

Building the Energy Markets of Tomorrow... Today

Technology Challenges and Future Direction

January 11, 2006

Ken Fell

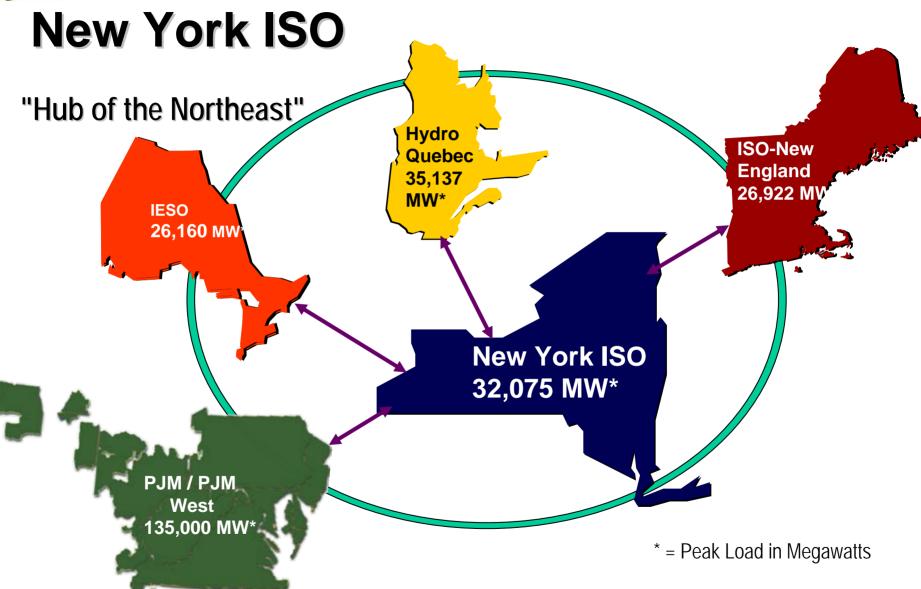
CIO - New York Independent System Operator

Topics Covered

- ✓ Overview of NYISO
- ✓ SMD Overview, Benefits & Features
- ✓ Current Challenges
 - SMD
 - NYISO
- ✓ ITC Initiatives
- ✓ Future Direction of NYISO

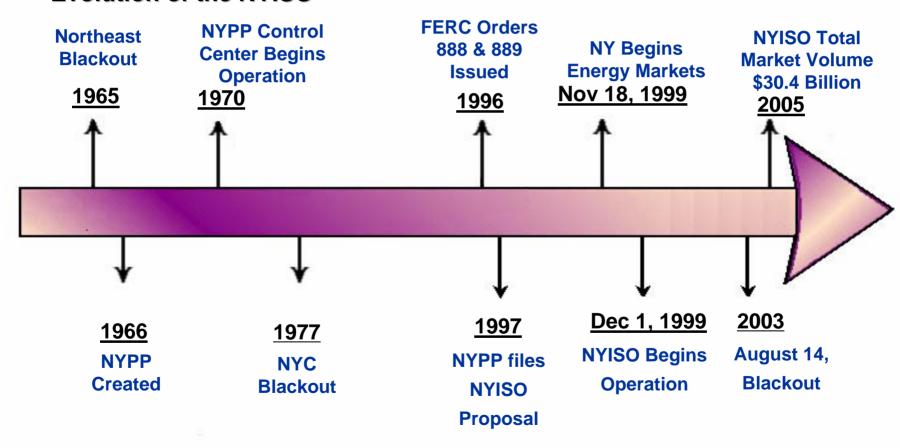
Overview

- ✓ NYISO's Primary Purpose
 - Responsible for the reliable operation of the New York electric system.
 - Administering and running the competitive wholesale markets for electricity.



