded systems, expanding scope (simple to complex, HW-SW to full system)
- IT multiplier for engineered system capability
- Risk set, reliance changes (e.g, critical infrastructures)
- Increasing assurance obligation
- Need for global interoperability, harmonization

End-to-end problems, but previouslyseparate research areas:

- Real-time embedded systems
- Control theory and engineering
- Networking
- Physical device and platform design
- Security and privacy
- Human-computer interaction
- Science and engineering research domains

Current NSF/CISE High Confidence Embedded and Control Systems Research

- NSF funds core research
 - Strong scientific, engineering, and implementation base for complex, adaptive, embedded sensing and control systems
 - Improved basis for certification of systems
- Individual investigator research in core program, plus Information Technology Research
- SCADA research poses interdisciplinary challenges
 - Long-term research
 - Community/project-oriented research strategies
 - Centers
 - Problem-driven research
 - Technology transition and standardization

- NSF
- Regulatory goals: spur competitive pricing, enable market entry
- Other strategic goals: improve National energy independence posture, reduce vulnerability (distributed generation, cogeneration, renewables, hydrogen, biomass, ...)
- Issues: reliability of the power infrastructure
 - Need for stable bulk power market vs.
 - Changing load and generation characteristics
 - Connectivity, transmission capacity
 - Market structure and dynamics (e.g., Independent System Operators, public utilities, Affiliated Power Producers, Independent Power Producers)
 - Potential regulatory shifts
 - Functional sub-sector separation (generation, transmission, distribution)
 - Other structural proposals
- Industry ambition: power electronics ("X-by-wire")
- Status: current IT infrastructure appears to be qualitatively inadequate for reconfigurable coordinated control, information and process security, emergency adaptation.

Generalization: SCADA and Industrial Control Systems Today

- Today's technology and methodology
 - Instrumentation, low-level process control, and telemetry
 - Local operation
 - Data acquisition for communication and human decision-support for wide-area "global" operations
- Trends, issues:
 - Deregulation (e.g., energy markets, power routing)
 - New technologies (e.g., renewables, fuel cells, ...)
 - Market effects: start-ups, scale, dynamics, indirect consequences (e.g., environment)
 - Capacity investments: where, how?
 - Operation at (beyond) capacity, shrinking safety margins
 - SCADA delivered via Internet (web services, .NET,...)
 - Interdependencies (e.g., power, telecommunications, Internet)
 - Cyber attacks attempting to penetrate process control systems
 - Reliability metrics, certification

Is today's industrial control concept enough? Next Steps

- Examine specific critical systems requiring SCADA information technology (emphasis on power grid, but also chemical processing, water systems, petrochemical transport, ...)
- Develop a vision and research directions for future industrial infrastructure systems, considering:
 - "Vertical" integration from low-level digital control, process control, to (multi-level) supervisory control
 - "Horizontal" coordination among regions, other structures ("coalitions")
 - Interoperable, open systems service needs (not just hardware platforms) for dynamic topology, reconfiguration support, protection
 - Secure operation, interoperation (built-in), on a secure substrate

Challenge: Next-generation supervisory control

High Confidence Systems Technical Challenge: "Systems of Embedded Systems"

- Now: information focus, human-machine interface
 - Operator skill, "competent human intervention"
 - System, operator certification
- Future: open, multi-level closed loop, mixed initiative, autonomous systems and multi-systems
- Typical domains:
 - Medical: "plug and play" operating room of the future
 - Aviation: mixed manned, autonomous flight
 - Power systems: Future "SCADA-D/PCS" for distributed generation, renewable energy resources
 - National Security: common operating picture, global information grid, future combat systems

"Beyond SCADA" Imagining Next Generation Supervisory Control

Changing Requirements:

- Open, reconfigurable topologies, adjustable group membership
- Reconfigurable, multi-hierarchy supervisory control; vertical and horizontal interoperability
- Complex multi-modal behavior, discrete-continuous (hybrid) control
- Mixed-initiative and highly autonomous operation

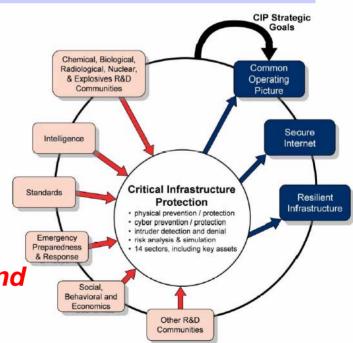
Changing technologies

- System integration: Integrated, peer-to-peer, "plug and play", service-oriented?
- Fixed & mobile technology vectors: RF/optical/wired/ wireless networking modalities, FPGA and other reconfigurables
- Power system storage capacity (hydrogen, battery technology, other?)

Changing oversight context

- End-to-end security, "self-healing"
- Increased attention to system certification

National CIP R&D Plan

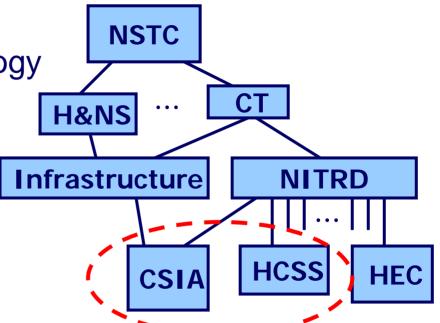

April 8, 2005

NCIP R&D Roadmap identifies three strategic goals:

- National Common Operating Picture
- Secure National Communication Network
- Resilient, Self-Healing, Self-Diagnosing Infrastructure

Themes:

- Detection and Sensor Systems
- Protection and Prevention
- Entry and Access Portals
- Insider Threats
- Analysis and Decision Support Systems
- Response, Recovery, and Reconstitution
- New and Emerging Threats and Vulnerabilities
- Advanced Infrastructure Architectures and Systems Design
- Human and Social Issues



R&D Planning for CIP and High Confidence Systems

- NSTC Committee structure
- CT Committee on Technology
 - Networking, IT R&D (NITRD)
 - Subcommittee, "blue book"
 - Infrastructure Subcommittee
 - CIP R&D Planning
 - National CIP R&D Plan
 - CIIP R&D Plan

- NITRD R&D Planning High Confidence Software and Systems (HCSS) Coordinating Group
- Cyber Security and Information Assurance (CSIA) Interagency Working Group

NITRD HCSS Coordinating Group Assessment Actions

- Backdrop:
 - NSF/OSTP Critical Infrastructure Protection Workshop,
 Leesburg, VA, September 2002, http://www.eecs.berkeley.edu/CIP/
 - NSF Workshop, on CIP for SCADA, Minneapolis MN, October 2003

http://www.adventiumlabs.org/NSF-SCADA-IT-Workshop/index.html

 National Academies' study: "Sufficient Evidence? Design for Certifiably Dependable Systems", http://www7.nationalacademies.org/cstb/project_dependable.html

 National Coordination Office summary report(s) derived from workshops, industry input sessions, NAS study

NITRD HCSS Coordinating Group Assessment Actions: Workshops

- High Confidence Medical Device Software and Systems (HCMDSS),
 - Planning Workshop, Arlington VA, November 2004, http://www.cis.upenn.edu/hasten/hcmdss-planning/
 - National R&D Road-Mapping Workshop, Philadelphia, Pennsylvania,
 June 2005, http://www.cis.upenn.edu/hcmdss/
- High Confidence Aviation Systems
 - Planning Workshop on Software for Critical Aviation Systems,
 Seattle, WA, November 21-22, 2005
 - National R&D Road-Mapping Workshop, venue TBD, June/July 2006

HCSS Workshops, continued

- High Confidence Critical Infrastructures: "The Electric Power Grid: Beyond SCADA"
 - Planning
 - US Planning Workshop, Washington, DC, March 14-15, 2006
 - EU-US Collaboration Workshop, Framework Programme
 7 linkage, March 16-17, 2006
 - US National R&D Road-Mapping Workshop, date TBD, 2006

HCSS Goal: Assured Technology Base

- Coordinated control systems applications
 - Unmanned autonomous air vehicles, automotive applications
 - SCADA systems for power grid, pipeline control
 - Remote, tele-operated surgery?
 - OR, ICU, EMT of the future?
 - Nano/bio devices
- Key areas for transformative research
 - Open control platforms
 - Reconfigurable coordinated control
 - Computational and networking substrate
 - Assured RTOS, networking, middleware, virtual machines
 - Integral cyber security for system control
 - Real-time Internet
 - Assurance methods and software/system composition technology