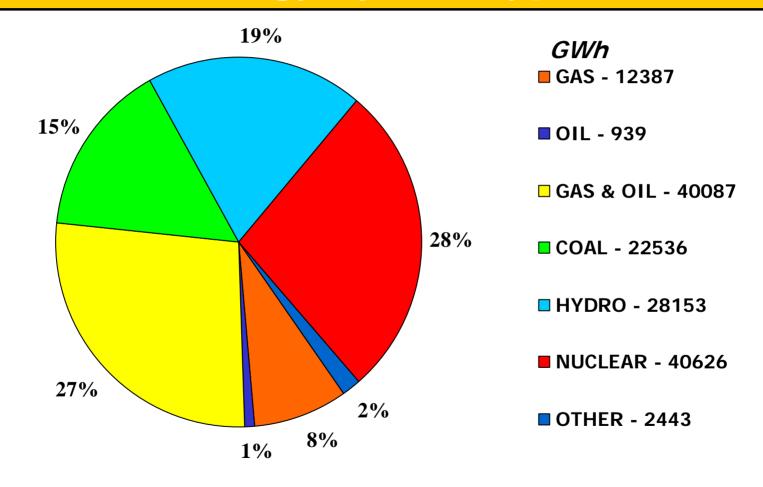
Overview

- ✓ NYISO Background
 - NYISO formed December 1, 1999.
 - Highly divested and complex marketplace featuring co-optimized market clearing systems.
 - NYISO market volume was over \$10 billion last year and over \$33 billion since inception. Highest market volume in the East.
 - Unique challenge: New York City is world's biggest and most complex load pocket. World capitals of finance and communications located within.
 - Unique geography makes it the "Hub of the Northeast."