Other Current HCSS Actions: Assessment of Real-Time Operating System (RTOS) Technology Base

- Starting point: single-system RTOS products, middleware appliqué for distributed systems, rudimentary open sensing and control platforms (incompatible schedulers, single-issue architectural assumptions, weak security services, ...)
- Needed: Clean OS-level support for open, hierarchical control systems, dynamic topology, coordinated action
- So what are we doing about this?
 - HCSS RTOS technology assessment, vendor non-disclosure briefings:
 - Integrators: Adventium Laboratory, Boeing, Ford Motor Company, Lockheed Martin, MIT Lincoln Laboratory, Northrop Grumman, Raytheon. Rockwell Collins, MotoTron
 - Technology: Sun Microsystems, IBM, Microsoft, Honeywell, Red Hat, Wind River Systems, Green Hills, LinuxWorks, Real-Time Innovations, Inc., QNX Software Systems, Ltd., BAE Systems, Kestrel Technology, BBN Technologies

Cross-cutting High Confidence Computing Technology Challenges

Technical gaps identified:

- Lack secure, interoperable, scalable real-time technology base
- System stack (RTOS, virtual machines, middleware) needs refactoring, extension, scaling, e.g.
 - Coordination (e.g., timed/synchronized, reactive)
 - Dynamic hard/soft real-time scheduling
 - System security services
 - Recovery services
- Lack secure real-time networking capability for critical infrastructures
- Lack appropriate system and software architectures, and "middleware" components for high-confidence sensing and control systems
- Lack assured design and composition technology

Making it Real

- Joint power systems and high-confidence computing research towards Advanced Infrastructure Architectures and Systems
- Example target: renewables and distributed generation/micro-grid research opportunity
 - Inherent importance: Vector for change in energy dependence picture via new and emerging markets, decentralization for less vulnerable infrastructure
 - Attractive and accessible laboratory for multi-level, timesensitive/real-time interoperation
 - Feasible concurrent engineering and experimental setting for both: cutting-edge power systems research and real-time embedded control research
 - Fosters US competitiveness in control systems, electrical power systems, and embedded systems technologies

NSF CISE Research Venues for Critical Infrastructure, Power Systems

- CISE/CNS Computer Systems Research Program
 - Embedded and Hybrid Systems disciplinary area
 - (Watch for new emphasis areas in FY 2007 announcement)
- CISE/CNS Networking Research
 - "Clean Slate" Internet research initiative
 - Planning grant: study on real-time networking for critical infrastructures
- NSF Science and Technology Center: TRUST
 - UC Berkeley, with Vanderbilt, Cornell, Stanford, CMU, ...
 - http://trust.eecs.berkeley.edu/
- Engineering Research Centers: current competition
- Information Technology Research, competition ended, active grants remain (EU-US linkages, G.3 and D.4):
 - Secure and Robust IT Architectures to Improve Survivability of the Power Grid, CMU/WSU
 - Multi-Layered Architecture for Reliable and Secure Large-Scale Networks, CMU
 - Center for Hybrid and Embedded Systems (CHESS), UC Berkeley
- Infrastructure Programs
 - Major Research Infrastructure: Laboratory to Study FACTS Device Interactions, U. of Missouri at Rolla
- Cyber Trust
 - FY 2005 Center-Scale portfolio, Trustworthy Cyber Infrastructure for the Power Grid, University of Illinois at Urbana-Champaign

Thank you

High-Confidence Software and Systems (HCSS) Agencies

- Air Force Research Laboratories*
- Army Research Office*
- Department of Defense/ OSD
- Defense Advanced Research Projects Agency
- Department of Energy
- Federal Aviation Administration*
- Food and Drug Administration*
- National Air & Space Administration
- National Institutes of Health
- National Institute of Science and Technology
- National Science Foundation
- National Security Agency
- Office of Naval Research*

^{*} Cooperating agencies