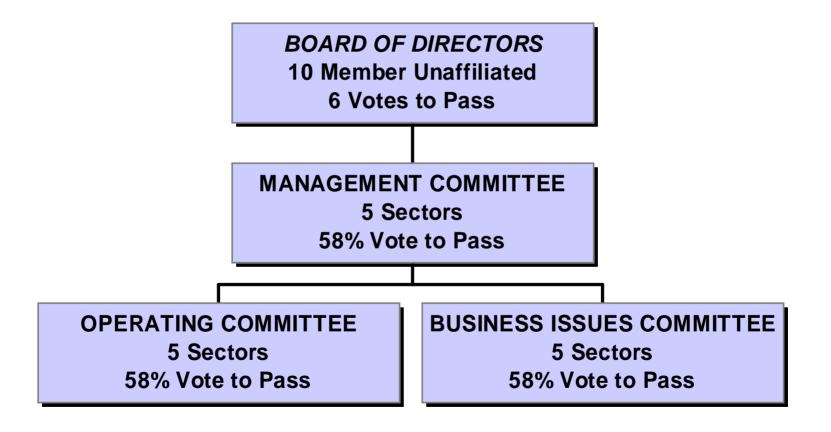


Overview

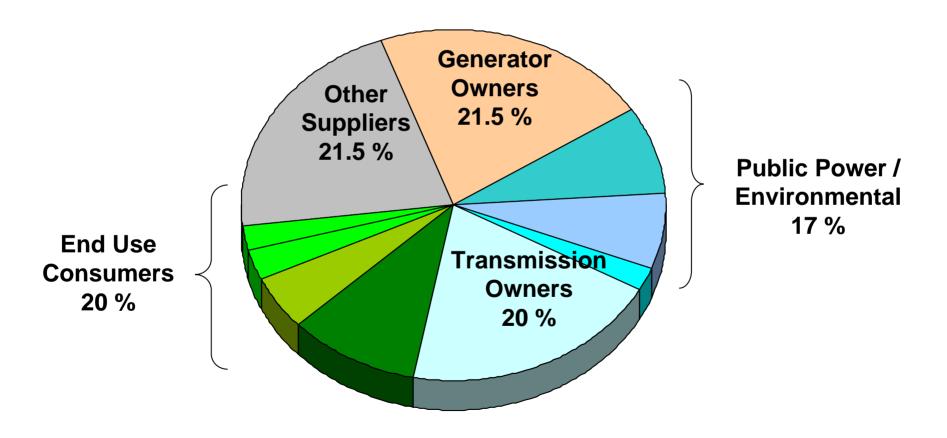
Evolution of the NYISO


The NYISO Control Area

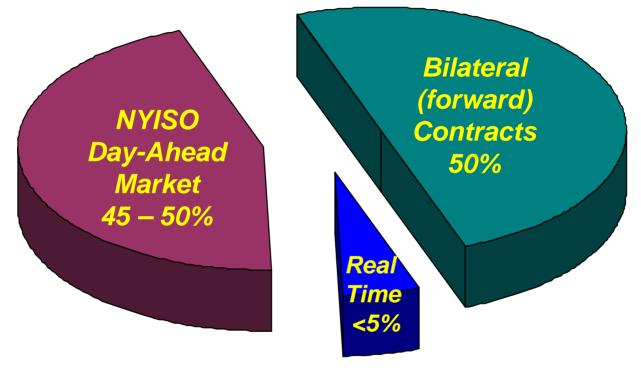
- New York State:
 - 19.2 million people
- > Serving New York City
- >2004 Energy of 160,211 GWh
- Record peak of 32,075 MW (7/26/05)
- > 10,800 miles of High Voltage Transmission
- Over 335 generating units modeled
- ✓ Required Installed Capacity 37,715 MW (2005)



Overview – Energy by Fuel type 2004



Overview - The NYISO Governance



NYISO <u>Management</u>, <u>Operating</u> and <u>Business Issues</u> Committees Voting Sectors (58% of votes to pass)

Overview -Buying Power in New York

Bilateral Contracts outside the NYISO Markets 50%

NYISO Day-Ahead Market 45 - 50%

NYISO Real-Time Market <5% 100%

The NYISO - the Complete Market

- Majority of the State's Generation is Independently Owned
 - Two Energy Markets
 - Additional Markets Administered by the NYISO

 - ★ Reserves

Overview - RTS Architecture

- ✓ Real-Time Scheduling (RTS)
 - Real-Time Commitment (RTC)
 - Scheduling/commitment/de-commitment evaluation every 15 minutes.
 - Real-Time Dispatch (RTD)
 - Corrective Action Mode (RTD-CAM)

Overview - RTC and RTD Time Lines

✓ Real-Time Commitment (RTC)

- Executes every 15 minutes, schedules in 15 minute increments
- Optimizes over 10 hr 15 min periods total 2 hr 15 min hours
- Schedules Transactions
- Initially hourly, supportive of 15 minute schedules
- Commits 10 and 30 min start resources
- Recognizes unit startup times and costs

✓ Real-Time Dispatch (RTD)

- Executes every 5 minutes, optimizes over a 50, 55 or 60 minute period
- Incorporate transaction schedules and self-schedules
- Dispatches resources committed by RTC
- Determines reserve and regulation schedules

Overview - RTD-CAM

- ✓ Corrective Action Mode
 - Run on-demand by the system operators
 - RTD pricing suspended generate power in an emergency type of event
- ✓ RTD-CAM execution options include
 - Reserve pickup
 - Max Gen pickup
 - Base points ASAP, no commitments
 - Base points ASAP, commit as needed
 - Re-sequencing

Market Benefits of RTS

Market Features Incorporated	Market Efficiencies
 Robust Ancillary Service Markets Increased Control Area Interchange Greater Security and Flexibility Increased Capabilities for Demand Response 	Ancillary Service market pricing and settlementImproved in-day scheduling and dispatch
	Long-term incentives for generation expansion and load responsiveness
Market Leadership	Solution Quality
 Build upon strength of SCUC Establish NYISO markets as a design in an SMD leadership role 	Improvements in billing, metering and auditability
	 Delivers software modification and enhancement flexibility

Benefits to NY of SMD/RTS

Operational Improvements	Reliability Enhancements
 15 minute unit and transaction scheduling (where possible) Forward looking unit ramping Reduced Out-of-Merit Improved GT management 	 15 minute reliability assessments Consistent security analysis routines Minimize seams issues Reduce need for reserve pickups
Architecture	Tools
 Improved system reliability Integrated fail over and redundancy Simulator / Training Environment 	State EstimatorLoad ForecastMarket power analysis study mode

Market Efficiency & Uplift Benefits

- ✓ Two settlement system for Ancillary Services
 - Loads purchase full ancillary service requirement in the day-ahead market.
 - Real-time balancing obligation lies with suppliers with a day-ahead schedule.
 - Eliminated additional costs due to re-optimization or procurement of replacement services in real-time.
- ✓ Load forecast at 15 minute increments more robust real-time tool

 provides greater refinement
- √ 15 minute commitment/de-commitment and scheduling of supply
 - 10 & 30 minute start resources are brought online closer to when they are actually needed.
 - Minimizes delay in shutting down uneconomic resources that have run out their min-run times

Market Efficiency & Uplift Benefits

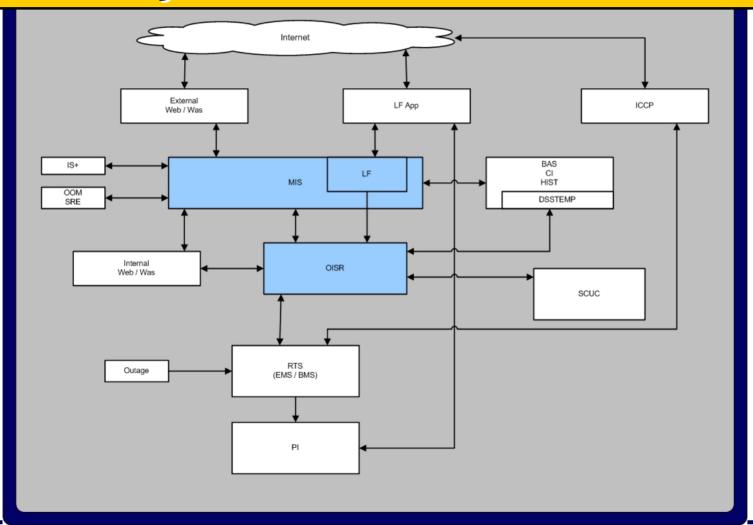
- Units dispatched and responding consistent with pricing
 - RTD ability to re-optimize dispatch of energy, reserves and regulation every 5 minutes.
- ✓ 3-part bidding in real-time
 - Start-Up, Min Gen Cost & Incremental Cost are part of RTC and RTD-CAM evaluation to commit fast-start resources.
- ✓ Real-Time Demand Response for Reserves
 - Loads capable of responding and exposed to real-time prices would receive the reserve clearing price for the option to call on them and avoid high energy prices when actually dispatched.

Generator Bidding Features

- ✓ General Bidding Features
 - 3-part bidding (startup cost, minimum generation cost and incremental energy cost) permitted for all units in real-time.
- ✓ Startup Cost Bid
 - Startup cost as a function of the number of hours since shutdown (increasing or decreasing) or a unique startup cost for each hour of the day.
- ✓ Minimum Run Time
 - The minimum amount of time for which an energy resource can be committed. The values allowed in RTC can be as little as 15 minutes to a maximum of 1 hour.

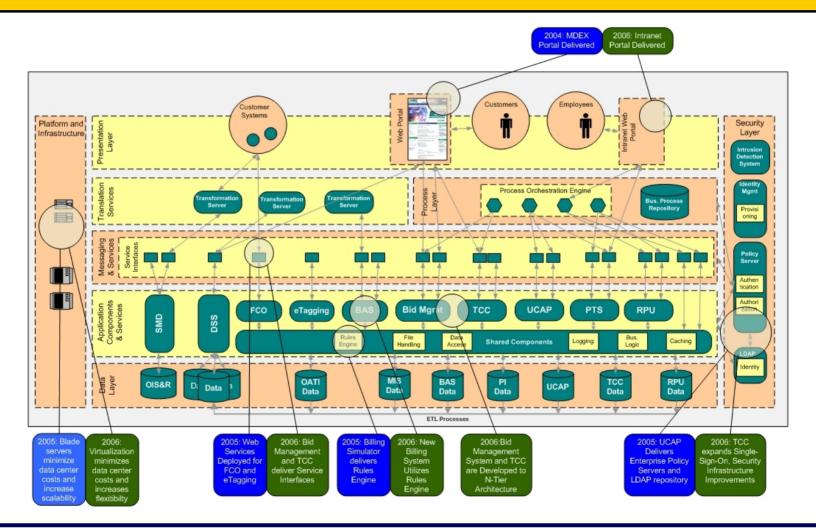
Generator Bidding Features

✓ Startup Time


- The time needed start and synchronize the resource and load the resource to its minimum generation level. RTC can commit resources with a startup time of 30 minutes or less.
 - This provides an improvement over current capabilities by allowing for scheduling closer to real time conditions.

✓ Self-Schedule MWs

- A self-scheduled unit will provide a single self-scheduled MW value for a given hour in the day-ahead market.
- In RTS, self-scheduled units may provide a different MW value for 15 minute period in a given hour.
- The unit will be pre-ramped such that it arrives at it's self-schedule level for the specified 15 minute period.
- Self-schedule levels will be financially binding.



SMD System Flow

NYISO 2006 Architecture

ISO / RTO Challenges

- ✓ Vendor Constraints
 - FORTRAN based code
 - Tru64 primary Operating System
 - Closed Architecture
- ✓ Scalability of Software/Technical Architectures
 - Lack of rules based computing
 - Client-server
- ✓ Lack of standards across control areas
 - Web Services, EAI, BPM
- ✓ No consistent architecture across vendors and control areas

Other NYISO Challenges

- Regulatory and Audit
 - Must meet increasing scrutiny
 - FERC, NERC, SOX, SAS70
 - Board of Director driven Internal Audit Function
- Data Management
 - Ongoing need to convert data to accessible timely information
- ✓ Non Optimized Processes
 - Lack of Automation manual intervention in a complex evolving market

ITC Initiatives

- ✓ ITC's two primary working groups (Architecture Working Group and Security Working Group) collaborated to promote standards and guiding principles
 - AWG Increase ability of members to share information in a common architectural model.
 - SWG Provide clear direction and guidance with respect to growing cyber security requirements.
- ✓ Data Initiative
 - Provide a common documented model for the primary inputs, outputs, artifacts, dependencies and interface points of key systems that operate within all ISO/RTO's.
 - Future facilitation of the de-coupling of systems that have often and been provided in a single vendor vertical with little opportunity for diversification.

ITC Initiatives

✓ Web Services

- The exploding arena of web services called for an address of standards and best practices by ITC members.
- Identify areas where standards could be agreed upon determine areas that need further clarification, collaboration (beyond ITC).

✓ Visualization

- Enable the sharing of data across ISO/RTO's providing an architectural model, documentation and working POC.
- This effort is done in partnership with vendor SGI.
- The project completes with the delivery of the POC and all associated architectural models and documentation.
- The ITC will analyze the initiative's outcomes and make decisions as to next steps including possible extension of POC into production.

ITC Initiatives

✓ Redbook

- A comprehensive body of documentation was compiled from the working of archives of all ISO/RTOs in order to provide a single-source binder or library.
- The source documentation for the binder was obtained from dynamic electronic (web-based) sources – living documents.
- A hardcopy binder was presented near year-end 2005 and considered completed.

✓ CIP 02-09 / NERC 1300

- Extension of current NERC 1200 standards.
- Resource estimates and / or requirement are expected to be completed in '06.
- Implementation expected in '07

Future Direction of NYISO

- ✓ Move to an open agile model across platforms and systems.
 - Continuing transition to N-tier
 - Host based virtualization
- ✓ Rules based architecture / engines to address ongoing needs and complexity through initiatives
 - Re-design BAS (Billing and Accounting System) leveraging Billing Simulator implemented technology
- ✓ Vendor Relationship Management
 - Seek strategic, non-exclusive partnerships
 - BEA Web Logic, TIBCO

Future Direction of NYISO

- Continue to focus on Quality
 - Ongoing internal documentation, research and implementation of "Best Practices"
 - Refine Standards and governance

 - Continual refinement of SDLC
- Address Lack of Automation
 - Major initiatives to automate manual processes

✓ Questions?

